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Introduction. When proving lower bounds on space-bounded computation, often we end up in a
scenario where we will force the machine in question to compute multiple separate instances of some
computation, in the hopes that whichever instance it computes first will have to be remembered
throughout the computation on the rest. An important example of such a program is the drive to
get lower bounds on the tree evaluation problem (TreeEval), defined by Cook et al. [CMW12] as a
potential language separating L from P. The setup is very general: we are given a full binary tree
of height h, and for some number k every leaf is labeled with an element of [k] and every internal
node is labeled with an entire function [k] x [k] — [k], with the solution to the problem being the
value output at the root when the tree is evaluated in a bottom-up fashion in the natural way. Here
we can hope to prove that the space required is w(logn) = w(h + log k) by using a strategy (often
called pebbling) as described before. More specifically, in order to compute both the left and right
children of the root, we will have to eventually compute one of them, at which point we will be
remembering log k bits. Then if we look at the other child, we have an instance of height A~ — 1 to
compute, and applying the same strategy all the way down gives us h layers in which to remember
log k bits, for a total of Q(hlogk) space. Follow-up results for read-once branching programs and
other restricted models have confirmed this full lower bound in many natural settings, and Cook et
al.[CBM*09] conjectured that TreeEvaly , € BPSIZE(K%M).

However, there is a natural question that arises when taking this strategy: is the space required
to both remember some old information and compute some new information approximately the total
amount of space required to do each of them separately? At first glance this seems almost trivial;
how could one hope to save any space computing a new function given some junk information in an
arbitrary (possibly incompressible) state that has no relevance to the computation at hand? To
formally study this problem, Buhrman et al. [BCK ' 14] introduced a model of computation called
catalytic computing. We consider a variant of Turing machines where we have four tapes: first, a
read-only input tape of length n; second, a write-only output tape of length m; third, a read-write
work tape of length s; and fourth, a read-write “catalytic tape” of length 20(8) which is in an
unknown inital state, and which the program is free to use as workspace provided it is returned to
its original configuration at the end of the computation. Focusing on the setting where s = O(logn),
which they call catalytic logspace (denoted CL), they show a surprising and counterintuitive result,
which is that regardless of the setting of the catalytic tape, not only can we solve problems widely
conjectured to not in L, but we can solve every problem in the class TC!, which (likely strictly)
contains NL!

This is not only a phenomenon in this new catalytic model, but rather has implications in
the traditional space-bounded model that we seek to prove TreeEval lower bounds in. The main
theorems in [BCK™14] used key subroutines appearing in a number of seminal results on the power
of logspace, namely Barrington’s Theorem showing that NC' C L [Bar89] and its extension to show
#NC!(R) C L for small enough rings R [BoC92]. Recently we showed [CM20] how TreeEvaly, , can be
solved by branching programs of size k°® by extending one key lemma from [BCK™14], disproving
Cook’s conjecture.! Furthermore we show a direct way to prove stronger upper bounds—even the
optimal result TreeEval € L—by further improving the parameters in this key lemma.

Clearly there is something more to be understood about the power of space-bounded computation,
and in particular in the ability to “borrow” used space in a way that is useful for new computation
without having to go through compression. Further upper bounds through techniques from catalytic
computing could continue to show the surprising power of space-bounded computation, and on the
flip side lower bounds for L will have to face these techniques sooner or later. Since we are seeking

n this original paper we only achieve this upper bound for a limited range of parameters; in upcoming work we
prove an even stronger upper bound for every setting of parameters.



to understand both the old model of space-bounded computation and the new model of catalytic
computing, we turn now to a unifying model of computation through which we understand these
key subroutines and lemmas.

Clean computation and logarithmic depth. Another notion of computation defined by
[BCKT14], building off the central lemma in [BoC92] and used as a way to describe the key
operations needed to establish their results, is that of clean computation. In clean computation both
our work space and the output tape are filled in with values at the start of the computation, and in
addition to the catalytic restriction that the work tape be restored at the end of the computation,
we say that the machine computes the function f if at the end the value of a function f(zy...xy) is
added to the output tape.?

