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This thesis presents a physics-based prior model of human motion suitable for use in pose

tracking. This prior uses abstract physical models to capture salient aspects of human

walking such as contact dynamics and the pendular nature of body motion. Because of

the low dimensionality of the model, simple control strategies are successful in controlling

its motion. Two di�erent physical models are used in experiments to explore the trade-o�

between the complexity of the dynamics and the e�ectiveness of the prior. The ability

of the prior to work with non-trivial walking sequences and in the presence of occlusion

is demonstrated.
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Chapter 1

Introduction

The problem of human pose tracking has been of interest for many years and remains

a challenging problem. In computer graphics, pose tracking has been used to capture

animations, typically by using multiple cameras and markers applied to known body loca-

tions. In computer vision, pose estimation and tracking remains an illustrative example

of the di�culties of extracting complex, 3D information from impoverished 2D views.

Outside of computer science, pose tracking is of interest in the general study of human

motion, in areas such as ergonomics, physiotherapy, biomechanics and sports training.

The di�culty of the problem arises from several places, such as the limitations of data

sources and the nonlinearity of the 3D model. The 2D nature of most data sources (e.g.,

images) leaves many parameters of pose unconstrained such as scale. Even with good

data, the space of possible poses is typically over 30 dimensional and can be extremely

challenging to search.

One approach to dealing with this issue is to frame the problem in terms of inference

in a probabilistic model. In such a framework, the pose is an unobserved random variable

and the problem determining determining the probability distribution over poses given

some observed data. This allows for prior information to be integrated in the inference

problem naturally. For instance, distributions over limb lengths can be speci�ed to help

1
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resolve scale ambiguities. It is also possible to express a prior over motions, called pose

evolution priors, which can be critical for e�ective tracking results.

In the past, pose evolution priors have typically been expressed simply. Most models

have been either simple hand speci�ed models or learned from kinematic data [21, 34,

17, 46, 35, 49]. Unfortunately all of these models su�er from similar problems in their

tracking results such as footskate and out-of-plane rotations. Footskate, which occurs

when a planted foot appears to slide along the ground, is due to many factors such as

measurement noise, inaccurate pose evolution models and depth-scale ambiguities. For

monocular tracking the depth scale ambiguity is most prominent. This ambiguity admits

a one-dimensional family of consistent observations where the scale of the object is related

to its depth relative to the camera. That is, a 2D observation of an object is consistent

with a small object nearby or a large object far away. Out-of-plane rotations occur when

a pose is rotated about an axis which lies within the image plane of the camera. This

occurs naturally when a person leans or turns away from the camera. It can also happen

due to noisy observations. Out-of-plane rotations, up to a few degrees, cause only small

variations in 2D observations.

These kinds of ambiguities, where multiple states are equally consistent with the

observations, need to be resolved with prior models. While the works cited employ a

range of prior models, they are too weak to su�ciently constrain the space of possible

motions. One observation about problematic tracking results is that they violate natural

expectations about the physics of the world. A planted foot, with su�cient friction,

should not be able to slide around. Similarly, a person should not be able to rotate freely

in space without loosing their balance. Thus, in the context of physics, these motions

are highly unlikely.

This observation suggests that a prior model of pose dynamics should somehow ex-

press known physical properties of people and the world. A natural way to do this is

to explicitly include physical dynamics in the speci�cation of the pose dynamics. This
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thesis presents a dynamic1 model of human walking. This prior aims to characterize key

aspects of human locomotion without undue complexity. As such it is both an abstrac-

tion of the true physics of the human body as well as a speci�c model of walking. The

model represents an initial step towards using physically realistic models in tracking. It

is hoped that physically realistic priors can better generalize to new physical situations.

Priors learned from motion capture data are typically able to generalize well to motions

which are similar to the data (e.g., Urtasun et al. [49]). In contrast, dynamic priors

generalize to motions which are close to the physics of the underlying model (e.g., Liu

et al. [23]). It is hoped that this is a more natural and useful class of generalization.

The remaining portion of this chapter will review related works in computer vision and

computer graphics and provide an introduction to the biomechanics which will provide

the physical basis of the model.

Chapter 2 will introduce the model, providing details about the physical models

used. Along with the physical models, stochastic control models will be presented which

implicitly de�ne a distribution of motion. A kinematic model will then be presented which

connects the physical dynamics to a more complete kinematic model. Finally, a model

of anthropometric parameters is presented which models several sources of variability in

the length of an individual.

Chapter 3 will present the details of probabilistic inference in the model. Based on

standard sequential importance sampling, a method is developed which handles the state

dependencies induced by the anthropometric parameters.

Chapter 4 describes the experimental setup, including the likelihood function used

and the summary statistics which are used to evaluate model performance. Experimen-

tal results are presented which demonstrate the models ability to handle occlusion and

generalize to motions which are not explicitly modeled.

1Throughout this thesis the use of the word �dynamic� is restricted to its physics-based meaning. For
the more general meaning of the word �dynamic� as changing over time, the term �evolution� is used.
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Finally, Chapter 5 concludes and discusses potential directions for future work.

1.1 Related Work

There has been a large amount of previous work which relates to this thesis. It would be

impractical to review all of it here. Instead, a selection of representative work, which is

most directly relavent, will be presented.

Character Animation

In character animation, the problem of realistically modeling physical motion has been

studied from several di�erent directions.

In their seminal paper, Witkin and Kass [53] introduced the notion of spacetime

optimization. They formulated the problem of animating an object in a physically re-

alistic fashion in terms of an optimization where the equations of motion of an object

are viewed as constraints called spacetime constraints. Then an objective function, such

as the integral of applied forces, is optimized subject to the spacetime constraints and

other, potentially user-speci�ed, constraints. Using this basic technique they were able

to generate a range of motions for the classic Pixar character, Luxo, Jr..

Unfortunately spacetime optimization has had di�culty scaling up in terms of char-

acter complexity. Achieving successful convergence within a reasonable time has proven a

formidable challenge for spacetime constraint based methods. Many people have worked

on addressing these issues such as Liu et al. [26], Liu and Popovi¢ [22], Fang and Pol-

lard [10], Safonova et al. [45]. In one particularly relevant work Popovi¢ and Witkin

[37] attempted to address this issue in the context of motion editing by introducing the

idea of motion transformations. Here an existing complex motion is transformed into

a motion of a simpli�ed physical model. Modi�cations are then made to the motion of

the simpli�ed model and spacetime optimization is used to generate a new motion. This
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new motion is then mapped back on to the more complex model. This technique, similar

in spirit to the prior model presented here, was successful in allowing realistic edits of

motion capture data.

Liu et al. [23] applied a di�erent technique to a 35 degree-of-freedom human body

model with 147 individual style parameters. They viewed a motion as the result of

a spacetime optimization for a given set of parameters. Then the problem becomes

determining the set of parameters which generated a given motion. By approximately

optimizing an objective function they are able to determine the style parameters from

motion capture data. Further, by changing the constraints they are able to use these

style parameters to generate new motions.

Using a di�erent approach, Raibert and Hodgins [41] and Hodgins et al. [15] used

hand designed controllers to animate characters. Raibert and Hodgins [41] animated

simple models of a biped, a quadruped and a kangaroo. Hodgins et al. [15] focused

on a detailed human model and created controllers which were able to generate running,

cycling and vaulting animations. However, simply requiring that all actions be physically

possible is not su�cient for the generation of natural looking motions. As Raibert and

Hodgins [41] point out in their paper it �...seems that animals move with a smoothness

and coordination that is not required by physical realism alone.�

Grzeszczuk et al. [13] attempted to learn controllers rather than hand design them.

Unlike other approaches, which used generate-and-test techniques to learn controllers,

they were able to compute gradients of an objective function by approximating the phys-

ical dynamics with a neural network. This allowed them to compute the gradient of the

simulation which was required for the gradient of the overall objective function.

People Tracking

Motion models in people tracking have tended to be simple. Very few have attempted

to model physical dynamics at all and none have done so with non-trivial models. A few
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representative papers will be discussed here as a backdrop for the physics-based model

which is introduced in this thesis.

The use of physics-based models to motivate optimizations and other procedures has

been widely used. For instance, Metaxas and Terzopoulos [32] and Terzopoulos and

Metaxas [48] used physical models to motivate a method for �tting deformable shape

models. While this is a novel and interesting approach, the use of physics as a metaphor

is not of particular relevance to this work.

Kakadiaris and Metaxas [17] used silhouettes from multiple known camera views to

estimate and track human pose. Their motion model was a simple second-order white

Gaussian noise model. They were able to recover both shape and pose using their method

however, multi-camera setups signi�cantly reduce the di�culty of the pose inference

problem by removing many of the ambiguities discussed above.

North et al. [33] used an auto-regressive process model of motion. They applied it

to the problem of hand tracking and learned the parameters from data. However, auto-

regressive process models do not scale well with the dimensionality of the hidden states.

The number of parameters for such models are generally large di�cult to e�ectively learn.

In [35] human pose parameters were treated with a 2nd order Markov model which

assumed zero-mean noisy accelerations. Hybrid Monte Carlo �ltering was used to do

inference and help �nd high probability states e�ciently. This model is very generic

but su�ers from the classic tracking problems mentioned above such as footskate and

out-of-plane rotations.

Urtasun et al. [50] used a Gaussian Process latent variable model to learn a mapping

between the high-dimensional pose space and a low-dimensional latent space. Urtasun

et al. [49] extended this work by simultaneously learning a Gaussian Process of the

dynamics in the latent space. Trained with motion capture data both systems were able

to track successfully using limited observations but still su�er from the common problems

of footskate and out-of-plane rotations.



Chapter 1. Introduction 7

While not strictly tracking people, the motion model used by Isard and Blake [16] was

physically based. They tracked a bouncing ball with a physical model which assumed that

acceleration was due to gravity plus some Gaussian noise. This model was interrupted by

ground collisions which were elastic due to the nature of the ball. An edge-based image

likelihood was used with the Condensation algorithm to perform inference and track the

motion of the ball.

Pavlovic et al. [34] attempted to model the non-linearities of motion by using a switch-

ing linear dynamic system (SLDS). The SLDS parameters were �t to hand-labeled walk-

ing and running data using an EM-like procedure. The resulting parameters were used

to classify and track new motions as well as generate novel motions.

Bissacco and Soatto [1] used a switching auto-regressive process model of pose dy-

namics for the purposes of motion analysis and identi�cation. The switch in their linear

system is used to model the change in dynamics at ground contact points. They also de-

veloped a probabilistic distance metric for their model to allow comparison and between

motions. While not actually used for tracking, their model of motion could have been

used to learn a prior for Bayesian tracking.

