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Abstract

We survey the catalytic computing framework introduced by Buhrman et al. (STOC
2014). While the model for catalytic computing in Buhrman et al. uses a large amount of
(catalytic) space, we also discuss algorithms for the Tree Evaluation Problem of Cook et al.
(TOCT 2012), which operates in a model of low space. In particular, we discuss how the
catalytic approach of computing large fan-in sums and products may be improved, and the
possible implications of further improvements to the complexity landscape between L and
TC1.
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1 Introduction: The catalytic computing model

Consider an everyday desktop, where there are two main types of memory available for use: a
huge amount of hard drive space meant for storing files, and a small memory bank in RAM, the L1
cache, and other working space which is kept clean for use in actually running computer programs.
Besides not being optimized for speed, one obvious objection to using the HDD for actually running
computation is that it tends to get filled up with movies, games, and other files that we wouldn’t
want to write over in the course of running programs. Even so, it seems like a waste to leave such a
huge memory bank untouched most of the time.

In the catalytic computing model, introduced by Buhrman et al. [BCK+14], we simulate this
situation by considering a Turing machine with two tapes: a small (think O(logn) for this survey)
work tape like the ones we usually have in space-bounded computation, and an exponentially bigger
“catalytic tape” which is in an unknown inital state. The program is free to use the work tape with
no restrictions, and is also free to use the catalytic tape provided that at the end of the computation
the tape is returned to its original configuration. Of course since the initial configuration is unknown
and possibly incompressible, it is not at all obvious that the latter tape helps us in any way.

In light of this intuition, the results of [BCK+14] can appear very surprising at first glance.
They show that CL, the class of problems solved by a catalytic Turing Machine where the work
tape has length O(logn) and the catalytic tape has length nO(1) 1 captures all the power of TC1,
the class of log-depth poly-size circuits with unbounded fan-in ∧, ∨, and MAJ gates. Since TC1

contains AC1, a circuit class known to contain NL, and since TC0 6⊆ AC0 it would be reasonable to
conjecture that TC1 6⊆ AC1, and thus that NL ( CL.

We survey the application of the techniques of catalytic computing to problems and classes
within TC1, in hopes of shedding light on the power of L versus CL. In Section 2 we formally
introduce all computation models and complexity classes that will appear in this survey. In Section 3
we discuss some background on catalytic computing, including two lines of work instrumental in
conceptualizing the model, as well as follow-up work since the initial publication of [BCK+14]. In
Section 4 we state some key technical lemmas of [BCK+14] and our recent improvements to these
lemmas. In Section 5 we review some important classes in between L and P, and discuss where
catalytic computing techniques may play a role in resolving longstanding open relations between
these classes. Finally in Section 6 we propose three concrete open problems related to these open
relations and to catalytic computing in general.

2 Computation models

We first introduce branching programs, although the main focus of this survey will be on the
register program model defined subsequently. Note that for this paper we only discuss uniform
computation models, without going into too much detail about which notion of uniformity we use
(see e.g. [AGM16]).

Definition 1 (Branching program). Let R be any finite set (we usually assume R = {0, 1}). A
deterministic layered branching program for computing a function f : Rn → O is a directed acyclic
graph B = (V,E) with labels on each node and edge, plus a value ` ∈ N+, satisfying the following
conditions:

− there exists a single source node and |O| sink nodes
1We will focus on the case of catalytic logspace (CL), but their results hold more generally for SPACE(s(n)) as long

as s(n) = Ω(log n)
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− every non-sink node is labeled with a value j ∈ [`] (we assume the source node is labeled with
j = 1) and an input variable xi; additionaly the fan-out of each non-sink node is |R| and each
labeled outgoing edge is labeled with a unique element of R

− every sink is labeled with the value ` and a unique element of O
− every edge going from a node labeled with j goes to a node labeled with j + 1
− on input α ∈ Rn, the unique sink reached from the source on the path following the edge

labeled αi at each vertex labeled xi is labeled with f(α)

The size of B is |V |, the width of B is maxj∈[`] |{v ∈ V |v has label j}| and the length of B is `.

A branching program over R of width w and length ` can be simulated by a Turing Machine
with space O(logw + log `+ log |R|) by simply keeping an address (k, j) ∈ [w]× [`] for the current
node as well as the value in R of the label xi for the given input. If R′ is such that |R′| < |R|, by
representing each element of R as c = log|R′| |R| elements of R′, a branching program over R of
width w and length ` can also be simulated by a branching program over R′ of width w and length
c`.

