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Abstract We introduce a physics-based model for 3D
person tracking. Based on a biomechanical characteri-

zation of lower-body dynamics, the model captures im-

portant physical properties of bipedal locomotion such

as balance and ground contact. The model generalizes
naturally to variations in style due to changes in speed,

step-length, and mass, and avoids common problems

(such as footskate) that arise with existing trackers. The

dynamics comprise a two degree-of-freedom represen-

tation of human locomotion with inelastic ground con-
tact. A stochastic controller generates impulsive forces

during the toe-off stage of walking, and spring-like forces

between the legs. A higher-dimensional kinematic body

model is conditioned on the underlying dynamics. The
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combined model is used to track walking people in video,
including examples with turning, occlusion, and vary-

ing gait. We also report quantitative monocular and

binocular tracking results with the HumanEva dataset.
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1 Introduction

Most current methods for recovering human motion

from monocular video rely on kinematic models learned

from motion capture (mocap) data. Generative approaches

rely on density estimation to learn a prior distribution

over plausible human poses and motions, whereas dis-
criminative models typically learn a mapping from im-

age measurements to 3D pose. While the use of learned

kinematic models clearly reduces ambiguities in pose

estimation and tracking, the 3D motions estimated by
these methods are often physically implausible. The

most common artifacts include jerky motions, feet that

slide when in contact with the ground (or float above

it), and out-of-plane rotations that violate balance.

The problem is, in part, due to the relatively small
amount of available training data, and, in part, due to

the limited ability of such models to generalize well be-

yond the training data. For example, a model trained on

walking with a short stride may have difficulty tracking

and reconstructing the motion of someone walking with
a long stride or at a very different speed. Indeed, hu-

man motion depends significantly on a wide variety of

factors including speed, step length, ground slope, ter-

rain variability, ground friction, and variations in body
mass distributions. The task of gathering enough mo-

tion capture data to span all these conditions, and gen-

eralize sufficiently well, is prohibitive.
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As an alternative to learned kinematic models, this

paper advocates the use of physics-based models. We

hypothesize that physics-based dynamics will lead to

natural parameterizations of human motion. Dynamics

also allows one to model interactions with the environ-
ment (such as ground contact and balance during loco-

motion), and it generalizes naturally to different speeds

of locomotion, changes in mass distribution and other

sources of variation. Modeling the underlying dynamics
of motion should result in more accurate tracking and

produce more realistic motions which naturally obey

essential physical properties of human motion.

In this paper, we consider the important special

case of walking. Rather than attempting to model full-
body dynamics, our approach is inspired by simpli-

fied biomechanical models of human locomotion [9,10,

24,29]. Such models are low-dimensional and exhibit

stable human-like gaits with realistic ground contact.
We design a generative model for people tracking that

comprises one such model, called the Anthropomorphic

Walker [24,25], with a stochastic controller to gener-

ate muscle forces, and a higher-dimensional kinematic

model conditioned on the low-dimensional dynamics.
Tracking is performed by simulating the model in a

particle filter, producing physically plausible estimates

of human motion for the torso and lower body. In par-

ticular, we demonstrate stable monocular tracking over
long walking sequences. The tracker handles occlusion,

varying gait styles, and turning, producing realistic 3D

reconstructions. With lower-body occlusions, it still pro-

duces realistic reconstructions and infers the time and

location of ground contacts. We also applied the tracker
to the benchmark HumanEva dataset and report quan-

titative results.

2 Related Work

The 3D estimation of human pose from monocular video

is often poorly constrained, and, hence, prior models

play a central role in mitigating problems caused by am-

biguities, occlusion and measurement noise. Most hu-
man pose trackers rely on articulated kinematic models.

Early generative models were specified manually (e.g.,

with joint limits and smoothness constraints), while

many recent generative models have been learned from

motion capture data of people performing specific ac-
tions (e.g., [7,17,31,42,44,47,51]). Discriminative mod-

els also depend strongly on human motion capture data,

based on which direct mappings from image measure-

ments to human pose and motion are learned [1,13,38,
40,45].