1.2 Physiology, Biomechanics and Engineering

Over the years, there have been many models of human motion proposed for varying

purposes. Engineers have tried to characterize bipedal motion in terms of stability cri-

teria which are used to restrict motion planning in robots. Researchers in physiology

and physiotherapy have been interested in understanding the energetics and characteris-

tics human motion in order to help the rehabilitation of people with pathological gaits.

Biomechanicists have been interested in the human gait as an example of e�cient bipedal

locomotion. All of these areas have contributed to the range of models available for ex-

plaining human gait. It would be impossible to provide a complete overview of each of
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these areas however a brief overview will be given here.

1.2.1 Robotics

The Honda humanoid robot, Asimo, is probably the most famous bipedal robot and is

exemplary of the state of the art in robotics engineering. As Hirai et al. [14] explain,

Asimo combines two techniques to generate motions. First, they use the common stability

criterion known as the zero moment point (ZMP) to de�ne a class of balanced states.

Second, they use recordings of human motions to suggest desired motion trajectories.

Together, their planning algorithm attempts to mimic the recorded motion trajectories

while always maintaining balance.

The ZMP is de�ned to be the point on the ground plane where the angular momentum

of the robot about the forward and side axes is zero. If the ZMP is located within the

convex hull of ground contact points, the robot is considered to be stable. The ZMP has a

long history and was �rst formally introduced for the study of human motion by Elftman

[9] under a di�erent name. Vukobratovic and Juricic [52] suggested its use in robotics

and named it the �Zero Moment Point.� Unfortunately, robots which use ZMP based

stability criteria have a characteristically inhuman gait [38] and are highly ine�cient.

One estimate for Asimo indicates that its dimensionless cost of transport2 is more than

ten times that of a human [6]. While ine�ciency may not be of particular concern for

tracking, the abnormality of gait of ZMP based control strategies makes them a poor

starting point for a model of human motion. While other stability criterion exist, they

are less widely used and tend to be qualitatively similar to the ZMP [36].



Chapter 1. Introduction 9

(a) The Monopode (b) The Anthropomorphic

Walker

Figure 1.1: Two Abstract Models of Walking. The hatched circles represent the physical

centers of mass.

1.2.2 Abstract Models of Locomotion

Physiologists have developed an extremely simple, yet highly general model of biological

motion known as the monopode. The monopode, illustrated in Figure 1.1(a), is a highly

abstracted model where the entire body is represented by a point-mass located approx-

imately at a hip and the legs are represented by massless, prismatic joints. When a leg

is in contact with the ground it is able to apply force through the prismatic joint and

in�uence the motion of the body. When a leg is not in contact with the ground it is able

to instantaneously be in any orientation and length due to its massless nature. Blickhan

and Full [2] compared the monopode to the motion of a wide class of animals, including

humans, horses, kangaroos and cockroaches. Such a widely applicable model is extremely

appealing for the creation of a more general prior model of motion. More recently, Ru-

ina et al. [44] studied the monopode as a collisional model of locomotion. Building on

that work, Srinivasan and Ruina [47] determined that an approximately passive control

strategy with impulsive collisions results in human like gait patterns for both running

and walking. The monopode has been physically manifested as a robot in the work of

2The cost of transport is the amount of energy required to move a unit amount of mass a unit distance.
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Raibert [40].

A more complicated model is the anthropomorphic walker [27, 20]. This model, shown

in Figure 1.1(b), features two straight legs with a torso mass attached at the hip. The

�feet� are circles of �xed radius which roll as the model moves. The stability and dynamics

of this model were studied extensively as a passive model of motion by McGeer [31]. This

model features walking as a natural limit cycle of its dynamics and provides a basis for

understanding e�cient walking. The analysis performed by McGeer has been the basis of

many bipedal robots which exhibit natural gaits [6] and is a potentially natural basis for

a prior model. The anthropomorphic walker can also be powered in order to walk on level

ground. One such variant has a spring between the legs and impulses are applied along

the back leg prior to support transfers. This model has been studied by Kuo [19, 20]

and has been able to predict the preferred speed-step length relationship found in human

walking. Several other variations on the anthropomorphic walker exist such as a version

with a kneed swing leg [28], another with an active torso [30] and even a variant capable

of running [29].

The principles of these models have been successfully applied in the creation of e�cient

control strategies for bipeds [39] as well as in the creation of real robots [5]. These robots

have relatively realistic gaits and a human-like cost of transport [6].



Chapter 2

A Model of Human Locomotion

Both the monopode and the anthropomorphic walker capture some of the more salient

features of human walking. Figure 2.1(a) shows the trajectory of a human during normal

walking and illustrates several of these features. The most prominent feature is the

pendular nature of the torso trajectory. Similar to the torso, the supporting leg follows

a pendular arc. The support leg can be easily identi�ed by this feature, as its arc peaks

at the same point that the torso peaks. Slightly more subtle is the inverse pendular arc

of the swing leg. This corresponds to a dip in the trajectory of the leg, typically with

its lowest point occurring around the same position as the highest point of the hip and

stance leg.

All of these features are cyclic and separated by discontinuities. There are two sources

of these discontinuities which both occur at approximately the same time. One is the

collision of the swing leg with the ground. This collision is relatively inelastic and results

in a sudden change in velocities. The other source is a �toe-o�� which usually begins just

before the swing leg hits the ground. Toe-o� is when the supporting leg is used to push

o� of the ground. The mechanical purpose of toe-o� is primarily to minimize energy

loss from the collision of the swing leg with the ground by redirecting the momentum of

the body. Analysis of simple bipedal models has shown that the optimal time for this

11
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Figure 2.1: Characteristics of Human Walking. (a) shows the trajectory of the center

of mass of upper body and legs of a human during normal walking. This plot is based

on motion capture data from the CMU Motion Capture Database (http://mocap.cs.

cmu.edu). (b) shows the trajectory of the point masses on the hip and legs of the

anthropomorphic walker during a passive gait cycle. Notice the regular, pendular like

paths in both plots which are interrupted by sudden discontinuities when a leg strikes

the ground and support is transferred.
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push-o� is immediately before the swing leg hits the ground [31]. If toe-o� does not occur

until after impact, the energy has already been lost; if it occurs too soon before impact,

energy is wasted pushing against gravity.

Each of these features of walking is captured by the anthropomorphic walker. A plot

of its centers of mass is presented in Figure 2.1(b) for comparison with the human data.

In this plot, it is walking passively (i.e., without any added forces except gravity) down

a slight grade in a stable, cyclic gait. The pendular trajectories of the hip and legs can

be clearly seen as well as the discontinuities. The trajectories of the legs show one aspect

of human walking which is not well modeled, the knee. Because the anthropomorphic

walker does not have a knee, the swing leg is typically too high and takes a seemingly

unusual trajectory towards the end of its swing. This illustrates one of the challenges of

using abstract motion models in tracking: the connection between the model and real

data is not always clear.

A physical model provides a set of dynamics which can be simulated in a deterministic

fashion. To create a distribution over motions some form of stochastic dynamics must

be expressed. The remaining sections of this chapter present the details of the model.

The deterministic and stochastic dynamics of the two models are presented in Section

2.1. The relationship of the models to a human pose, along with the evolution of uncon-

strained pose parameters, is presented in Section 2.2. Finally, a model of anthropometric

parameters is presented in Section 2.3.

2.1 Walking Model Dynamics

For a physical model, a set of equations of motion can be derived which de�ne the motion

of the model as a function of applied forces [12]. These equations are typically second

order, ordinary di�erential equations which need to be integrated to �nd the motion of



Chapter 2. A Model of Human Locomotion 14

the model. In general terms, then, a physical model de�nes the equation

q̈ = h(q, q̇, f)

where f is an external force vector, q is a vector of the model coordinates, q̇ are their

velocities and q̈ are their accelerations. Given an initial pose q0 and velocity q̇0 and an

appropriately de�ned force function f(t), the equations of motion can be integrated to

�nd

q(t) =

∫ t

−∞
q̇(s)ds

=

∫ t

−∞

(∫ s

−∞
h(q(τ), q̇(τ), f(τ))dτ

)
ds

= q0 + tq̇0 +

∫ t

0

∫ s

0

h(q(τ), q̇(τ), f(τ))dτds

the state of the system at time t. In general, these integrals are intractable and numerical

approximations must be used.

While a large number of numerical integration techniques exist (see [18] for an in-

troduction), the classical fourth order Runge-Kutta method is used, as it is reasonably

fast and accurate. Almost any numerical integration technique could be used for the

equations of motion presented here as they are not particularly sti�.

However, many equations of motion can be sti� and will not behave well with stan-

dard integration techniques. For instance, the standard application of Newton's laws

on an articulated system enforces ground and joint constraints with springs [8]. This

introduces a trade-o� between the accuracy of constraint enforcement and the sti�ness

of the equations. In early experiments for this work, it was determined that spring-based

constraint enforcement rarely produced satisfactory results and such equations of motion

should be avoided to the extent possible. To this end, other methods of deriving equa-

tions of motion should be used which explicitly enforce constraints. One general method

is the use of Lagrange's equation. However, for articulated rigid bodies a more obvious

method can be used known as the TMT method [51]. While roughly equivalent to using
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the Lagrangian, the TMT method provides a straightforward recipe for �nding equations

of motion for articulated bodies. When combined with an impulsive collision model, the

TMT method produces well-behaved equations of motion and stable simulations.

The numerical integration of physical equations of motion corresponds to the de-

terministic portion of a this model. While a general approach to making the dynamics

stochastic would be to add noise to the results of an integration step, the net result of this

is unclear and moves towards a model where physically unrealistic things are possible. A

better approach is to add noise to the forces f(t) which a�ect the system. This ensures

that the resulting motion is always physically possible and generally realistic, provided

that the forces are reasonable. With this approach it is straightforward to sample from

the stochastic dynamics.