Definition 2 (Register program). Let R be any ring. A register program for computing a function
f : Rn → O is a pair P = ({Rj}, inst) where each Rj is a register holding a value in R and inst is
a sequence of instructions of the form Rj ← Rj + v`vr for v`, vr ∈ R ∪ {xi} ∪ {Rj}. The the space
of P is |{Ri}| and the length of P is |inst|.

We additionally say that P is skew if v` ∈ R ∪ {xi} for every instruction in inst. It is not hard
to see that for a finite R, every register program of space s and length ` can be simulated by a
layered branching program of width s|R| and length `+ 1.

Before moving on to catalytic computation in earnest, we introduce a third computation model,
the circuit, which will mostly function as a backdrop to the result presented in Section 3, but which
we will revisit in our discussion of future directions in Section 5.

Definition 3 (Circuit). Let R be a set and for all d ≥ 1 let {◦d} be a set of functions from Rd
to R. A circuit for computing a function f : Rn → O is a directed acyclic graph C = (V,E) with
labels on each node and edge, satisfying the following conditions:

− there exists a single source node
− every sink node is labeled with x ∈ {xi} ∪ R
− every non-sink node with fan-in d is labeled with a function in {◦d}
− on input α ∈ Rn, the output of the source node, where the output of a node is defined in a

bottom-up fashion by replacing all xi with αi, is f(α)

The size of C is |V | and the depth of C is the length of the longest source-sink path.

If R = {0, 1} we say C is a Boolean circuit, whereas if R is a ring we say C is an arithmetic
circuit. For now we assume all circuits have polynomial size and all functions ◦ are fan-in at most 2
and define the two classes needed to begin our study of catalytic computing.

Definition 4. An NC1 circuit is Boolean circuit C where ◦1 = {¬}, ◦2 = {∧,∨}, and where the
depth of C is at most O(logn). For a ring R a #NC1(R) circuit is an arithmetic circuit C over R
where ◦2 = {⊕,⊗}, and where the depth of C is at most O(logn).
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3 History

To review the history of catalytic computing, we first turn our attention to earlier works that
inspired the model. The first is a pair of seminal results from over two decades prior: Barrington’s
Theorem for NC1 [Bar89] and Ben-Or and Cleve’s construction for #NC1 [BoC92]. We introduce
these results in full, as both are as simple as they are profound. The second is the Tree Evaluation
Problem (TreeEval), introduced by Cook et al. [CMW+12] as a candidate for separating L from P.
We introduce the problem and motivate how catalytic computing arose to throw a wrench into a
seemingly reasonable assumption on space-bounded complexity which was being used in the context
of TreeEval.

3.1 Constant size register programs and NC1

Theorem 1 (Barrington’s Theorem). NC1 is precisely the class of functions that can be computed
by a poly-size layered branching program of width O(1). More specifically, let C be a fan-in two
Boolean circuit of depth d ≤ c logn. Then there exists a width-five layered branching program of
length 4d ≤ n2c computing the same function as C.

To begin our discussion of the results of [Bar89, BoC92], let us try and understand why
Barrington’s Theorem [Bar89] was such a bolt from the blue in 1989. One common way of
viewing circuits is as massively parallel computation, where poly(n) processors working in parallel
on each layer allows us to compute tricky functions in logarithmic or even constant time. This time
would appear to come at the cost of maintaining and computing a large number of bits in parallel,
and furthermore it’s not at all clear that taking polynomial time would allow us to save much space.
Intuitively to compute the output node of a fan-in two circuit, we need to have both of its inputs
in hand at some point in time, meaning at best we hold on to one, say the value of the left child,
while we compute the other. Now if we want to compute the value of the right child, the same
reasoning applies: at some point we need to have the values of both of its children, meaning we at
least need to hold on to one while we compute the other. Applying this reasoning inductively, a
log-depth fan-in two circuit would seem to require storing at least one bit at each level; this is a
style of argument called pebbling [PH70,CMW+12].