While this seems like an odd computation model to introduce when neither L nor CL have
anything in the output registers,® in practice this definition is used within the computation to
compute a subfunction g into a chunk of used space. From this we build up a recursive way of
computing f; first, we recursively cleanly compute all subfunctions g; needed to compute f into our
space, whether it be the huge catalytic tape or the small logspace work tape, and from those we
cleanly compute f. The important thing here is that as long as we have space to store the outputs
of the subfunctions g;, we don’t have to worry about the actual space required to compute each of
them, as we can borrow the output space from other g;s for computation.

Another motivating factor for this definition is that when we apply this recursively to some
subfunction f and its subfunctions g;, we quickly realize that the g;s cannot output their values into
unused space, since there is only enough space set aside for f and other subfunctions it will be used
alongside; hence why we add their values to used memory. However this brings up a complicating
factor: rather than getting the input to f from the easy-to-read input tape, we need to extract the
results of computing the g;s from the used space where they were cleanly computed into. In other
words, the input to f is given by our ability to mask (and demask) each of the “catalytic input
registers” by the result of g;. Thus the lemmas in [Bar89, BoC92, BCK'14] take on the following
form: “Assume for all i € [m] we have a program P; that cleanly computes g; into R;; then there
exists a program P which cleanly computes f(g; ... gm) into R.”

The clearest (and most prominent) example of how this type recursive of computation is used is
in simulating log-depth circuits. We can do a bottom-up simulation by defining a program P, for
each gate g in the circuit using recursive calls to the Py programs for all ¢’ feeding into g. It is
not hard to see that the total runtime of P, for the output gate f is t¢, where t is the number of
recursive calls each P, makes and d is the depth of the circuit. For example, to show that #NC! C L
it is enough to show that given programs FP; and P; computing g; and g; it is possible to cleanly
compute g; + g; and g; X g; using only a logarithmic number of registers and a constant number of
recursive calls; in fact [BoC92] show that it can be done with three registers and four recursive calls.

Clean input-masked computation. Inspired by this framework, we propose a modification of
clean computation called “clean input-masked computation”. Unlike the four tapes of catalytic
computing and three tapes of clean computation, we a model with only one read-write tape,
partitioned into three parts: input, output, and work. This tape is completely catalytic; it starts in
an initial configuration that is out of our control, and in the end we are required to cleanly compute

2This notion is independent of the field, and often we think of all the cells as being registers over some field rather
than traditional bit registers. For this work it is fine to think of everything as being a bit register, and when we say
addition we mean bitwise addition mod 2.

3In fact in these models the output registers are write-only, so this idea of adding the value of a function doesn’t
even make sense.



f(x1...xp) into the output tape, meaning all other space needs to be in its initial configuration.

Furthermore the input tape R; ... R; does not actually store the input; we are given access to a
function P, which takes as input a set of input coordinates S C [k] and adds z; to R; (mod 2) for
all i € S. Thus we say f can be (s,t)-cleanly input-masked computed, where our measure of space
will be the length of the tape and our measure of time will be the number of times we called P.

To motivate this definition, we restate the key lemmas from [BoC92, BCK ™14, CM20]; using
the recursive analysis from the previous section it is a simple exercise to show their respective main
theorems.

Lemma 1 (#NC! C L). f = 21 + 22 and f = x1 X 22 can both be (3,4)-cleanly input-masked
computed.

Lemma 2 (TC! CCL (1)). f = > icq) i can be (d+ 1,2)-cleanly input-masked computed.

Lemma 3 (TC! C CL (2)). f = 2¢ can be (d+1,2)-cleanly input-masked computed over commutative
Tings.

Lemma 4 (TreeEvaly j, € BPSIZE(k°™)). Let xy ...z, be a set of inputs, let m < 2%, and let iq, €
[n] foralla € [m], b € [d]. Then for any polynomials { f} the ensemble [fi(iy, - .- Tiyy),-- s f(Tipn: -
can be (n 4+ m, 2%)-cleanly input-masked computed.

Thesis proposal. The field of clean computation is quite young, and there are a number of places
where it may be possible to strengthen the existing clean input-masked computation lemmas with
far-reaching consequences. I will propose two concrete lines of research on clean input-masked
computation as well as their motivation.

1. The first is a direct way to obtain breakthrough upper bounds for the Tree Evaluation Problem.

As stated earlier, in upcoming work we show that they can be computed with branching
programs of size kO(/108h)  Furthermore all evidence in the proof indicates that going beyond
the frontier lies in clean input-masked computation.