Each physical model generally has several parameters such as masses and abstract

limb lengths which are meant to be �xed. These parameters are described and given

in the text and are �xed for all subjects. While the use of �xed parameters may seem

restrictive, many of them are redundant and changes in others would make only a small

di�erence in the resulting dynamics. For instance, absolute mass is irrelevant because

it is always possible to rescale the forces applied to a body to take in to account any

absolute changes in mass. Relative mass between segments, on the other hand, is crucial

but does not seem likely to vary much between subjects and thus is reasonable to set to

a �xed value. Reasonable variations in length parameters have only a minimal impact

on overall dynamics due to the connection with gravity. Speci�cally, the accelerations of

bodies may be slightly o� but in the course of the present work it has not been found to

be a signi�cant problem.
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Figure 2.2: The Monopode

2.1.1 The Monopode

For the monopode, the model's degrees of freedom, q = [x, y]T , are the coordinates of

the point mass. The equations of motion are

mq̈ = mg

 sin γ

− cos γ

+ f(t)s (2.1)

where m is the mass of the point, f(t) is the force applied along the stance leg, g is the

acceleration due to gravity, γ is the orientation of the ground with respect to gravity,

pc = (xc, yc) is the stance leg's ground contact point, l =
√

(x− xc)2 + (y − yc)2 is the

leg length and s = 1
l
[x− xc, y − yc]

T is the stance leg direction vector. These values are

illustrated in Figure 2.2.

The leg has a maximum length lmax which is treated as a hard constraint. The

constraint is enforced at integration boundaries by assuming collisions with the constraint

to be both impulsive and inelastic. This results in an instantaneous change in velocity

with the post-collision velocity

q̇+ = q̇− −max(0, s · q̇−)s (2.2)
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and the post-collision position

q+ = pc + lmaxs (2.3)

where q̇− is the pre-collision velocity. These equations simply satisfy the length constraint

and remove any velocity which would violate it.

With a force function f(t), generating a motion from the monopode then consists of

integrating Equation (2.1) and, when l > lmax, enforcing the leg length constraint with

Equations 2.2 and 2.3. Because the monopode does not have a meaningful representation

of the swing leg, it must be externally decided when support transfer happens and where

the new stance position is located. Srinivasan and Ruina [47] choose these quantities

and optimize a force trajectory which would cause the motion to be cyclic and minimize

the work performed. The resulting force trajectory showed a constant force exerted

throughout the stance with nearly impulsive forces at the beginning and end of a stride.

This result justi�es a simple, constant force function

f(t) = c (2.4)

with matched impulses ι applied at support transfer. Matched impulses result in an

instantaneous change of velocity by ιs− before transfer and by ιs+ after transfer where

s− and s+ are the pre- and post-transfer support leg directions. Hence the post-transfer

velocity will be

q̇+ = q̇− + ι(s+ + s−)

where q̇− is the pre-transfer velocity.

These equations provide the basis to deterministically simulate with the monopode

model. However, as mentioned earlier, a probabilistic model is needed. To achieve that

the forces are assumed to have some stochastic element. To create a stochastic model of

force it is �rst assumed that only a single stride is of interest and that the constant c is

known. Then Equation (2.4) is modi�ed to become

f(t) = c+ ηf
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where ηf is zero mean IID Gaussian noise with a variance of σ2
f . Thus

P (f(t)|c) = N (f(t); c, σ2
f )

is the probability density of f(t) where

N (x;µ, σ2) =
1√

2πσ2
e−

(x−µ)2

2σ2

is the probability density function of a Gaussian distribution with mean µ and variance

σ2.

In general, more than a single stride is of interest and c is not known. To address

this, a model of how c changes over time is needed. Let s(t) be the stride index at time t

and c(s(t)) be the force constant at time t. Because c is a manifestation of the speed and

style of a stride c(s) is assumed to change slowly from stride to stride and remain close

to some �mean� value c0. To model this, the equation

c(s) = αc(s− 1) + (1− α)c0 + ηc

is used where α ∈ [0, 1] controls how close c(s) stays to the �mean� value c0 and ηc is

mean zero IID Gaussian noise with variance σ2
c . Thus

P (c(s)|c(s− 1)) = N (c(s);αc(s− 1) + (1− α)c0, σ
2
c )

is the probability density of c(s) given c(s − 1). The impulse ι is modeled as a gamma

distribution such that

P (ι) = G(ι; sι, λι)

where

G(x; s, λ) =
λsxs−1

Γ(s)
e−λx

is the gamma density function with shape s and scale λ.

The physical model parameters used can be found in Table 2.1 and the stochastic

parameters are in Table 2.2.
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Parameter Value Description

m 1 Mass of the monopode.

lmax 1 Maximum leg length.

g 9.81 Gravitational acceleration.

γ 0 Ground slope angle.

Table 2.1: Physical Parameters of the Monopode

Parameter Value Description

σf 2.0 Force sample noise.

σc 1.0 Force constant mean process noise.

c0 7.0 Mean force constant.

α 0.5 Mean preference factor.

sι
(1.0)2

(0.5)2
Impulse shape parameter.

λι
1.0

(0.5)2
Impulse scale parameter.

Table 2.2: Stochastic Monopode Parameters. The impulse parameters are set so that

E[ι] = 1.0 and V [ι] = (0.5)2.
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Figure 2.3: The Anthropomorphic Walker. L is the length of the leg, R is the radius of

the foot, ml is the mass of a leg, mt is the mass of the torso, Il is the moment of inertia

of a leg, It is the moment of inertia of the torso and C is the distance from the end of a

leg to its center of mass.

2.1.2 The Anthropomorphic Walker

For the anthropomorphic walker [27, 11], the equations of motion are somewhat more

complicated. To enforce ground and joint constraints generalized model coordinates

q = [φ1, φ2]
T are used where, as shown in Figure 2.3, φ1 is the global orientation of the

stance leg and φ2 is the global orientation of the swing leg. Derived in Appendix A, the

equations of motion can be summarized here as

TTMTq̈ = f(t) + TTM (G− g)
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where

T =



−R− (C1 −R) cosφ1 0

−(C1 −R) sinφ1 0

1 0

−R− (L−R) cosφ1 (L− C) cosφ2

−(L−R) sinφ1 (L− C) sinφ2

0 1


is the �rst order kinematic transfer matrix,

M =



m1 0 0 0 0 0

0 m1 0 0 0 0

0 0 I1 0 0 0

0 0 0 ml 0 0

0 0 0 0 ml 0

0 0 0 0 0 Il


is the mass matrix,

g =



φ̇2
1(C1 −R) sinφ1

−φ̇2
1(C1 −R) cosφ1

0

φ̇2
1(L−R) sinφ1 − φ̇2

2(L− C) sinφ2

−φ̇2
1(L−R) cosφ1 + φ̇2

2(L− C) cosφ2

0


is the convective acceleration,

G = g



sin γ

− cos γ

0

sin γ

− cos γ

0
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is the gravitational acceleration vector,

m1 = ml +mt

is the combined mass of the stance leg,

C1 =
(Cml + Lmt)

ml +mt

is the location along the leg of the center of combined mass,

I1 = Il + It + (C1 − C)2ml + (L− C1)
2mt

is the combined moment of inertia and f(t) is the generalized force vector. L, R, C, ml,

mt, Il and It are illustrated and described in Figure 2.3.

As before, with a force function f(t), these equations can be integrated to determine

a motion. Unlike the monopode, the anthropomorphic walker has a meaningful swing

leg model which can indicate when a collision should occur. In particular, the end of

the swing leg is even with the ground when φ1 = −φ2. Potential collisions can thus be

found by detecting zero crossings of the function C(φ1, φ2) = φ1 + φ2. Zero crossings of

C will occur both when the swing foot hits the ground and, if it was already beneath the

ground, when it exits the ground. Because the swing leg does not have a knee which could

prohibit stubbing, where the foot hits the ground too early in the stride, zero crossings

of C are only considered an actual collision when φ1 < 0 and C is decreasing.

Once it has been determined that a collision has occurred the result of that collision

must be determined. By assuming ground collisions to be impulsive and inelastic the

result can be determined by solving a set of equations for the post-collision velocity. To

model toe-o� before such a collision, an impulse along the stance leg is added. The

post-collision velocities can then be solved for using

T+TMT+q̇+ = T+T (S +MTq̇−)
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where q̇− and q̇+ are the pre- and post-collision velocities, T is the pre-collision kinematic

transfer matrix speci�ed above,

T+ =



(L− C) cosφ1 −R− (L−R) cosφ2

(L− C) sinφ1 −(L−R) sinφ2

1 1

0 −R− (C1 −R) cosφ2

0 −(C1 −R) sinφ2

0 1


is the post-collision kinematic transfer matrix, M is the mass matrix as above and

S = ι



− sinφ1

cosφ1

0

0

0

0


is the impulse vector with magnitude ι. Finally, the origin of the model will have shifted

forward by a distance equal to 2(Rφ2 + (L− R) sinφ2). After the collision has occurred

the swing and stance leg should then switch roles and, accordingly, φ1 and φ2 should be

swapped along with their velocities.

Kuo [19, 20] analyzed this model and determined that the impulsive push-o� combined

with a torsional spring between the legs permits the generation of a range of walking

motions on level and slanted ground. Thus the generalized force vector is

f(t) = κ(φ2(t)− φ1(t))

 1

−1

 (2.5)

where κ is the spring sti�ness.

The stochastic force function for the anthropomorphic walker is modelled in a similar

way as the monopode's. Let s(t) be the stride number at time t. Then κ in Equation



Chapter 2. A Model of Human Locomotion 24

(2.5) is an IID sample κ(t) from a Gaussian distribution with sample variance σ2
κ and

stride speci�c mean κ̄(s). Thus,

P (κ(t)|κ̄(s(t))) = N (κ(t); κ̄(s(t)), σ2
κ)

is the probability desnity of κ(t). The mean spring constant, κ̄(s), is modeled as a slowly-

changing value over multiple strides which remains close to some mean value. Therefore,

its evolution is modeled by

P (κ̄(s)|κ̄(s− 1)) = N (κ̄(s);ακ̄(s− 1) + (1− α)κ̄0, σ
2
κ̄)

where σ2
κ̄ is the process variance. Also like the monopode, the impulse ι is modeled with

a gamma distribution such that

P (ι) = G(ι; sι, λι)

where sι and λι are the shape and scale parameters.

The physical parameters used can be found in Table 2.3 and the stochastic parameters

are in Table 2.4.

2.2 Kinematic State Evolution

To connect the abstracted physical dynamics to the motion of real people, a kinematic

model needs to be speci�ed. This model needs to be constrained by the physical dynamics

to the extent possible. The kinematic model used is a simple model of the lower body

and is illustrated in Figure 2.4. Because the kinematic model is more complex, state

evolution models need to be speci�ed for aspects of the kinematic model which are not

constrained by the dynamics.

There are two kinds of quantities in the kinematic model which need to be speci�ed

to have a complete pose. The joint angles specify the orientation of the joints between

segments. In contrast, segment lengths specify the distance between these joints. Joint
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Parameter Value Description

R 0.3 Radius of the foot.