By contrast, Barrington’s Theorem states that a width five branching program, the equivalent
of a machine with only log2 5 < 3 bits of working memory, is enough to compute an NC1 circuit,
and by extension any poly-size formula in polynomial time. The details of how to compute internal
∧ or ∨ gates involve actions on a permutation group which we leave for interested readers to seek
out. Instead we turn now to [BoC92] to see how a similar staggering result came out for arithmetic
circuits, using the same ideas as Barrington’s Theorem but in an even simpler form.

Theorem 2. For any ring R, #NC1(R) is precisely the class of functions that can be computed by
a poly-size skew register program with O(1) registers over R. More specifically, let C be a fan-in two
arithmetic circuit over R of depth d ≤ c logn. Then there exists a skew register program of length
4d ≤ n2c with three registers over R computing the same function as C.

Proof. We define our register program inductively on the nodes of C. For any node g in C let fg be
the function computed at g, and we will build a program Pg computing fg; thus our final goal is
to define Po for the output gate o. More specifically, for three registers R1, R2, R3, each holding a
value in R, let Pg(R1, R2, R3) be the program that sets

R1 = τ1 + τ2 · fg
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R2 = τ2 R3 = τ3

where τi is the initial value stored in register Ri. Thus if we can define Po(R1, R2, R3), then setting
τ1 = τ3 = 0 and τ2 = 1 it is clear that Po(R1, R2, R3) computes the same function as C.

Let g be a leaf of C labeled with x ∈ {x1 . . . xn, x1 . . . xn}∪R. Then the program Pg(R1, R2, R3)
is as follows:

1: R1 ← R1 +R2x . R1 = τ1 + τ2 · x
Let g be an internal node of C of height d with children g`, gr, and inductively assume that we have
programs Pg`

and Pgr of length 4d−1 for computing fg`
and fgr respectively, as well as their inverses.

First consider the case when fg = fg`
+ fgr . Then the program Pg(R1, R2, R3) is as follows:

1: Pg`
(R1, R2, R3) . R1 = τ1 + τ2 · fg`

2: Pgr (R1, R2, R3) . R1 = τ1 + τ2 · fg`
+ τ2 · fgr

Finally consider the case when fg = fg`
· fgr . Then the program Pg(R1, R2, R3) is as follows:

1: P−1
gr

(R1, R3, R2) . R1 = τ1 − τ3 · fgr

2: Pg`
(R3, R2, R1) . R3 = τ3 + τ2 · fg`

3: Pgr (R1, R3, R2) . R1 = τ1 − τ3 · fgr + (τ3 + τ2 · fg`
) · fgr

4: P−1
g`

(R3, R2, R1) . R3 = τ3

Since we make at most four calls to programs of length 4d−1, Pg has length at most 4d as claimed.
Furthermore the only instructions are those at the leaves, which are skew instructions.

The power of Theorem 2 is largely in how the induction is defined. At each layer we define
programs which only affect one register, leaving everything else untouched. Since the programs
are skew, they are also invertible by simply running the instructions in reverse and switching +/−
signs. To maintain these invariants, inverse programs are used to reset all registers besides the
target register, but more importantly by rotating the target, source, and working registers, and by
adding and subtracting values both before and after computing one of the leaves recursively (in
this case Pg`

), we can use our third register R3 to get an R2 · fg`
fgr term while canceling out the

contribution of τ3 itself.
These results laid the foundation for catalytic computing by showing the power of inverse

functions and arithmetic manipulation to create “transparent programs”, register programs which
only leave one register affected and which work regardless of the starting configuration of the
registers. Before moving on to TreeEval we note that these results are for a very different regime
than the catalytic model discussed before, namely the case where very low space of any kind is
available for use. Below L this is ill-suited for the Turing Machine model, where a polynomial length
register program would require O(logn) space just to keep track of a program counter, whereas for
branching programs and register programs themselves this seems just as natural as the catalytic
model. Moving up to L, since Barrington’s Theorem and Theorem 2 work with only a constant
amount of memory, it would be interesting to see what could be done with register program with
O(logn) register space, which would immediately give us new catalytic techniques for L itself. We
return to this idea in later sections.