In constrained cases, kinematic model-based track-

ers can produce good results. However, such models

generally suffer from two major problems. First, they

often make unrealistic assumptions; e.g., motions are

assumed to be smooth (which is violated at ground con-

tact), and independent of global position and orienta-

tion. As a result, tracking algorithms exhibit a number
of characteristic errors, including rotations of the body

that violate balance, and footskate, in which a foot in

contact with the ground appears to slide or float in

space. Second, algorithms that learn kinematic models
have difficulty generalizing beyond the training data.

In essence, such models describe the probability of a

motion by comparison to training poses; i.e., motions

“similar” to the training data are considered likely. This

means that, for every motion to be tracked, there must
be a similar motion in the training database. In order

to build a general tracker using current methods, an

enormous database of human motion capture will be

necessary.

To cope with the high dimensionality of kinematic

models and the relative sparsity of available training

data, a major theme of recent research on people track-

ing has been dimensionality reduction [13,36,44,47,48].

It is thought that low-dimensional models are less likely
to over-fit the training data and will therefore general-

ize better. They also reduce the dimension of the state

estimation problem during tracking. Inspired by similar

ideas, our physics-based model is a low-dimensional ab-
straction based on biomechanical models. Such models

are known to accurately represent properties of human

locomotion (such as gait variation and ground contact)

that have not been demonstrated with learned mod-

els [3,15,24]. We thus aim to gain the advantages of
a physics-based model without the complexity of full-

body dynamics, and without the need for inference in

a high-dimensional state space.

A small number of authors have employed physics-

based models of motion for tracking. Pentland and Horowitz
[32] and Metaxas and Terzopoulos [30] describe elastic

solid models for tracking in conjunction with Kalman

filtering, and give simple examples of articulated track-

ing by enforcing constraints. Wren and Pentland [54]
use a physics-based formulation of upper body dynam-

ics to track simple motions using binocular inputs. For

these tracking problems, the dynamics are relatively

smooth but high-dimensional. In contrast, we employ

a model that captures the specific features of walking,
including the nonlinearities of ground contact, without

the complexity of modeling elastic motion. Working

with 3D motion capture data and motivated by ab-

stract passive-dynamic models of bipedal motion, Bis-
sacco [2] uses a switching, linear dynamical system to

model motion and ground contact. We note that, de-

spite these attempts, the on-line tracking literature has



3

2D dynamics
(simulation)

3D kinematics image
observations

Fig. 1 A cartoon outline of the graphical model used for visual
tracking. Conditioned on the control parameters one can simu-
late the equations of motion for the planar model to produce a
sequence of 2D poses. The 3D kinematic model is conditioned
on the 2D dynamics simulation. The image likelihood function
then specifies the dependence of the image measurements on the
kinematic pose.

largely shied away from physics-based prior models. We

suspect that this is partly due to the perceived difficulty

in building appropriate models. We show that, with ju-
dicious choice of representation, building such models

is indeed possible.

It is also notable that the term “physics-based mod-

els” is used in different ways in computer vision. Among
these, physics is often used as a metaphor for mini-

mization, by applying virtual “forces” (e.g., [6,11,19,

20,46]); unlike in our work, these forces are not meant

to represent forces in the world.

Physics-based models of human motion are also com-
mon in computer animation where two main approaches

have been employed. The Spacetime Constraints ap-

proach [53] solves for a minimal-energy motion that sat-

isfies animator-specified constraints, and has recently

shown some success at synthesizing full-body human
motion [26,39]. However, such batch optimization is un-

suitable for online tracking. Controller-based methods

(e.g., [18,55]) employ on-line control schemes for inter-

action with physical environments. Our control mech-
anism is similar, but we use a minimal motion model

with stochastic control for probabilistic 3D tracking.

Finally, the model we develop is perhaps most simi-

lar to motion editing methods where low-dimensional

physical constraints [23,34,41] are applied to a high-
dimensional kinematic model. Here we do not require

example data to be transformed, and it is important to

note that for tracking we do not need a fully-realistic

dynamical model.