L 1 Leg length.

C 0.645 Leg center of mass o�set.

ml 0.161 Leg mass.

Il 0.017 Leg moment of inertia.

mt 0.678 Torso mass.

It 0.167 Torso moment of inertia.

g 9.81 Gravitational acceleration.

γ 0 Orientation of gravity.

Table 2.3: Physical Parameters of the Anthropomorphic Walker. Mass and inertial

parameters are based on Dempster's body segment parameters found in [43]. L, R and

C are taken from [20].

Parameter Value Description

σκ 1.0 Spring sti�ness sample noise.

σκ̄ 0.75 Spring sti�ness mean process noise.

κ̄0 2.0 Mean spring sti�ness.

α 0.5 Mean preference factor.

sι
(0.4)2

(0.15)2
Impulse shape parameter.

λι
0.4

(0.15)2
Impulse scale parameter.

Table 2.4: Stochastic Anthropomorphic Walker Parameters. The impulse parameters are

set so that E[ι] = 0.4 and V [ι] = (0.15)2.
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Figure 2.4: Kinematic Model of the Lower Body
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Figure 2.5: The Connection Between Dynamics and Kinematics. The dashed lines are

the convex hull which contain the center of mass for the leg. The light grey lines are

three possibilities for the orientation of the underlying dynamics given the kinematics

which are consistent with the convex hull for the center of mass.

angles, as well as global position and orientation, are partly constrained by the dynam-

ics and are otherwise expected to evolve smoothly. Anthropometric parameters such as

segment lengths are expected to be relatively constant over time for a given person. Be-

cause of this di�erence these quantities are modeled separately with the evolution of joint

angles and global coordinates being speci�ed next and the modeling of anthropometric

parameters being speci�ed in Section 2.3.

The physical models provide a single leg angle φ. The kinematic model however, has

hip, knee and ankle angles which need to be constrained. One way to view the leg angle

φ is as the orientation of the center of mass of the leg about the hip joint. Because the

center of mass of a combined body is a convex sum of the individual centers of mass

then, assuming that the centers of mass of the thigh and shank are contained within

their imagined geometry, the combined center of mass must be within the convex hull of

the geometries. Thus, for a physical leg angle φ and kinematic knee angle ψknee, the hip
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angle ψhip must satisfy the inequalities
φ ≤ ψhip ≤ φ− ψknee for − π ≤ ψknee ≤ 0

φ− ψknee ≤ ψhip ≤ φ for 0 ≤ ψknee ≤ π

which is illustrated in Figure 2.5. While ψhip can be solved for exactly using inverse

kinematics, a trivial approximation is simpler to use. The hip angle is approximated as

ψhip ≈ φ

for given a leg angle φ. Several approximations were tried and this was found to work

best. Conceptually, this assumes that the underlying dynamics represent the upper leg

and that the lower leg is generally irrelevant to the motion of the upper leg.

This leaves the knees, ankles and global orientation unconstrained by the dynamics.

The evolution of these joints is modeled as second-order Markov. To avoid actually having

a second-order model the state space is augmented to include both the joint angles ψ

and the joint velocity ψ̇. The model includes a form of damping by only using a fraction

α of the velocity at the previous time to update the current joint angle. It also includes

a �preferred orientation� ψ0 which the joint is pulled towards with a strength κ.

Including all these terms and some amount of Gaussian noise, a joint angle ψ evolves

such that

ψ(t) = ψ(t− 1) + τ(αψ̇(t− 1) + κ(ψ0 − ψ(t− 1))) + ηψ

where τ is the size of the timestep and ηψ is IID Gaussian noise with mean zero and

variance σ2. This model is equivalent to a damped spring model with noisy accelerations

where κ is the spring constant, ψ0 is the rest position, α is related to the damping

constant and ηψ is noisy acceleration.

To account for joint limits which require that ψmax ≤ ψ ≤ ψmin ηψ is truncated so

that the inequality is always satis�ed. This gives a truncated normal distribution for
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ψ(t)

P (ψ(t)|ψ(t− 1), ψ̇(t− 1)) = N (ψ(t);µ, σ2, [ψmin, ψmax]) (2.6)

where

µ = ψ(t− 1) + τ(αψ̇(t− 1) + κ(ψ0 − ψ(t− 1)))

is the deterministic mean component,

N (x;µ, σ2, [µ−, µ+]) =

(
Φ

(
µ+ − µ

σ

)
− Φ

(
µ− − µ

σ

))−1 (
2πσ2

)− 1
2 e−

(x−µ)2

2σ2

is the density function of a Gaussian distribution with mean µ and variance σ2 truncated

to lie in the range [µ−, µ+] and

Φ(x) =

∫ x

−∞
N (x; 0, 1)dx

is the cumulative density function of the standard normal distribution. Once the new

joint angle has been chosen, the velocity is then deterministically updated to be

ψ̇(t) = τ−1(ψ(t)− ψ(t− 1))

where the multiplication by τ−1 allows ψ̇ to be interpretted in units of radians per second.

Some sample plots of Equation (2.6) can be found in Figure 2.6 on page 30.

To help further constrain the kinematic evolution some special properties are added to

this general model. The knee of the swing leg has a resting length ψ0 which is dependent

on the orientation of the stance leg.

ψ0
knee−swing(t) = min(0,−ψhip−stance(t− 1))

This serves to model the bend of the swing knee immediately after support transfer which

is followed by a gradual straightening. The ankle of the stance leg also has a variable

resting length which is dependent on the orientation of the other stance leg joints.

ψ0
anklex−stance(t) = −(ψknee−stance(t− 1) + ψhip−stance(t− 1))
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Figure 2.6: Truncated Normal Distributions over Joint Angles.

This helps keep the foot level with the ground on the stance leg. The Z-axis rotation

of the stance leg ankle is �xed such that the foot remains pointing the direction it was

pointing when it hit the ground, ensuring that the foot is not allowed to �slip� while it is

supporting the body.

The global orentation is assumed to be parallel to the ground plane normal with a

rotation about this axis which is treated as other joint angles. The global position of the

walker is indirectly constrained by the dynamics of the physical models. Both models

require that the stance foot remain in contact with the ground. Precisely where the

ground contact point is on the body is not clear but a simple assumption is that the heel

of the foot is the ground contact point. Then the global position of the root node of

the kinematic tree is set such that these points are coincident after the joint angles have

been updated. When ground contact is detected the location of the contact point on the

kinematic model is updated to the point on the ground closest to the heel of the new

stance leg.

The values of the parameters σ, α, κ and ψ0 for each joint can be found in Table 2.5.
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2.3 Anthropometric Parameters

A model of anthropometric parameters, such as segment lengths, is needed as well. These

quantities are strictly positive and should be relatively constant over time. Unfortunately,

the assumption made with the kinematic model that the distance between joint centers

is constant is not entirely realistic. The connective tissue between bones is elastic which

provides small variations in segment length. Thus a distribution over segment lengths is

needed which can provide a small variance around a mode which is close to the mean.

To this end, a gamma distribution over segment length `(t) at time t is used

P (`(t)|s`, λ`) = G(`(t); s`, λ`) (2.7)

where

G(x; s, λ) =
λsxs−1

Γ(s)
e−λx

is the gamma density function with shape s and scale λ. Then `(t) has mean

E[`(t)|s`, λ`] =
s`
λ`

variance

V [`(t)|s`, λ`] =
s`
λ2
`

coe�cient of variation

CV [`(t)|s`, λ`] =
1
√
s`

and mode located at

arg max
`(t)

P (`(t)|s`, λ`) =
s` − 1

λ`

for s` > 1. For large s` (or, equivalently, a small coe�cient of variation) the mode

is approximately equal to the mean. Intuitively, s` and λ` should be �xed for a given

segment of a speci�c person.

To account for variations between people a prior distribution over the parameters

can be speci�ed. Because the variability over people is one of length, or scale, it seems
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sensible to place the prior over λ`. For convenience a gamma distribution is again used.

Therefore,

P (λ`) = G(λ`; s̄`, λ̄`)

where s̄` and λ̄` are hyper-parameters which de�ne the distribution of scales over a

population of people.

Unfortunately, it isn't obvious how to set the parameters s`, s̄` and λ̄`. To better

understand these parameters the unknown scale parameter λ` can be integrated out.

This gives the posterior distribution over `(t)

P (`(t)) =

∫ ∞

0

P (`(t)|λ`)P (λ`)dλ`

= B′(`(t); s`, s̄`, λ̄`) (2.8)

where

B′(x; a, b, λ) =
λ−a

β(a, b)

xa−1

(1 + x
λ
)a+b

is the density function of a scaled beta prime distribution with shape parameters a and

b and scale parameter λ. (Note that the �xed parameters s`, s̄` and λ̄` are implicitly

conditioned on but are not included in equations for notational clarity.) Then ` has mean

E[`(t)] = λs
s`

s̄` − 1

and variance

E
[
(`(t)− E[`(t)])2

]
= λ2

s

s`(s` + s̄` − 1)

(s̄` − 1)2(s̄` − 2)

The derivation of these equations can be found in the Appendix, Sections B.3 and B.4.

For a desired mean µ and variance σ2 of `(t) these equations can be solved to yield

s̄` =
2s`

σ2

µ2 + s` − 1

s`
σ2

µ2 − 1

λ̄` = µ
s̄` − 1

s`
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Shape Mean Standard Deviation

Segment CV [`(t)|λ`] µ σ

Thigh 0.025 0.4 m 0.1 m

Shank 0.025 0.5 m 0.2 m

Hips (Width) 0.03 0.3 m 0.2 m

Foot 0.01 0.2 m 0.1 m

Table 2.6: Segment Length Parameters. µ and σ are the mean and standard deviation

over an entire population which determine the hyper-parameters s̄` and λ̄`. CV [`(t)|λ`] is

the coe�cient of variation of an individual segment which determines the shape parameter

s`.

where s` >
µ2

σ2 remains a free parameter which tunes the variance of the length samples

for a particular segment. While s` can be set directly, it is more intuitive to set the

coe�cient of variation CV [`(t)|s`, λ`] instead and set

s` =
1

CV [`(t)|s`, λ`]2

appropriately.