3.2 The Tree Evaluation Problem

The results of [Bar89, BoC92] saw numerous applications in the decades that followed [BIS90,
BBC+95, ÀJ95], but the work that led to the formulation of catalytic computing came from a much
different line of work, namely lower bounds against L. The Tree Evaluation Problem, formulated by
Cook et al. [CMW+12] nearly two decades after [BoC92], has been a leading candidate for separating
L from P since its inception.
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Definition 5 (Tree Evaluation Problem [CMW+12], TreeEvalh,k). The tree evaluation problem
TreeEvalh,k is parameterized by a height h and an alphabet size k. The input is a full binary tree of
height h, where every leaf is labeled with an element of [k] and every internal node is labeled with
a function from [k]× [k] to [k]. The output is the value of the root of the tree, where the tree is
evaluated bottom-up in the natural way. We will often omit the subscripts and write TreeEval.

The input to TreeEvalh,k has size (2h−1 − 1)k2 log k + 2h−1 log k = O(2h poly(k)). The problem
is in P: it can be solved in polynomial time by evaluating every node, starting from the leaves, in
an order that ensures a node’s two children get evaluated before its parent. As with Barrington’s
Theorem, a pebbling lower bound shows that for a layered branching program, there is some layer
which is holding at least one value in [k] for each of the h levels of the tree, which would mean this
level has width kh. Formalizing the basic algorithm which computes the instance in a bottom-up
manner, a careful analysis gives us a branching program of size Θ((k + 1)h) = ω(2h poly(k)).

Unlike with our intuition about the algorithms of [Bar89,BoC92], these pebbling based lower
bounds actually do translate to tight Ω(kh) lower bounds in certain restricted settings. In the
read-once restriction the branching program only looks at each bit of the input at most once, while
in the thrifty restriction the branching program can only read bits corresponding to the actual
evaluation of the tree (so for example if the children of a node v evaluate to x and y, the branching
program must not read any values of the function at v other than the value at (x, y)). The basic
algorithm we introduced before fulfills both of these conditions, but either one of them is enough to
guarantee a lower bound of Ω(kh), and neither of these restrictions assume any other structure on
the branching program such as being layered.

However, the strategy of proving these same lower bounds to the case of general branching
programs2 was, in the words of [Kou16], to “prove the lower bounds under essentially the assumption
that the extra space does not help and then justify this assumption.” This assumption, as in the
case of NC1 and #NC1, is natural, persuasive, and ultimately not correct. The paradigm of catalytic
computing came with [BCK+14] a few years after TreeEval, and while their results gave no explicit
algorithms for TreeEval they posed an existential challenge to the natural pebbling strategy.

In recent work with James Cook [CM19], we brought this challenge more directly to TreeEval,
using and improving a key lemma from [BCK+14]. While [BCK+14] simulates circuits by using the
large catalytic space to evaluate and store all values at a given level simultaneously, in TreeEval all
nodes have fan-in two, and so as with the proof of Theorem 2 the strategy goes node by node instead,
allowing us to avoid using a large catalytic tape. More importantly, in this proof we concretely
see how catalytic computing dodges both the read-once assumption (by recomputing nodes many
times) and the thrifty assumption (by summing over all potential queries at each node), and while
our upper bounds don’t yet go beyond the basic algorithm for most values of h and k, the cost
actually comes in the length of the program, while the width is far less than the pebbling lower
bound predicts.

3.3 Catalytic results

To understand the follow-up work to [BCK+14], we first state their central result.

Theorem 3. TC1 ⊆ CL ⊆ ZPP

In an attempt to understand the power of catalytic space, last year Buhrman et al. [BKLS18]
extended the model to non-deterministic computation, and showed a catalytic version of the

2It should be noted that this work was not inspired by pebbling lower bounds for restricted models. Initial work
on TreeEval was specifically for the case of unrestricted branching programs; the read-once and thrifty lower bounds
came much later, not earlier.
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Immerman-Szelepcsényi theorem [Imm88,Sze88], namely that assuming SPACE(n) 6⊆ SIZE(2εn) for
some constant ε > 0, then CNL = coCNL. This year Gupta et al. [GJST19] extended the model to
unambiguous non-deterministic computation as well, and showed that CUL = CNL under the same
assumption as CNL = coCNL. Note that [BKLS18] showed an upper bound of CNL ⊆ ZPP as in the
deterministic case, and so it remains open whether or not CL or CNL are in P ⊆ ZPP.

Another recent result is that of Potechin [Pot16], which is connected to deterministic catalytic
computation for much larger space. Consider the catalytic model for branching programs, where the
input layer has 2a nodes representing the initial configuration of a binary catalytic registers, and
with the output nodes being labeled with both an output of the function and the initial configuration
(e.g. 2 · 2a nodes for a binary function). Then for the case of a = 2n, [Pot16] shows that any function
can be computed by a branching program of width 2 · 2a and length 2n, a factor two off in the
length from the absolute best branching program possible.