3 Motivation and Overview

Our primary goal is to track human locomotion from
monocular video sequences. We employ a probabilistic

formulation which requires a prior density model over

human motion and an image likelihood model. The key

idea, as discussed above, is to exploit basic physical

principles in the design of a prior probabilistic model.

One natural approach is to model full-body dynam-
ics as is sometimes done in humanoid robotics and com-

puter animation. Unfortunately, managing the dynam-

ics of full-body human motion, like the control of com-

plex dynamical systems in general, is extremely chal-

lenging. Nonetheless, work in biomechanics and robotics
suggests that the dynamics of bipedal walking may be

well described by relatively simple passive-dynamic walk-

ing models. Such models exhibit stable, bipedal walking

as a natural limit cycle of their dynamics. Early models,
such as those introduced by McGeer [27], were entirely

passive and could walk downhill solely under the force

of gravity. Related models have since been developed,

including one with a passive knee [28], another with an

upper body [52], and one capable of running [29].

More recently, powered walkers based on passive-

dynamic principles have been demonstrated to walk

stably on level-ground [8,24,25]. These models exhibit
human-like gaits and energy-efficiency. The energetics

of such models have also been shown to accurately pre-

dict the preferred relationship between speed and step-

length in human walking [24]. In contrast, traditional
approaches in robotics (e.g., as used by Honda’s hu-

manoid robot Asimo), employ highly-conservative con-

trol strategies that are significantly less energy-efficient

and less human-like in appearance, making them a poor

basis for modeling human walking [8,35].

These issues motivate the form of the model sketched

in Fig. 1, the components of which are outlined below.

Dynamical model. Our walking model is based on

the Anthropomorphic Walker [24,25], a planar model of

human locomotion (Section 4.1). The model depends

on active forces applied to determine gait speed and
step length. A prior distribution over these control pa-

rameters, together with the physical model, defines a

distribution over planar walking motions (Section 4.2).

Kinematic model. The dynamics represent the mo-

tion of the lower body in the sagittal plane. As such it

does not specify all the parts of the human body that

we wish to track. We therefore define a 3D kinematic

model for tracking (see Fig. 1). As described in Section
4.3, the kinematic model is constrained to be consistent

with the planar dynamics, and to move smoothly in its

remaining degrees of freedom (DOF).

Image likelihood. Conditioned on 3D kinematic state,

the likelihood model specifies an observation density

over image measurements. For tracking we currently
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L 1.0m

C 0.645m

R 0.3m

mt 0.678

It 0.167

mℓ 0.161

Iℓ 0.017

Fig. 2 The planar Anthropomorphic Walker and inertial pa-
rameters. The model parameters in the table are taken from Kuo
[25]. Units of mass are given as a proportion of the total mass of
the walker.

exploit foreground and background appearance mod-

els as well as optical flow measurements (explained in
Section 5.1). With the prior generative model and the

likelihood, tracking is accomplished with a form of se-

quential Monte Carlo inference.

4 Dynamic Model of Human Walking

Our stochastic walking model is inspired by the minimally-

powered Anthropomorphic Walker of Kuo [24,25]. Shown

in Fig. 2, the Anthropomorphic Walker is a planar ab-

straction with two straight legs of length L and a rigid

torso attached at the hip with mass mt and moment
of inertia It. The “feet” are circles of radius R, which

roll along the ground as the model moves. Each leg has

mass mℓ and moment of inertia Iℓ, centered at distance

C from the foot. The origin of the global frame of ref-
erence is defined to be the ground contact point of the

stance foot when the stance leg is vertical.

The legs are connected by a torsional spring to sim-

ulate muscle torques at the hips. The spring stiffness

is denoted κ. During normal walking, the stance leg is
in contact with the ground, and the swing leg swings

freely. The walker also includes an impulsive “toe-off”

force, with magnitude ι, that allows the back leg to

push off as support changes from the stance foot to the
swing foot.