The parameters used for individual segments can be found in Table 2.6. Graphs of

Equation (2.7) for di�erent values of CV [`(t)|s`, λ`] and a �xed λ` can be seen in Figure

2.7(b). Graphs of Equation (2.8) for di�erent values of CV [`(t)|s`, λ`] and a �xed value

of µ and σ2 can be seen in Figure 2.7(a).
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Figure 2.7: Segment Length Distributions. (a) is a plot of the beta-prime distribution

P (`(t)) for di�erent values of CV [`(t)|λ`] with µ = 0.4 and σ = 0.1 (b) is a plot of the

gamma distribution P (`(t)|λ) for di�erent values of CV [`(t)|λ`] with a �xed value of λ`.

Figure (a) is the distribution of length of a segments over a population. Figure (b) is the

distribution of lengths of a single segment of an individual



Chapter 3

Model Inference with Sequential Monte

Carlo

The problem of people tracking is formulated here as a Bayesian inference problem where

tracking is equivalent to infering the distribution of some hidden variables given incom-

plete or noisy observations. Let xt represent the hidden state at time t. This includes the

kinematic and dynamic states at time t, as well the anthropometric segment lengths at

time t. Let yt be the observations at time t. The observations could be almost anything

and their particular form is described in Chapter 4 in the context of the experiments

run. Finally, there are some hidden global parameters θ which don't change over time

but a�ect the evolution of the hidden states xt. θ includes the segment scale parameters

λ` and the mean spring constants and force values which are used to generate the forces

at each time.

The model is speci�ed by the state evolution distribution P (xt|x0:t−1, θ), the observa-

tion likelihood P (yt|xt) and the prior distribution over the global parameters P (θ). It is

assumed that the hidden state evolution is a �rst-order Markov process given θ such that

P (xt|x0:t−1, θ) = P (xt|xt−1, θ), and that the observations are conditionally independent

given the hidden states. This model can be represented by the graphical model in Figure

36
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Figure 3.1: Bayesian Tracking as a Graphical Model

3.1.

Unfortunately, the posterior distribution P (x0:t|y0:t) is generally impossible to specify

analytically and an approximation must be used. The following description of sequential

Monte Carlo sampling follows the excellent review by Doucet et al. [7].

The distribution P (x0:t|y0:t) is approximated with a set of weighted importance sam-

ples {(x(i)
0:t, w

(i)
t ) : i = 1, . . . , N} where x

(i)
0:t are samples drawn from some proposal distri-

bution π(x0:t|y0:t) and

w
(i)
t =

P (y0:t|x(i)
0:t)P (x

(i)
0:t)

π(x
(i)
0:t|y0:t)

(3.1)

are the importance weights. These weighted samples can be used to approximate the

expectation of a su�ciently smooth function of state f(x0:t) as follows

Ex0:t [f(x0:t)|y0:t] =

∫
f(x0:t)P (x0:t|y0:t)dx0:t

≈
N∑
i=1

f(x
(i)
0:t)ŵ

(i)
t

where

ŵ
(i)
t =

w
(i)
t∑N

j=1w
(i)
t

is the normalized weight of the ith sample.

3.1 Sequential Importance Sampling

Sequential importance sampling exploits the sequential structure of the model to allow

a set of samples from time t to be e�ciently updated to a set of samples at time t + 1.
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To do this, a proposal distribution is chosen which can be factored as

π(x
(i)
0:t+1|y0:t+1) = π(x

(i)
0 |y0)

t+1∏
j=1

π(x
(i)
j |x

(i)
0:j−1, y0:j)

Next, notice that there is a recursive form to

P (y0:t+1|x0:t+1)P (x0:t+1) = P (yt+1|xt+1)P (y0:t|x0:t)P (xt+1|x0:t)P (x0:t)

Combining these two equations together with Equation (3.1) gives a recursive formula

for the weights

w
(i)
t+1 =

P (y0:t+1|x(i)
0:t+1)P (x

(i)
0:t+1)

π(x
(i)
0:t+1|y0:t+1)

=
P (yt+1|x(i)

t+1)P (x
(i)
t+1|x

(i)
0:t)P (y0:t|x(i)

0:t)P (x
(i)
0:t)

π(x
(i)
0 |y0)

∏t+1
j=1 π(x

(i)
j |x

(i)
0:j−1, y0:j)

=
P (yt+1|x(i)

t+1)P (x
(i)
t+1|x

(i)
0:t)

π(x
(i)
t+1|x

(i)
0:t, y0:t+1)

P (y0:t|x(i)
0:t)P (x

(i)
0:t)

π(x
(i)
0 |y0)

∏t
j=1 π(x

(i)
j |x

(i)
0:j−1, y0:j)

=
P (yt+1|x(i)

t+1)P (x
(i)
t+1|x

(i)
0:t)

π(x
(i)
t+1|x

(i)
0:t, y0:t+1)

w
(i)
t (3.2)

This gives rise to the basic sequential importance sampling (SIS) method.

Unfortunately, samples based on basic SIS are known to become degenerate as t

increases. To avoid this, occasional resampling is performed. Intuitively, resampling

discards unlikely samples and keeps extra copies of more likely samples. To perform

simple, random resampling given a set of samples {(x(i)
0:t, w

(i)
t ) : i = 1, . . . , N}, a new set

of samples {(x′(j)0:t , w
′(j)
0:t) : j = 1, . . . ,M} can be created by choosing x′

(j)
0:t = x

(i)
0:t with

probability ŵ
(i)
0:t and setting w′

(j)
0:t = 1

M
for j = 1, . . . ,M . A slightly better approach

to resampling is known as residual resampling. In residual resampling ki =
⌊
Mŵ

(i)
0:t

⌋
copies of x

(i)
0:t are automatically kept for i = 1, . . . , N where b·c is the �oor operator. The

remainingM−
∑N

i=1 ki samples are selected according to simple, random resampling with

weights proportional to w(i) = ŵ
(i)
0:t − ki

M
.

While resampling can be done at any time, if it is done too frequently, good samples

may be thrown out prematurely. Alternately, if it is not done frequently enough, the
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Algorithm 1 Sequential Importance Resampling

For each time t given a set of samples {x(i)
0:t, w

(i)
t }:

1. Compute the e�ective sample size

N̂eff =
1∑N

i=1(ŵ
(i)
t )2

and, if N̂eff < Nthres, resample {x(i)
0:t, w

(i)
t } using either simple or residual resam-

pling.

2. For i = 1, . . . , N :

(a) Sample x
(i)
t+1 ∼ π(xt+1|x(i)

0:t, y0:t+1)

(b) Update the importance weights

w
(i)
t+1 =

P (yt+1|x(i)
t+1)P (x

(i)
t+1|x

(i)
0:t)

π(x
(i)
t+1|x

(i)
0:t, y0:t+1)

w
(i)
t

3. For i = 1, . . . , N compute the normalized weights

ŵ
(i)
t+1 =

w
(i)
t+1∑N

j=1w
(i)
t+1

sample set will degenerate. A good heuristic is to resample when the estimated e�ective

sample size

N̂eff =
1∑N

i=1(ŵ
(i)
t )2

is less than some threshold N̂thres. This method, known as sequential importance resam-

pling (SIR), is summarized in Algorithm 1.
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3.2 Proposal Distribution for the Dynamic Model

To use either SIS or SIR, an appropriate proposal distribution π(xt+1|x0:t, y0:t+1) must

be chosen. For the prior model described in Chapter 2, this choice is complicated by two

factors. The �rst is that it is not generally possible to evaluate the transition density

P (xt+1|xt, θ). Because the stochastic model of dynamics adds noise to the forces rather

than the integration, it would be necessary to invert the dynamics and precisely determine

the forces applied in order to determine the probability of a transition. In order to avoid

this, the proposal distribution must be the prediction density

π(xt+1|x0:t, y0:t+1) = P (xt+1|x0:t)

so that Equation (3.2) becomes

w
(i)
t+1 = P (yt+1|x(i)

t+1)w
(i)
t

due to cancellation.

The second complicating factor is the global variables θ which induce a dependence

such that the hidden states are no longer a �rst-order Markov process. This means that

entire trajectory x0:t may need to be kept and evaluated for each sample in order to

draw from the prediction distribution P (xt+1|x0:t). One solution would be to perform

importance sampling on the posterior P (θ, x0:t|y0;t). This would allow the prediction

density to be

P (xt+1|x0:t, θ) = P (xt+1|xt, θ)

but would su�er from poor sample density in θ, as sample depletion would result in

samples with only a single value of θ. In the case of the dynamic prior, another solution

is possible.

Let the hidden state at time t be xt = (x̂t, θ̂t) where θ̂t are the variables of xt which

directly depend on θ and x̂t are the remaining variables. In particular, θ̂t are the segment

lengths `(t) and force parameters at time t and x̂t is the dynamic state and kinematic
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Algorithm 2 Sampling from the kinematic and dynamic transition density.

Given segment lengths and force function parameters at the current time θ̂t and kinematic

and dynamic state at the previous time x̂t−1 x̂t can be drawn as follows

1. Use θ̂t to determine the forces to apply to the system. For the monopode this is sim-

ply using f(t) directly. For the anthropomorphic walker this consists of evaluating

Equation (2.5) using the spring constant κ(t).

2. Integrate the equations of motion using the dynamic state given in x̂t−1 as the

starting condition and f(t) as the applied forces.

3. Sample from the kinematic joint angle model described in Section 2.2 using the

new dynamic state to get a new kinematic state.

pose. Then the prediction density can be written as

P (xt|x0:t−1) = P (x̂t, θ̂t|x0:t−1)

= P (θ̂t|x0:t−1)P (x̂t|x0:t−1, θ̂t)

using the chain rule of probability. If e�cient methods could be found to sample from

P (θ̂t|x0:t−1) and P (x̂t|x0:t−1, θ̂t) they could be used to sample from the prediction distri-

bution.

The variables which constitute θ̂t in Chapter 2 are the segment lengths ` and noisy

force value f(t) for the monopode and the noisy sprint constant κ(t). For both models,

x̂t consists of the kinematic and dynamic states. Because of this,

P (x̂t|x0:t−1, θ̂t) = P (x̂t|x̂t−1, θ̂t)

which can be sampled from in a straight forward manner. An overview of how sampling

from this is done is given in Algorithm 2.

In order to sample from P (θ̂t|x0:t−1) assume that it can be written as

P (θ̂t|x0:t−1) = P(θ̂t; ξt)
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Algorithm 3 Sampling θ̂t
Given the previous state xt−1 and the previous summary statistics ξt−1

1. Compute ξt = f(ξt−1, xt−1) recursively.

2. Sample θ̂t from the density P(θ̂t; ξt). This includes drawing samples of `(t) for

each segment length for both models. For the anthropomorphic walker it includes

drawing the spring sti�ness κ(t) and for the monopode it includes drawing f(t).

where P is a density function with parameter

ξt = f(ξt−1, xt−1)

which can be recursively updated and has limited dimension. If P can be sampled from

e�ciently then θ̂t can be sampled e�ciently using the method described in Algorithm 3.