For a more in-depth survey we defer interested readers to [Kou16].

4 Catalytic sum and product lemmas

In this section we state a number of key lemmas from [CM19]. We also discuss where potential
improvements to these lemmas could be found, and how they would translate to further results for
TreeEval. In particular, we look at method for computing + and × catalytically.

The starting point is a lemma which appears in [BCK+14] as Lemma 4, but which is apparent
from the proof of Theorem 2. Recall that τi is the initial value stored in register Ri. We say that
P transparently computes R = τ + v to mean that all other registers are left unchanged, or more
specifically

R = τ + v

R′ = τ ′ ∀R′ 6= R

Lemma 4 (Basic Sum Lemma). Let R`, Rr and Rp be distinct registers. Let P` be an invertible
program which transparently computes v` into register R` and let Pr be an invertible program
which transparently computes vr into register Rr. Then there exists an invertible program Pp which
transparently computes v`vr into Rp, i.e.

Rp = τp + v` · vr

Ri = τi ∀i 6= p

Pp uses only the three registers Rv, R`, Rp (not counting any space used by the programs P` and Pr)
and makes two calls to P` and Pr each, plus four basic instructions of the form Rp ← Rp ±R`Rr.

For convenience, from now on
Our first improvement to the Basic Sum Lemma will be to parallelize it. Consider the case when

we want to run many different iterations of Basic Sum Lemma, where each iteration uses different
but possibly overlapping v` and vr values. In particular we will let #  –

Rp,
# –

R`, and #  –

Rr be distinct i, j,
and k-dimensional vectors of registers, respectively. We will let P` and Pr transparently compute
some values #–v` and #–vr into # –

R` and #  –

Rr respectively. For each x ∈ [i], Rp,x has some target value vp,x
given by

vp,x =
∑

(y,z)∈Sx

v
e`,x,y

`,y · ver,x,z
r,z

for some sets Sx ⊆ [j] × [k] and polarities e`,x,y, er,x,z ∈ {0, 1} (recall that x1 = x and x0 = x).
While one solution would be to run Basic Sum Lemma separately for each x and each (y, z) ∈ Sx,
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resulting in 2ijk recursive calls to P` and Pr each, it turns out that the same two calls each as in
Basic Sum Lemma suffices.

Lemma 5 (Parallel Sum Lemma). Let P` and Pr be invertible programs which transparently compute
# –

R` = #–τ` + #–v` and #  –

Rr = #–τr + #–vr respectively. For all x ∈ [i] let Sx, {e`,x,y}, {er,x,z} be such that

vp,x =
∑

(y,z)∈Sx

v
e`,x,y

`,y · ver,x,z
r,z

Then there exists an invertible program Pp which transparently updates
#  –

Rp = #–τp + #–vp

Pp uses only the i+j+k registers #  –

Rp,
# –

R`,
#  –

Rr (not counting any space used by the programs P` and Pr).
Pp uses two calls to P` and Pr each, plus 4ijk basic instructions of the form Rp,x ← Rp,x±R`,yRr,z.

Our second improvement to Basic Sum Lemma will be to work for d-ary products. A similar
lemma implicitly appears in [BCK+14] as Lemma 8, but we state it with the exact parameters.

Lemma 6 (Large Product Lemma). Let R0, . . . , Rd be distinct registers. Let P1 . . . Pd be invertible
programs where Pi transparently computes Ri = τi + vi. Then there exists an invertible program P
which transparently updates

R0 = τ0 +
∏
i∈[d]

vi

P uses the d + 1 registers R0, . . . , Rd plus d additional registers (not counting any space used
by the programs Pi) and makes d2 calls to each Pi plus poly(d) basic instructions of the form
Rp ← Rp ±

∏
i∈[d]Ri.