4.1 Dynamics

As in a Lagrangian formulation, we define generalized

coordinates representing the configuration of the walker
at a given instant: q = (φ1, φ2)

T , where φ1 and φ2 are

the global orientations of the stance and swing legs, re-

spectively. The state of the walker is given by (q, q̇),

where the generalized velocities are q̇ ≡ dq

dt
. The equa-

tions of motion during normal walking are then written

as a function of the current state:

M(q) q̈ = F(q, q̇, κ) , (1)

where M(q) is known as the generalized mass matrix,

F(q, q̇, κ) is a generalized force vector which includes
gravity and the spring force between the legs, and κ

denotes the spring stiffness. This equation is a general-

ization of Newton’s Second Law of Motion. Solving (1)

at any instant gives the generalized acceleration q̈. The
details of (1) are given in Appendix A.

An important feature of walking is the collision of

the swing leg with the ground. The Anthropomorphic

Walker treats collisions of the swing leg with the ground

plane as impulsive and perfectly inelastic. As a conse-
quence, at each collision, all momentum of the body

in the direction of the ground plane is lost, resulting

in an instantaneous change in velocity. Our collision

model also allows for the characteristic “toe-off” of hu-
man walking, in which the stance leg gives a small push

before swinging. By changing the instantaneous velocity

of the body, toe-off helps to reduce the loss of momen-

tum upon ground contact.

The dynamics at ground collisions, as explained in
Appendix B, are based on a generalized conservation

of momentum equation which relates pre- and post-

collision velocities of the body, denoted q̇− and q̇+,

and the magnitude of the impulsive toe-off, ι ; i.e.,

M+(q) q̇+ = M−(q) q̇− + I(q, ι) (2)

where q is the pose at the time of collision, M−(q)
and M+(q) are the pre- and post-collision generalized

mass matrices, and I(q, ι) is the change in generalized

momentum due to the toe-off force. The impulsive toe-

off force depends on the angle at which the swing foot
strikes the ground and on magnitude of the impulse, ι.

Given κ and ι, the dynamics equations of motion (1)

can be simulated using a standard ODE solver. We use

a fourth-order Runge-Kutta method with a step-size of
1
30 s. When a collision of the swing foot with the ground
is detected, we switch the roles of the stance and swing

legs (e.g., we swap φ1 and φ2), and then use (2) to solve

for the post-collision velocities. The simulation is then

restarted from this post-collision state.

4.2 Control

The walking model has two control parameters θ =

(κ, ι), where κ is the spring stiffness and ι is the magni-
tude of the impulsive toe-off. Because these parameters

are unknown prior to tracking, they are treated as hid-

den random variables. For effective tracking, we desire
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Fig. 3 Optimal stiffness κ (left) and impulse magnitude ι (right)
as functions of speed and step length are shown. These plots il-
lustrate the flexibility and expressiveness of the model’s control
parameters. Parameters were found by searching for cyclic mo-
tions with the desired speed and step length.

a prior distribution over θ which, together with the dy-
namical model, defines a distribution over motions. A

gait may then be generated by sampling θ and simulat-

ing the dynamics.

One might learn a prior over θ by fitting the An-
thropomorphic Walker to human mocap data of people

walking with different styles, speeds, step-lengths, etc.

This is challenging, however, as it requires a significant

amount of mocap data, and the mapping from 3D kine-

matic description used for the mocap to the abstract 2D
planar model is not obvious. Rather, we take a simpler

approach motivated by the principle that walking mo-

tions are characterized by stable, cyclic gaits. Our prior

over θ then assumes that likely control parameters lie
in the vicinity of those that produce cyclic gaits.

Determining cyclic gaits. The first step in the de-

sign of the prior is to determine the space of control

parameters that generate cyclic gaits spanning the nat-

ural range of human walking speeds and step-lengths.