In the case of a segment length parameter `(t)

P(`(t); ξt) = B′(`(t); s`, St,Λt)

where s` is the shape parameter and St and Λt are the summary statistics which compose

ξt. They can be updated by

St = St−1 + s`

and

Λt = Λt−1 + `(t− 1)

and are initialized to S0 = s̄` and Λ0 = λ̄` which are the population parameters speci�ed

in Table 2.6 on page 34. The derivation of this can be found in the Appendix, Section

B.3.

The force parameters are similar, but P is Gaussian. Using the spring constant κ(t)

of the anthropomorphic walker as an example

P(κ(t); ξt) = N (κ(t);Mt, s
2
t + σ2

κ)
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Algorithm 4 Sampling from the prediction density P (xt|x0:t−1).

Given the previous hidden state xt−1 = (x̂t−1, θ̂t−1) and the statistics ξt−1 which summa-

rize the trajectory x0:t−2 then xt = (x̂t, θ̂t) can be drawn from P (xt|x0:t−1) as follows

1. Using xt−1 update ξt−1 to ξt and draw θ̂t according to Algorithm 3.

2. Using x̂t−1 and θ̂t draw x̂t according to Algorithm 2.

where σ2
κ is the variance of the spring constant noise and Mt and s2

t are the summary

statistics which compose ξt. These parameters are the parameters of the distribution

P (κ̄(s(t))|x0:t−1) = N (κ̄(s(t));Mt, s
2
t )

and can be updated by

Mt =


α(s−2

t−1 + σ−2
κ )−1(s−2

t−1Mt−1 + σ−2
κ κ(t− 1)) + (1− α)κ̄0 if s(t) 6= s(t− 1)

(s−2
t−1 + σ−2

κ )−1(s−2
t−1Mt−1 + σ−2

κ κ(t− 1)) otherwise

s2
t =


α2(s−2

t−1 + σ−2
κ )−1 + σ2

κ̄ if s(t) 6= s(t− 1)

(s−2
t−1 + σ−2

κ )−1 otherwise

where α is the smoothing parameter, κ̄0 is the global mean spring constant, σ2
κ̄ is the

process variance on spring constant means and s(t) is the stride index at time t. These

values are initialized to M0 = κ̄0 and s2
0 = σ2

κ̄ as speci�ed in Table 2.2 on page 19. The

motivation of these equations are discussed in the Appendix, Section B.2.

Algorithms 3 and 2 can then be combined to sample from the prediction density

P (xt|x0:t−1) as described in algorithm 4.



Chapter 4

Experimental Results

Inference based on the prior discussed in Chapter 2 is done as described in Chapter

3 using sequential importance resampling with residual resampling. The observations

are hand-labeled image points from two di�erent monocular video sequences. The image

points correspond to known points in the kinematic geometry. The intrinsic and extrinsic

camera parameters are known along with the location and orientation of the ground plane.

An example frame can be seen in Figure 4.1 with the ground plane overlayed using the

camera calibration.

The observational likelihood, which is about to be presented, was not included in

Chapter 2 to make clear that the model is not dependent on the choice of likelihood.

Many other likelihoods could be used with the same underlying model of motion. This

particular likelihood was chosen for its simplicity and clarity in evaluating the underlying

model of motion.

Now, given the camera projection operator P, the generative model of the 2D image

location of the ith kinematic point is

ôit = P(ki(xt)) + εi

where ki(xt) is the world coordinate location of the ith kinematic point and εi is IID 2D

44
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Figure 4.1: The ground plane is overlayed on a single frame using the camera calibration.

isotropic Gaussian noise with a variance of σ2
i and

pm(εi;σ2
i ) = (2πσ2

i )
−1e

− 1

2σ2
i
‖εi‖2

is the density function of the measurement error. Therefore, the likelihood of a set of M

2D image observation yt = (o1
t , . . . , o

M
t ) is

P (yt|xt) =
M∏
i=1

pm(oit − P(ki(xt));σ
2
i )

where xt is the hidden state. All sequences are hand initialized by randomly sampling

a small region around an estimate of the starting pose. The parameters used are those

speci�ed in the tables in Chapter 2. The variances used for the di�erent points can be

found in Table 4.1.

The result at time t of the approximate inference algorithm is a set of N weighted

samples {(x(i)
0:t, w

(i)
t ) : i = 1, . . . , N} which approximate the distribution P (x0:t|y0:t). Dis-

playing all the samples is impractical so three summary statistics are displayed. The �rst
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Observation Point σi

Hip 7 pixels

Knee 5 pixels

Foot 5 pixels

Table 4.1: Observation Variances

is the mean state at time t which is

E[xt|y0:t] ≈
N∑
i=1

ŵ
(i)
t x

(i)
t

where scalar multiplication and addition is done in the space of kinematic joint angles

and anthropometric lengths. This produces a �mean pose� which can be illustrative when

the distribution is fairly peaked around a single pose.

When the distribution is more di�use or when there are multiple peaks the mean pose

becomes relatively meaningless. In such a case, a display which represents the kinematic

points can be useful. Speci�cally,

µi = E[P(ki(xt))|y1:t]

≈
N∑
j=1

ŵ
(i)
t P(ki(x

(j)
t ))

is the mean of the projection of the ith kinematic point and

Σi = V [P(ki(xt))|y1:t]

≈
N∑
j=1

ŵ
(i)
t (µi − P(ki(x

(j)
t )))(µi − P(ki(x

(j)
t )))T

is the covariance of the projection of the ith kinematic point. An ellipse can be plotted

around µi with the axes de�ned by Σi for each kinematic point i to summarize the

distribution in cases where the mean pose is not illustrative.

Finally, while these representations are indicative of the state at time t, given the

observations up to time t, it is interesting to ask what the previous states look like,
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given an entire sequence which ends at time T . One way to answer this is to look at the

maximum a posteriori (MAP) trajectory.1 A crude approximation of the MAP trajectory

is the trajectory x
(i)
0:T such that w

(i)
T = maxj w

(j)
T . This display has some noteworthy

advantages. First it represents the motion of a single particle over time which ensures

that a �valid� state is always being displayed. In contrast the mean pose can result in

poses which are not possible for an individual sample. The MAP trajectory also allows a

��lling-in� e�ect where uncertainty in the past is reduced by observations in the future.

This particular feature is most interesting in the cases of missing data.

In the displayed images, the hand-labeled data points are displayed as circles with a

radius proportional to their standard deviation. The red circle is the hip point and the

green and blue circles are the knee and foot points on the left and right legs respectively.

In the mean and MAP trajectory images, the hip segments are displayed in red, the thigh

segments are displayed in green, the shank segments are displayed in blue, and the feet

are displayed in red. For the distribution images the hip point ellipses are in red, the

knee point ellipses are in green and the feet point ellipses are in blue.

Each experiment was run using both the anthropomorphic walker and the monopode

for dynamics. For the anthropomorphic walker N = 2500 particles were used with a

resampling threshold of Nthres = 500. Because the monopode is a weaker dynamical

model more particles were required and values of N = 5000 and Nthres = 2000 were

used. With these parameters the inference algorithm is able to run at real-time speeds

(Approximately 22 frames per second for the anthropomorphic walker and 10 frames per

second for the monopode) on a modest Intel Pentium M 1.6GHz laptop. Movies of the

experimental results can be found online at http://www.cs.toronto.edu/~mbrubake/

permanent/msthesis.

1Note that the MAP trajectory is di�erent than the MAP state. A state of the MAP trajectory can
only be computed once all the observations of a sequence have been presented.
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Figure 4.2: Anthropomorphic Walker Experiment #1. The mean pose of every 4th frame

is shown.

Experiment #1: Simple Walking

In this experiment the subject walks in a straight line which is approximately parallel to

the camera plane. This simply illustrates the most basic functionality of the tracker and

the inference algorithm. Both models are able to infer the lower body pose for the entire

sequence.

The mean pose for the anthropomorphic walker and monopode are in Figures 4.2 and

4.3 respectively.

Experiment #2: Occlusion

In this experiment the same data is used as in experiment 1. However for 2 seconds (60

frames) in the middle of the sequence occlusion is simulated by removing the points on

the knees and feet. Based only on the torso point the distribution must represent the

uncertainty in the orientations of the thigh, shank and feet.
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Figure 4.3: Monopode Experiment #1. The mean pose of every 4th frame is shown.

Figure 4.4: Anthropomorphic Walker Experiment #2. The distribution of tracking points

for every 4th frame is shown. While the data is present the variances are small and the

ellipses may be hard to see.
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Figure 4.5: Monopode Experiment #2. The distribution of tracking points for every 4th

frame is shown. While the data is present the variances are small and the ellipses may

be hard to see.

Figure 4.6: Anthropomorphic Walker Experiment #2. The MAP trajectory at every 4th

frame is shown.
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Figure 4.7: Monopode Experiment #2. The MAP trajectory at every 4th frame is shown.

Three very nice properties of the prior model are demonstrated in this experiment.

First the uncertainty in the distribution grows naturally as more time is spent without

the data. Second, and more interesting, is that the subtle cues in the torso movement are

correctly interpretted and the uncertainty in the distribution decreases when the sudden

change in velocity due to foot contact is detected. The prior model not only enables

the interpretation of this information but also allows an accurate inference about the

location of the new stance foot position. Finally, while the uncertainty is high while the

data is missing, once the data has returned the model is able to �ll-in what most likely

happened during the time of missing data which can be seen in the MAP trajectory.

The weakness of the monopode is clearly seen in this experiment as the uncertainty

of the swing leg during occlusion is much higher than with the anthropomorphic walker.

Despite this weakness, the monopode is still able to reasonably infer the placement of

the stance feet during the occlusion.

The distribution of kinematic points for the anthropomorphic walker and the monopode
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are in Figures 4.4 and 4.5 respectively. The MAP trajectory for both models are displayed

in Figures 4.6 and 4.7.

Experiment #3: Turning

Though the underlying dynamics are not designed to handle 3D features such as turning

they still provide meaningful information about human gait during turns. In this experi-

ment a sequence where the subject makes several turns is tracked. The anthropomorphic

walker is able to keep track during the entire sequence but the monopode looses track

during the last turn and is unable to recover.