Our third improvement to Basic Sum Lemma is to perform parallelized d-ary products, or in
other words to perform Parallel Sum Lemma and Large Product Lemma simultaneously. We will
let #  –

Rp and # –

Rc be distinct i and j-dimensional vectors of registers, respectively, and we will let Pc
transparently compute some values #–vc into # –

Rc. For each x ∈ [i], Rp,x has some target value vp,x
given by

vp,x =
∑
t≤k

∏
y∈[j]

vet,x,y
c,y

for some k ≤ 2j and polarities et,x,y ∈ {0, 1}. Unfortunately the proof of Large Product Lemma
does not lend itself to parallelization, and so we will need an exponential number of calls to Pc. We
also generalize Pc and Pp to be able to compute subsets of vc and vp, rather than always computing
the full vectors.

Lemma 7 (Parallel Large Product Lemma). For all T ⊆ [j] let Pc(T ) be an invertible program
which transparently computes

Rc,y = τc,y + vc,y ∀y ∈ T

For all x ∈ [i] let k, {et,x,y} be such that

vp,x =
∑
t≤k

∏
y∈[j]

vet,x,y
c,y

Then for every S ⊆ [i] there exists an invertible program Pp(S) which transparently computes

Rp,x = τp,x + vp,x ∀b ∈ S
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Pp uses only the i + j registers #  –

Rp and # –

Rc (not counting any space used by the programs Pc(T ))
and makes one call to each Pc(T ), plus 2O(i+j) basic instructions of the form Rp,x = Rp,x +
ct,x

∏
y∈[j]R

et,x,y
c,y for constants ct,x.

While the exponential loss in Parallel Large Product Lemma may seem large, for TreeEvalh,k if
we encode our values from [k] in d = log k binary bits, then Parallel Large Product Lemma gives
us a way to compute the function at a given node using 2k2 recursive calls to its children, leading
to a branching program of k2h length and 2O(log k) width. As discussed before while this gives an
algorithm that is ultimately polynomially less efficient than the basic algorithm, it does so only in
the length, while the width corresponding to the storage space is O(log k) rather than the Ω(h log k)
pebbling lower bound. Further optimizing the encoding gives the following breakthrough algorithm.

Theorem 8 (Hybrid algorithm, [CM19]). For every ε > 0 there exists a branching program solving
TreeEvalh,k with length ( kεh + 1)2h and width ( kεh + 1)3εh. In particular for any constant ε > 0 there
is a constant ε′ > 0 such that there exists an algorithm solving TreeEvalh,k with size k(1−ε)h for any
h ≥ k1/2+ε′, where ε′ → 0 as ε→ 0.

5 Complexity classes between L and TC1

Before we discuss the open problems raised by Parallel Large Product Lemma, we briefly introduce
circuit classes beyond NC1 and #NC1. Recall from Section 2 our more general definition of Boolean
and arithmetic circuits, where we allow functions of fan-in greater than 2. We define the following
Boolean circuit classes, which all have depth O(logn) and size poly(n).

− SAC1: ◦2 = {∨}, ◦d = {∧} for all d ≤ poly(n), sink nodes may also be labeled with literals xi
− AC1: ◦1 = {¬}, ◦d = {∧,∨} for all d ≤ poly(n)
− AC1[m]: ◦1 = {¬}, ◦d = {∧,∨,MODm} for all d ≤ poly(n)
− TC1: ◦1 = {¬}, ◦d = {∧,∨,MAJ} for all d ≤ poly(n)

We also have corresponding arithmetic classes, albeit with a few twists including two different
corresponding SAC1 classes3. Again we assume that all classes have depth O(logn) and size poly(n).

− VP(R): ◦2 = {⊗}, ◦d = {⊕} for all d ≤ poly(n)
− ΛP(R): ◦2 = {⊕}, ◦d = {⊗} for all d ≤ poly(n)
− #WSAC1(R): ◦d = {⊗} for all d ≤ O(logn), ◦d = {⊕} for all d ≤ poly(n)
− #AC1(R): ◦d = {⊕,⊗} for all d ≤ poly(n)

Most of these classes are standard and follow conventions codified in [Vol99]; while many readers
may be familiar with VP [Val79] we emphasize again that we are discussing uniform circuit classes,
and in particular we consider the Boolean Part wherein all inputs and outputs to our arithmetic
circuit models are in {0, 1} no matter what ring R is allowed internally. This allows us to define
a hierarchy of both Boolean and arithmetic circuit classes together, which is partially displayed
in Figure 1. The classes ΛP and #WSAC1 were defined in [AGM16], which also contains a more
comprehensive hierarchy for all classes listed.