Theorem 5. If Lemma / can be strengthened to be (n+m, t(d))-cleanly input-masked computed
for any function t(d), then TreeEvaly j, can be solved by branching programs of size (log t(k))OM).
poly(k). In particular if t(d) = poly(d) then it can be solved in size O(log k)" - poly(k), and if
t(d) = O(1) then TreeEval € L.

While it seems like asking to compute an exponential number of polynomials—each of which
potentially having an exponential number of terms—using only a constant number of recursive
calls seems like a big ask, the real question is how hard it is to compute individual terms
versus many terms in the same variables. The following lemma in [CM20] was the stepping
stone to proving Lemma 4.

Lemma 6. f = [[;c(qzi can be (d + 1,2%-cleanly input-masked computed.

The next insight in [CM20] is that this construction can be “parallelized” to work for any
number of terms simultaneously at no extra cost; the space needed is exactly the space needed
to store the input and output, while the time needed is exponential in the degree irrespective
of the number of terms or polynomials. We also showed (not yet published) that f =[];cq i
can be (d + 1,0(1))-cleanly input-masked computed, which improves Lemma 6 to its optimal
space and time. The catch is that as of now this result doesn’t parallelize to an arbitrary
number of terms in the same way. Showing either an improvement on the construction in
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Lemma 6 to reduce the time or on the new lemma to get parallelization would immediately
improve the state of the art for TreeEval. On the flip side, showing a lower bound would halt
our forward progress; in upcoming work we show that our construction is essentially tight for
the types of algorithms we proposed in [CM20], and so further progress crucially relies on
computing parallel products.

2. The second potential improvement is new containment results for CL. As discussed earlier it is
difficult to use clean input-masked computation as a subroutine when the depth of the circuit
class you want to simulate is superlogarithmic, since you are necessarily paying a t¢ price in
the runtime. On the other hand, the field has had great success in driving down the time
needed to cleanly input-masked compute individual operations, with the best example being
the fact that the majority function (and indeed an ensemble of poly(n) majority functions) can
be (poly(n), O(1))-cleanly input-masked computed, leading to the current record of TC! C CL.
Thus one potential way to circumvent the log-depth barrier is to “compress” high-depth
circuits into log-depth by replacing w(1) layers at a time with a single gate computing a hard
function, and then working on new upper bounds for cleanly masked-input computing that
function.

Theorem 7. If an ensemble of poly(n) undirected s-t connectivity instances can be (poly(n), O(1))-
cleanly input-masked computed, then NC? C CL.

One interesting observation about this theorem is that it can be seen as a strengthening of
Lemma 3 to work for non-commutative rings, as powering the adjacency matrix of a graph
can be directly used to solve undirected s-t connectivity. However it is unclear whether or not
such a strengthening is possible.

Hedging my bets. While we’ve made progress on clean input-masked computation in previous
and upcoming work, these two challenges still seem quite formidable. As such I also propose two
additional lines of research, both of which are based on past and ongoing research.

1. The first is to study the relationship between CL and P. Currently we know that CL and related
non-deterministic variants are in ZPP, which means that under the plausible hypothesis that
ZPP = P we have CL C P; furthermore this containment is known under other well-believed
derandomization hypotheses as well. Regardless, since actually proving ZPP = P seems to be
a far-off dream for the field, it would be useful to have a direct and unconditional proof that
CL C P, and we have a number of potential approaches for doing so. Alternatively it could be
that resolving this question is similar to resolving ZPP = P in terms of difficulty, and that
this can be stated formally as a barrier to proving CL C P.

2. The second is unrelated to catalytic computing, and lies with lifting theorems. Query-to-
communication lifting has attracted a lot of attention in the past few years for its ability
to prove strong lower bounds for difficult models such as communication complexity and
proof complexity. In recent work [LMM™*20] we show that the standard arguments in most
lifting theorems can be greatly simplified using robust sunflowers, a tool from combinatorics.
Furthermore these arguments allow us to improve the size of the index gadget used as
the inner lifting function; if strengthened further this could have implications in monotone
circuit complexity and extended formulations. We propose two research problems: 1) further
improving the construction to reduce the gadget size; and 2) extending these simplified
arguments to other gadgets (namely the inner product) and other lifting theorems (namely
randomized lifting).
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