When the subject is walking away from the camera, ambiguities in depth cause the

posterior distribution over the recent past to broaden out. Because of this many more

samples are necessary to represent the uncertainty e�ectively. As the subject turns back

to parallel to the camera the posterior distribution over the recent past collapses to a

much sharper distribution. However, if there were an insu�cient number of samples

to represent the uncertainty it may no longer have any samples near the peaks of the

collapsed posterior and subsequently fail as the monopode did. With a smaller sample

size similar modes of failure can be seen with the anthropomorphic walker.

The mean pose of the anthropomorphic walker and the monopode can be see in

Figures 4.8 and 4.9 respectively.
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Figure 4.8: Anthropomorphic Walker Experiment #3. The mean pose of every 4th frame

is shown.
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Figure 4.9: Monopode Experiment #3. The mean pose of every 4th frame is shown.



Chapter 5

Conclusions and Future Work

This thesis has presented two dynamical prior models for human motion. The experi-

mental results presented in Chapter 4 indicate that the priors presented are capable of

the challenging task of pose inference with limited, monocular data. The successful use

of physical models in this context shows that dynamics can be managable if the mod-

els are wisely choosen. Conventional wisdom holds that dynamic character models are

di�cult to control, particularly in a stochastic context. In constrast, this thesis sug-

gests dynamical models can be managed and that the key to their success is the use of

abstraction.

Despite the successful results, this is preliminary work which demonstrates the poten-

tial of dynamical models and presents many possible directions for future work. Perhaps

the most obvious direction is the use of more complex dynamical models to capture other

aspects of human locomotion.

Improved Dynamics The abstract models used here, particularly the anthropomor-

phic walker, are capable of capturing most of the dynamics of basic walking. However

they will fail to capture many salient aspects of walking on steep slopes and may have

di�culty with abnormal gaits. Further, other motions, such as standing, running and

jumping, are completely unmodelled.
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The key to successfully modelling other motions is careful selection of dynamic fea-

tures. For instance, when a person is walking on a slope one salient property is the

lean of the upper body. Instead of adding an entire upper body a single representative

mass could be added to the anthropomorphic walker. This provides a minimal dynamic

addition which captures the orientation of the upper body and its impact on the overall

dynamics without inducing the added complexity of arms and a head. Further, by aug-

menting a known model, it is likely that the stochastic techniques used to control the

original model can be extended to the control of the more complex model. McGeer [31]

has explored models along these lines and would be a natural starting point for future

work.

Another example, running, provides two dynamic challenges. First, the knee plays

a pivotal role in the dynamics of running and would need to be modelled. The second

challenge is the �free-�ight� stage of running when there is no contact with the ground.

Modelling this stage, and the transitions to and from it, must be handled carefully. Naive

take-o� and touch-down models could cause unstable simulations and make the dynamics

di�cult to control. For instance, elastic ground contacts would create sti� equations of

motion and unnecessarily complex dynamics when the foot is in contact with the ground.

A better solution would be to somehow model touch-down and take-o� impulsively and

switch between one model when the foot is on the ground and a di�erent model when

the body is in �ight.

A di�erent direction to explore is the connection between abstract dynamic models

and kinematic models. While one ad-hoc solution was presented in this thesis there is

little more than experimental evidence to support its use. One potential solution is trying

to �t the abstract model to motion capture data in a more principled fashion. This could

enable the learning of a mapping from an abstract dynamic state to a full kinematic pose.

Being able to match dynamics to real data could also provide insight into the structure of

the control strategies of the abstract models when they are aiming to model real motions.
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Popovi¢ and Witkin [37] have studied how to express the connection between abstract

dynamics and high degree-of-freedom kinematic models and would be a valuable source

of ideas for work along these lines.

Image-based Likelihoods The experiments used to evaluate the prior were based on

tracking hand labeled data. This allowed for a direct evaluation of the prior model with-

out concern for compounding factors relating to image data. Though the results indicate

that the model can well explain simple human walking motions, it doesn't necessarily

follow that it will succeed at tracking based on real image data. The nature of observa-

tional noise when tracking image data is not well understood and errors in the modelling

of this noise can cause problems in trackers. Thus to fully determine the value of this

prior in the context of tracking based on image data, a real image likelihood function

needs to be used.

Inferring the World A subtle constraint of this prior model is that the world and

camera geometry must be known a priori and a planar ground surface is assumed. How-

ever these are constraints of simplicity rather than strict requirements. It is possible that,

with appropriate modelling, much of the world could be inferred along with the pose.

For instance, the ground contacts provide strong hints about the geometry of the world.

Pushing the inference even further light sources could be inferred using rough models of

human geometry and exploiting the 3D representation of pose.

Improving Inference Inference was performed using basic sequential importance re-

sampling of the usual posterior P (x0:t|y0:t). However given that many properties of

dynamics are only observable over time other posteriors may be better. For instance,

a time-lagged posterior P (x0:t|y0:t+τ ) will be more accurate and may allow the use of

smaller numbers of particles. Other modi�cations to basic sequential importance resam-

pling, such as rejection control [25] and local sampling using general Markov Chain Monte
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Carlo techniques [24], could result in both more e�cient and e�ective sampling.

Other Applications The development of this prior model was motivated by the prob-

lem of people tracking. However the generative model could be applied to other problem

domains. For instance, motion capture data typically has problems with dynamic real-

ism even if it is visually realistic and the use of this prior when computing the kinematic

component of motion capture data could help alleviate the problem. Another potential

application is in the identi�cation of gait. The dynamic control parameters, such as the

mean spring constant in the anthropomorphic walker, provide a compact and potentially

useful description of a stride.



Appendix A

Dynamics of Walking

This appendix discusses the methods used for deriving the equations of motion and

includes the full equations of motion for the anthropomorphic walker.

A.1 The TMT Method

In order to derive the equations of motion for a kinematic model the TMT method is

used. This method is similar to using the Lagrange equations in that it speci�es the

equations of the motion in terms of a generalized coordinate system. A brief derivation

of the general method will be given and then applied to the anthropomorphic walker.

See van der Linde and Schwab [51] for a more detailed explanation.

Starting with the principle of virtual work known as d'Alembert's Principle

δẋ · (F −Mẍ) = δẋT (F −Mẍ) = 0 (A.1)

where δẋ are virtual velocities, F are applied forces, M is the mass matrix and ẍ is the

acceleration.

For a set of bodies assume that their centers of mass x can be expressed in terms of

some set of independent generalized coordinates q such that

x = T (q) (A.2)
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where T is the kinematic transformation function. Di�erentiating gives

ẋ =
∂T

∂q
q̇

δẋ =
∂T

∂q
δq̇ (A.3)

where ∂T
∂q

is the Jacobian of the kinematic transformation function and δq̇ are the virtual

velocities of the generalized coordinates.

Substituting Equation (A.3) into Equation (A.1) gives

δq̇T
(
∂T

∂q

)T
(F −Mẍ) = 0

which, because the generalized coordinates are independent (and thus, so are their ve-

locities), gives (
∂T

∂q

)T
(F −Mẍ) = 0 (A.4)

Writing the accelerations of the centers of mass by twice di�erentiating Equation (A.2)

gives

ẍ =
∂T

∂q
q̈ +

∂

∂q

(
∂T

∂q
q̇

)
q̇ (A.5)

and substituting Equation (A.5) into Equation (A.4) gives(
∂T

∂q

)T (
F −M

(
∂T

∂q
q̈ +

∂

∂q

(
∂T

∂q
q̇

)
q̇

))
= 0

which can be rewritten as

Mq̈ = F

where

M = TTMT

is the reduced mass matrix,

F = TT (F −Mg)
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is the reduced force vector,

T =
∂T

∂q

is the �rst order kinematic transfer function, and

g =
∂

∂q

(
∂T

∂q
q̇

)
q̇

is sometimes known as the convective acceleration. Thus, for a given set of independent

generalized coordinates q and a kinematic transformation function T (q), deriving the

equations of motion simply consists of �nding T and g.

A.2 Impulsive Collisions

A collision is de�ned by a function D of the generalized coordinates q. A collision is

said to occur when D(q) = 0. The result of a collision can be modeled in terms of the

coe�cient of restitution such that

∂D

∂q
q̇+ = −e∂D

∂q
q̇− (A.6)

where ∂D
∂q
q̇ is the relative velocity with respect to the collision and the + and−superscripts

denote pre- and post-collision respectively.

To �t this with the TMT method, contact forces λ are added to Equation (A.4) such

that

TT

(
Mẍ− F + λ

∂D

∂q

)
= 0

which, after integrating and taking the limit, gives

lim
t−→t+

∫ t+

t−
TT

(
Mẍ− F + λ

∂D

∂q

)
dt = 0 (A.7)

Notice that any non-impulsive forces applied to the system will go to zero in this equation.

Thus, de�ne

S = lim
t−→t+

∫ t+

t−
Fdt
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to be the net applied impulsive forces and

∂D

∂q
ρ = lim

t−→t+

∫ t+

t−

∂D

∂q
λdt

to be the net impulsive contact forces. Putting this into Equation (A.7) gives

lim
t−→t+

∫ t+

t−
TTMẍdt = T+T

(
S − ∂D

∂q
ρ

)
Looking at the left side of that equation

lim
t−→t+

∫ t+

t−
TTMẍdt = T+TM(ẋ+ − ẋ−)

= T+TM(T+q̇+ −T−q̇−)

which, with rearranging, gives

T+TMT+q̇+ + T+T ∂D

∂q
ρ = T+TS + T+TMT−q̇− (A.8)

Finally, combining Equations A.6 and A.8 forms a linear system of equations in the

unknowns ρ and q̇+ T+TMT+ T+T ∂D
∂q

∂D
∂q

0


 q̇+

ρ

 =

 T+T (S +MT−q̇−)

−e∂D
∂q
q̇−

 (A.9)

Note that the di�erentiation between T+ and T− is signi�cant as the kinematic transfer

function can (and will in the case of the anthropomorphic walker) change at the time of

collision. Finally, notice that if the collision is inelastic then Equation (A.9) reduces to

T+TMT+q̇+ = T+T (S +MT−q̇−)

A.3 The Anthropomorphic Walker

The generalized coordinates of this model are chosen to be the global orientation of the

stance and swing legs. These coordinates are written as

q = (φ1, φ2)
T
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where φ1 is the orientation of the stance leg and φ2 is the orientation of the swing leg.