3While we defined SAC1 with ∨ restricted to fan-in 2 and ∧ unbounded, it is known that reversing them is
equivalent, as SAC1 (like the other classes) is closed under complement [BCD+89].
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SAC1

#SAC1(Fp) = VP(Fp) = CC1[p] AC1

LVP(Fpn ) = L#SAC1(Fpn ) = LVP(Q)

AC1[p] = log-AC1[p] = #WSAC1(Fp)

L#WSAC1(ZL) ACC1 = ∪p#AC1(Fp) = ∪pΛP(Fp) =
∪p1...pk

AC1[p1 . . . pk] = ∪mCC1[m] = CC1

TC1 = #AC1(Fpn) = LΛP(Fpn ) = AC1[pn] = CC1[pn]

```
```̀

((((
(((

((((
((((

((((
((

PP
PP

PP
PP

PP
PP

PP
PP

PP

��
��

��
��

XXX
XXX

X

Figure 1: Circuit class relations (appears in [AGM16] as Figure C1). Not pictured: NL ⊆ SAC1,
but the SAC1 ⊆ VP(Fp) is only known non-uniformly [GW96], while NL ⊆ AC1 uniformly.

6 Open problems

Question 1: can Parallel Large Product Lemma be improved? The most pressing open
question presented by these results is whether or not there exists a version of Parallel Large Product
Lemma making fewer recursive calls, or equivalently if the construction in Large Product Lemma can
be made amenable to parallelization. Should we be able to get a version of Parallel Large Product
Lemma making t(j) recursive calls for a function t = o(2j), it would translate to a TreeEvalh,k
algorithm of size (t(log k))O(h).

Cook et al. [CBM+09] offer a prize for any algorithm which, for a fixed h, proves TreeEvalh,k ∈
O(kh−ε) for any constant ε > 0. If t(j) = poly(j) as in Large Product Lemma then TreeEvalh,k
would have a branching program of size (log k)O(h) for all h, k, which would be more than sufficient
to claim the prize. Even more drastically, to prove TreeEval ∈ L it would be sufficient to show it for
t(j) = O(1) as in Parallel Sum Lemma.

Question 2: do Large Product Lemma or Parallel Large Product Lemma give L more
power to simulate circuit classes? Recall that VP(R) is the class of functions with arithmetic
circuits of fan-in 2 ⊗ gates and unbounded fan-in ⊕ gates. While the simulation of TC1 in [BCK+14]
requires polynomial space to store all values at some level of the circuit simultaneously, the approach
of using Parallel Sum Lemma to solve TreeEval allows us to compute unbounded fan-in ⊕ gates
without ever storing all the inputs in memory, although it does require all inputs to be able to be
derived from small space storage. It is not obvious at all that the techniques presented in Section 4
can be adapted to compute any of the classes in Section 5 without using the polynomial-length
catalytic tape, but doing so would be a huge breakthrough in our understanding of L.

Recall also that #WSAC1(R) is the class of functions with arithmetic circuits of logarithmic
fan-in ⊗ gates and unbounded fan-in ⊕ gates. With Parallel Large Product Lemma we can compute
unbounded sums of logarithmic fan-in times operations within a polynomial number of recursive
calls. If we could make any progress towards Question 1 and towards simulating VP in L, would
this also make progress towards the same for #WSAC1? This would be very surprising, as #WSAC1

is known to contain NL uniformly.
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Question 3: can circuits also apply Parallel Large Product Lemma? The Immerman-
Landau Conjecture [IL95] states that the determinant of integer matrices is complete for TC1.
Mentioned in the work of [BCK+14] was that catalytic computing offers a potential counterargument
to this conjecture; namely, since TC1 can be simulated by VP(Q) circuits, being able to compute
the determinant in TC1 would imply that arbitrary polynomials of degree nO(logn) computable by
poly-size arithmetic circuit over Fpn could be computed by arithmetic circuits over Q with degree
only poly(n). While this seems highly unlikely at first glance, the first hints at a counterexample
were given in [AGM16], who showed that #AC1(F2) = #WSAC1(F2). While this proof involves more
sophisticated techniques such as Toda polynomials [Tod91], probabilistic AND gates [AJMV98],
and group generators, it seems worthwhile to investigate whether the relatively simple procedure
given in the proof of Parallel Large Product Lemma can be utilized by circuit classes well within
TC1 in some way to give more collapses in this way.
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