This is readily formulated as an optimization problem.
For a given speed and step-length, we seek initial condi-

tions (q0, q̇0) and parameters θ such that the simulated

motion ends in the starting state. The initial pose q0

can be directly specified since both feet must be on
the ground at the desired step-length. The simulation

duration T can determined by the desired speed and

step-length. We then use Newton’s method to solve

D(q0, q̇0, θ, T ) − (q0, q̇0) = 0 , (3)

for q̇0 and θ where D is a function that simulates the

dynamics for duration T given an initial state (q0, q̇0)
and parameters θ. The necessary derivatives are com-

puted using finite differences. In practice, the solver was

able to obtain control parameters satisfying (3) up to

numerical precision for the tested range of speeds and
step-lengths.

Solving (3) for a discrete set of speeds and step-

lengths produces the control parameters shown in Fig-
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Fig. 4 Impulse magnitude ι of the optimal cyclic gaits plotted
versus pre-collision velocities q̇− = (φ̇−1 , φ̇

−

2 ). During tracking,
a bilinear fit to the data shown here is used to determine the
conditional mean for a Gamma density over ι at the beginning of
each stride.

ure 3. These plots show optimal control parameters for

the full range of human walking speeds, ranging from 2

to 7 km/h, and for a wide range of step-lengths, roughly

0.5-1.2m. In particular, note that the optimal stiffness

and impulse magnitudes depend smoothly on the speed
and step-length of the motion. This is important as it

indicates that the Anthropomorphic Walker is reason-

ably stable. To facilitate the duplication of our results,

we have published Matlab code which simulates the
model, along with solutions to (3), at http://www.cs.

toronto.edu/~mbrubake/permanent/awalker.

Stochastic control. To design a prior distribution over

walking motions for the Anthropomorphic Walker, we
assume noisy control parameters that are expected to

lie in the vicinity of those that produce cyclic gaits.

We further assume that speed and step-length change

slowly from stride to stride. Walking motions are ob-

tained by sampling from the prior over the control pa-
rameters and then performing deterministic simulation

using the equations of motion.

We assume that the magnitude of the impulsive toe-

off force, ι > 0, follows a Gamma distribution. For the
optimal cyclic gaits, the impulse magnitude was very

well fit by a bilinear function µι(q̇
−) of the two pre-

collision velocities q̇− (see Fig. 4). This fit was per-

formed using least-squares regression with the solutions

to (3). The parameters of the Gamma distribution are
set such that the mean is µι(q̇

−) and the variance is

0.052.

The unknown spring stiffness at time t, κt, is as-

sumed to be nearly constant throughout each stride,
and to change slowly from one stride to the next. Ac-

cordingly, within a stride we define κt to be Gaussian

with constant mean κ̄ and variance σ2
κ:

κt ∼ N (κ̄, σ2
κ) (4)

where N (µ, σ2) is a Gaussian distribution with mean

µ and variance σ2. Given the mean stiffness for the ith
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Fig. 5 The 3D kinematic model is conditioned on the 2D planar
dynamics of the Anthropomorphic Walker.

stride, the mean stiffness for the next stride κ̄(i+1) is

given by

κ̄(i+1) ∼ N (βµκ + (1 − β)κ̄(i), σ2
κ̄) (5)

where µκ is a global mean spring stiffness and β deter-
mines how close κ̄(i) remains to µκ over time. We use

β = 0.85, σ2
κ = 1.0, µκ = 0.7 and σ2

κ̄ = 0.5.

During tracking, κ̄ does not need to be explicitly

sampled. Instead, using a form of Rao-Blackwellization

[12,21], κ̄ can be analytically marginalized out. Then,
only the sufficient statistics of the resulting Gaussian

distribution over κ̄ needs to be maintained for each par-

ticle.

Because the walking model is very stable, the model

is relatively robust to the choice of stochastic control.
Other controllers may work just as well or better.

4.3 Conditional Kinematics

The model above is low-dimensional, easy to control,

and produces human-like gaits. Nevertheless, it is a
planar model, and hence it does not specify pose pa-

rameters in 3D. Nor does it specify all parameters of

interest, such as the torso, knees and feet. We therefore

add a higher-dimensional 3D kinematic model, condi-
tioned on the underlying dynamics. The coupling of a

simple physics-based model with a detailed kinematic

model is similar to Popović and Witkin’s physics-based

motion editing system [34].