Assuming that the origin is located at the end of the stance leg when it is in a vertical

position, the kinematic transformation function can be written as

T (q) =



−Rφ1 − (C1 −R) sinφ1

R + (C1 −R) cosφ1

φ1

−Rφ1 − (L−R) sinφ1 + (L− C) sinφ2

R + (L−R) cosφ1 − (L− C) cosφ2

φ2


the mass matrix can be written as

M =



m1 0 0 0 0 0

0 m1 0 0 0 0

0 0 I1 0 0 0

0 0 0 ml 0 0

0 0 0 0 ml 0

0 0 0 0 0 Il


and

m1 = ml +mt

C1 =
(Cml + Lmt)

ml +mt

I1 = Il + It + (C1 − C)2ml + (L− C1)
2mt

where the parameters are illustrated in Figure A.1 on page 64.

There are several ways to de�ne the mass parameters given the model in the �gure.

The equations given here assume that the torso mass is combined with the stance leg

mass during the stance phase. This e�ectively says that the torso is supported entirely

by the stance leg instead of being partly supported by the swing leg.
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Figure A.1: Parameters of the Anthropometric Walker

Following the TMT method outlined above, the Jacobian of T (q) is

T =
∂T

∂q

=



−R− (C1 −R) cosφ1 0

−(C1 −R) sinφ1 0

1 0

−R− (L−R) cosφ1 (L− C) cosφ2

−(L−R) sinφ1 (L− C) sinφ2

0 1


and convective accelleration is

g =
∂

∂q

(
∂T

∂q
q̇

)
q̇

=



φ̇2
1(C1 −R) sinφ1

−φ̇2
1(C1 −R) cosφ1

0

φ̇2
1(L−R) sinφ1 − φ̇2

2(L− C) sinφ2

−φ̇2
1(L−R) cosφ1 + φ̇2

2(L− C) cosφ2

0
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When collision happens in the model support is instantaneously transfered between

legs. This means that the dynamics of the system must change accordingly and the

impact equations need to be aware of this. Speci�cally, the kinematic transformation is

di�erent immediately after impact. That is:

T+(q) =



−Rφ2 − (L−R) sinφ2 + (L− C) sinφ1

R + (L−R) cosφ2 − (L− C) cosφ1

φ1

−Rφ2 − (C1 −R) sinφ2

R + (C1 −R) cosφ2

φ2


and thus

T+ =
∂T+

∂q

=



(L− C) cosφ1 −R− (L−R) cosφ2

(L− C) sinφ1 −(L−R) sinφ2

1 1

0 −R− (C1 −R) cosφ2

0 −(C1 −R) sinφ2

0 1





Appendix B

Distributions and Priors

This appendix brie�y reviews some properties of a few key probability distributions which

are used in the thesis.

B.1 The Gaussian and Truncated Gaussian Distribu-

tions

A random variable x with a Gaussian distribution with mean µ and variance σ2 has

density function

N (x;µ, σ2) =
1√
2πσ

e−
(x−µ)2

2σ2

If the variable x is restricted such that x ∈ [µ−, µ+] then it has the density function

N (x;µ, σ2, [µ−, µ+]) =

(
Φ

(
µ+ − µ

σ

)
− Φ

(
µ− − µ

σ

))−1 (
2πσ2

)− 1
2 e−

(x−µ)2

2σ2

where

Φ(x) =

∫ x

−∞
N (x; 0, 1)dx

is the cumulative density function of the standard normal distribution. Trunctated nor-

mals can be e�ciently sampled from using techniques developed by Robert [42].
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B.2 The Hierarchical Gaussian Model

Let x(i) be a random variable with a Gaussian distribution with mean µi, variance σ
2
x

and density function

N (x(i);µi, σ
2
x) =

1√
2πσx

e
− (xi−µi)

2

2σ2
x

and let x(i),1:Ni
be a set of IID samples from x(i). Let µi be the ith variable from a

�rst-order Markov sequence such that

P (µi|µi−1) = N (µi;αµi−1 + (1− α)µf , σ
2
µ)

is the transition density function and

P (µ1) = N (µ1;µ0, σ
2
0)

is the initial probability. Then

P (µ1|x(1),1:N1) = N (µ1; µ̄1, σ̄
2
1)

and

P (µ2|x(1),1:N1) = N (µ2;αµ̄1 + (1− α)µ0, α
2σ̄2

1 + σ2
µ)

where

µ̄1 = (σ−2
0 +N1σ

−2
x )−1(σ−2

0 µ0 + σ−2
x

N1∑
i=1

x(1),i)

σ̄2
1 = (σ−2

0 +N1σ
−2
x )−1

Then by induction,

P (µi|x(1),1:N1 , . . . , x(i−1),1:Ni−1
) = N (µi; µ̄i, σ̄

2
i )

for i > 1 where

µ̄i = αµ̄i−1 + (1− α)µ0

σ̄2
i = α2σ̄2

i−1 + σ2
µ
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For a set of observations X where P (µi|X) = N (µi; µ̂i, σ̂
2
i ) then the probability of a new

observation x of mean i given previous observations X is

P (x|X) = N (x; µ̂i, σ̂
2
i + σ2

x)

These equations are the result of simple, if not tedious, algebraic manipulations which

are omitted here.

B.3 The Gamma Distribution

A positive random variable x with a gamma distribution with shape parameter s > 0

and scale parameter λ > 0 has density function

G(x; s, λ) =
λsxs−1

Γ(s)
e−λx

mean

E[x] =
s

λ

variance

V [x] =
s

λ2

and coe�cient of variation

CV [x] =
1√
s

Gamma variates can be sampled e�ciently using methods found in [3].

If λ is unknown but has a gamma prior distribution with shape parameter s′ and
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scale parameter λ′ then the distribution over a set of samples x1:N has density

P (x1:N) =

∫ ∞

0

P (x1:N |λ)P (λ)dλ

=

∫ ∞

0

(
N∏
i=1

P (xi|λ)

)
P (λ)dλ

=

∫ ∞

0

(
N∏
i=1

λsxs−1
i

Γ(s)
e−λxi

)
λ′s

′
λs

′−1

Γ(s′)
e−λλ

′
dλ

=

(
N∏
i=1

xs−1
i

Γ(s)

)
λ′s

′

Γ(s′)

∫ ∞

0

λNs+s
′−1e−λ(λ′+

PN
i=1 xi)dλ

=

(
N∏
i=1

xs−1
i

Γ(s)

)
λ′s

′

Γ(s′)

∫ ∞

0

λSN−1e−λΛNdλ

where

SN = s′ +Ns

and

ΛN = λ′ +
N∑
i=1

xi

Noticing the integrands similarity to the gamma density function it follows that∫ ∞

0

λSN−1e−λΛNdλ =
Γ(SN)

ΛSN
N

which, after substitution, gives the general formula

P (x1:N) =
λ′s

′

Γ(s′)

Γ(SN)

ΛSN
N

N∏
i=1

xs−1
i

Γ(s)
(B.1)

for the joint density of a set of samples.

A special case of Equation (B.1), when N = 1, gives the density

P (x1) =
λ′s

′

Γ(s′)

Γ(S1)

ΛS1
1

xs−1
1

Γ(s)

=
λ′s

′

β(s′, s)

xs−1
1

(λ′ + x1)s
′+s

=
λ′−s

β(s′, s)

xs−1
1

(1 + x1

λ′
)s′+s
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which is a scaled beta-prime distribution with scale parameter λ′, primary shape param-

eter s and secondary shape parameter s′. Equation B.1 can also be used to �nd the

posterior density

P (xN |x1:N−1) =
P (x1:N)

P (x1:N−1)

=
Γ(SN)

Γ(SN−1)

Λ
SN−1

N−1

ΛSN
N

xs−1
N

Γ(s)

=
Γ(SN−1 + s)

Γ(SN−1)Γ(s)

Λ
SN−1

N−1 x
s−1
N

(ΛN−1 + xN)SN−1+s

=
Λ−sN−1

β(SN−1, s)

xs−1
N

(1 + xN

ΛN−1
)SN−1+s

which is again a scaled beta-prime distribution but with scale parameter ΛN−1, primary

shape parameter s and secondary shape parameter SN−1.

B.4 The Scaled Beta-Prime Distribution

A scaled beta-prime random variable x has density

B′(x; a, b, λ) =
λ−a

β(a, b)

xa−1

(1 + x
λ
)a+b

with scale parameter λ and primary and secondary shape parameters a and b. The

uncentered nth moment of x is

E[xn] =

∫ ∞

0

xn
λ−a

β(a, b)

xa−1

(1 + x
λ
)a+b

dx

=
λ−a

β(a, b)

∫ ∞

0

xa+n−1

(1 + x
λ
)a+b

dx

=
λ−a

β(a, b)

β(a+ n, b− n)

λ−(a+n)

= λn
Γ(a+ n)Γ(b− n)Γ(a+ b)

Γ(a)Γ(b)Γ(a+ b)

= λn
Γ(a+ n)Γ(b− n)

Γ(a)Γ(b)
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which gives a mean of

E[x] = λ
Γ(a+ 1)Γ(b− 1)

Γ(a)Γ(b)

= λ
aΓ(a)

Γ(a)(b− 1)Γ(b)

= λ
a

b− 1

for b > 1 and a variance of

V [x] = E[x2]− E[x]2

= λ2 a(a+ 1)Γ(a)Γ(b− 2)

Γ(a)(b− 1)(b− 2)Γ(b− 2)
− λ2 a2

(b− 1)2

= λ2

(
a(a+ b− 1)

(b− 1)2(b− 2)

)
for b > 2. Note that for values of b ≤ 2 V [x] can still be computed, as can E[x] for b ≤ 1,

but the form of the equations are much messier and the constraint b ≥ 2 is generally not

that onerous.

To sample from a scaled beta-prime distribution simply draw y with probability

P (y) = B(y; a, b) where

B(x; a, b) =
xa−1(1− x)b−1

β(a, b)

is the probability density function of the beta distribution with parameters a and b.

E�cient sampling methods for beta distributions can be found in [4]. Then x = λ y
1−y

has density B′(x; a, b, λ) which can be con�rmed using the method of moments

E[(λ
y

1− y
)n] =

∫ 1

0

(λ
y

1− y
)n
ya−1(1− y)b−1

β(a, b)
dy

=
λn

β(a, b)

∫ 1

0

ya+n−1(1− y)b−n−1dy

= λn
β(a+ n, b− n)

β(a, b)

= λn
Γ(a+ n)Γ(b− n)

Γ(a)Γ(b)

which shows that the uncentered moments of x and λ y
1−y are the same and thus have the

same distribution.
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