The kinematic model, depicted in Fig. 5, has legs,

knees, feet and a torso. It has ball-and-socket joints at
the hips, a hinge joint for the knees and 2 DoF joints for

the ankles. Although the upper body is not used in the

physics model, it provides useful features for tracking.

The upper body in the kinematic model comprises a
single rigid body attached to the legs.

The kinematic model is constrained to match the

dynamics at every instant. In effect, the conditional

distribution of these kinematic parameters, given the

Joint Axis α* k ψ̄ σ (ψmin, ψmax)

Torso
Side 0.9 5 0 25 (−∞,∞)
Front 0.9 5 0 25 (−∞,∞)

Up 0.75 0 0 300 (−∞,∞)

Hip
Front 0.5 5 0 50 (−π

8
, π

8
)

Up 0.5 5 0 50 (−π
8
, π

8
)

Stance Knee Side 0.75 20 0 50 (0, π)
Swing Knee Side 0.9 15 ** 300 (0, π)

Ankle
Side 0.9 50 0 50 (−π

8
, π

8
)

Front 0.9 50 0 50 (−π
8
, π

8
)

Table 1 The parameters of the conditional kinematic model
used in tracking. The degrees of freedom not listed (Hip X) are
constrained to be equal to that of the Anthropomorphic Walker.
(*) Values of α shown here are for ∆t = 1

30
s. For ∆t = 1

60
s, the

square roots of these values are used. (**) ψ̄swing knee is handled

specially, see text for more details.

state of the dynamics, is a delta function. Specifically,

the upper-leg orientations of the kinematic model in

the sagittal plane are constrained to be equal to the

leg orientations in the dynamics. The ground contact

of stance foot in the kinematics and rounded “foot” of
the dynamics are also forced to be consistent. In par-

ticular, the foot of the stance leg is constrained to be in

contact with the ground. The location of this contact

point on the foot rolls along the foot proportional to the
arc-length with which the dynamics foot rolls forward

during the stride.

When the simulation of the Anthropomorphic Walker
predicts a collision, the stance leg, and thus the contact

constraint, switches to the other foot. If the correspond-

ing foot of the kinematic model is far from the ground,

applying this constraint could cause a “jump” in the

pose of the kinematic model. However, such jumps are
generally inconsistent with image data and are thus

not a significant concern. In general, this discontinuity

would be largest when the knee is very bent, which does

not happen in most normal walking. Because the An-
thropomorphic Walker lacks knees, it is unable to han-

dle motions which rely on significant knee bend during

contact, such as running and walking on steep slopes.

We anticipate that using a physical model with more
degrees-of-freedom should address this issue.

Each remaining kinematic DOF ψj,t is modeled as

a smooth, 2nd-order Markov process:

ψj,t = ψj,t−1+∆tαjψ̇j,t−1+∆t
2(kj(ψ̄j−ψj,t−1))+ηj)(6)

where ∆t is the size of the timestep, ψ̇j,t−1 = (ψj,t−1 −
ψj,t−2)/∆t is the joint angle velocity, and ηj is IID

Gaussian noise with mean zero and variance σ2
j . This

model is analogous to a damped spring model with
noisy accelerations where kj is the spring constant, ψ̄j is

the rest position, αj is related to the damping constant

and ηj is noisy acceleration. Joint limits which require
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Fig. 6 A cropped image (left) is shown with a example of the
background negative log likelihood (middle), and a grid of motion
trajectories (blue/yellow depict large/small speeds).

that ψmin
j ≤ ψj ≤ ψmax

j are imposed where appropriate

and ηj is truncated [37] to satisfy the joint limits.

The joint evolution parameters α, k, ψ̄ and σ2 are

fixed to the values shown in Table 1, with the excep-

tion of the knee rest position of the swing leg. Due to

the sharp bend in the knee immediately after toe-off,
a simple smoothness prior has difficulty modelling this

joint. To account for this, we define ψ̄swing knee = 5ψhip

where ψhip is the sagittal angle between the two legs.

This encourages a bent knee at the beginning of a stride
and a straight knee towards the end of a stride.

It is interesting to note that, while most existing

methods for people tracking rely heavily on learned
models from motion capture data, our model does not

use any motion capture data. However, it is clear that

the kinematic model in general, and of the knee in par-

ticular, is crude, and could be improved greatly with

learning, as could other aspects of the model.

5 Sequential Monte Carlo Tracking

Pose tracking is formulated with a state-space repre-

sentation. The state st at time t comprises dynam-

ics parameters, dt, and the kinematic DOFs, kt; i.e.,

st = (dt, kt). The dynamics parameters comprises 2
continuous joint angles and their angular velocities, a

binary variable to specify the stance foot, and two vari-

ables for the sufficient statistics for the mean spring

stiffness as described at the end of 4.2. The kinematic

state comprises 3 DOFs for the global torso position,
3 DOFs for global torso orientation, and 12 DOFs for

remaining joint angles. Note that, while the dynamics

contain the joint angles and angular velocities of the

Anthropomorphic Walker, they are deterministic given
the previous state and current control parameters. In

essence, inference is done over the control parameters

in lieu of the pose parameters.

With the Markov properties of the generative model

given in Section 4, and conditional independence of the

measurements, one can write the posterior density over

motions recursively;

p(s1:t | z1:t) ∝ p(zt | st) p(st | st−1) p(s1:t−1 | z1:t−1) (7)

where s1:t ≡ [s1, ..., st] denotes a state sequence, z1:t ≡
[z1, ..., zt] denotes the observation history, p(zt | st) is

the observation likelihood, and p(st | st−1) is derived
from the generative model in Sec. 4.

By the definition of the generative model, the tem-

poral state evolution can be factored further; i.e.,

p(st | st−1) = p(kt |dt, kt−1) p(dt |dt−1) . (8)

Here p(dt|dt−1) is the stochastic dynamics of the An-

thropomorphic Walker described in Sections 4.1 and 4.2

and p(kt|dt,kt−1) is the conditional kinematic model

explained in Section 4.3. Thus, to sample from p(st|st−1),

the dynamics state dt is sampled according to p(dt|dt−1)
and, conditioning on dt, the kinematic state kt is then

sampled from p(kt|dt,kt−1). The likelihood function

and the inference procedure are described below.

5.1 Likelihood

The 3D articulated body model comprises a torso and

lower limbs, each of which is modeled as a tapered el-

lipsoidal cylinder. The size of each part is set by hand,

as is the pose of the model in the first frame of each

sequence. To evaluate the likelihood p(zt|st), the 3D
model is projected into the image plane. This allows

self-occlusion to be handled naturally as the visibility

of each part can be determined for each pixel. The like-

lihood is then based on appearance models for the fore-
ground body and the background, and on optical flow

measurements [14].

A background model, learned from a small subset

of images, comprises mean color (RGB) and intensity

gradients at each pixel and a single 5×5 covariance ma-
trix (e.g., see Fig. 6 (middle)). The foreground model

assumes that pixels are IID in each part (i.e., foot, legs,

torso, head), with densities given by Gaussian mixtures

over the same 5D measurements as the background
model. Each mixture has 3 components and its param-

eters are learned from hand labeled regions in a small

number of frames.

Optical flow is estimated at grid locations in each

frame (e.g., see Fig. 6 (right)), using a robust M-estimator
with non-overlapping regions of support. The eigenval-

ues/vectors of the local gradient tensor in each region of

support provide a crude approximation to the estima-

tor covariance Σ. For the likelihood of a flow estimate,
v, given the 2D motion specified by the state, u, we

use a heavy-tailed Student’s t distribution (chosen for

robustness). The log-likelihood is given by

log p(v|u) = −
log |Σ|

2
−
n+2

2
log(1+e2) + c (9)
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where e2 = 1
2 (v − u)TΣ−1(v − u) and n = 2 is the

degrees of freedom, and c is a constant. Because the

camera is not moving in our image sequences, we de-

fine the log-likelihood of a flow measurement on the

background as given by (9) with u = 0.

The visibility of each part defines a partition of

the observations, such that zt(i) are the measurements
which belong to part i. The background is simply treated

as another part. Then the log-likelihood contribution of

part i is

log p(zt(i)|st) =
∑

m∈zt(i)

log p(m|st) (10)

where the sum is over the measurements belonging to
part i. To cope with large correlations between mea-

surement errors, we define the appearance and flow log-

likelihood to be the weighted sum of log-likelihoods over

all visible measurements for each part

log p(zt|st) =
∑

i

wi log p(zt(i)|st) (11)

where the weights are set inversely proportional to the
expected size of each part in the image.1 If multiple

cameras are available, they are assumed to be condi-

tionally independent given the state st. This yields a

combined log-likelihood of

log p(z1
t , z

2
t , · · · | st) =

∑

i

log p(zi
t | st) (12)

where zi
t is the observation from camera i.

5.2 Inference

Using a particle filter, we approximate the posterior

(7) by a weighted set of N samples St ={s
(j)
1:t , w

(j)
t }N

j=1.
Given the recursive form of (7), the posterior St, given

St−1, can be computed in two steps; i.e.,

1. Draw samples s
(j)
t ∼ p(st | s

(j)
t−1) using (8) to form

the new state sequences s
(j)
1:t = [s

(j)
1:t−1, s

(j)
t ]; and

2. Update the weights w
(j)
t = cw

(j)
t−1 p(zt | s

(j)
t ) , where

c is used to normalize the weights so they sum to 1.

This approach, without re-sampling, often works well
until particle depletion becomes a problem, i.e., where

only a small number of weights are significantly non-

zero. One common solution to this is to re-sample the

states in St according to their weights. This is well-
known to be suboptimal since it does not exploit the

current observation in determining which states should

1 To avoid computing the log-likelihood over the entire image,
we equivalently compute log-likelihood ratios of foreground ver-
sus background over regions of the image to which the 3D body
geometry projects.

be re-sampled (i.e., survive). Instead, inspired by the

auxiliary particle filter [33], we use future data to pre-

dict how well current samples are likely to fare in the

future. This is of particular importance with a physics-

based model, where the quality of a sample is not al-
ways immediately evident based on current and past

likelihoods. For instance, the consequences of forces ap-

plied at the current time may not manifest until several

frames into the future.
In more detail, we maintain an approximation St:t+τ =

{s
(j)
t:t+τ , w

(j)
t:t+τ}

N
j=1 to the marginal posterior distribu-

tion over state sequences in a small temporal window
of τ + 1 frames, p(st:t+τ | z1:t+τ ). The sample set is ob-

tained by simulating the model for τ + 1 time steps,

given St−1, evaluating the likelihood of each trajectory

and setting

w
(j)
t:t+τ = cw

(j)
t−1

t+τ
∏

ℓ=t

p(zℓ|s
(j)
ℓ ) (13)

where c is set such that the weights sum to one.

Following [12,22], when the effective number of sam-

ples,

Neff =





∑

j

(w
(j)
t:t+τ )2





−1

, (14)

becomes too small we re-sample St−1 using importance
sampling; i.e.,

1. Draw samples s
(k)
t−1 from the weights {ŵ

(j)
t−1}

N
j=1 where

ŵ
(j)
t−1 = (1 − γ)w

(j)
t−1 + γw

(j)
t:t+τ and γ represents our

trust in our approximation St:t+τ ;

2. Set the new weights to be w
(k)
t−1/ŵ

(k)
t−1, and then nor-

malize the weights so they sum to 1.

The importance re-weighting (step 2) is needed to main-
tain a properly weighted approximation to the posterior

(7). Below we use τ =3 and γ=0.9. With this form of

importance sampling, resampling occurs once every 4

or 5 frames on average for the experiments below.

6 Results

Here we present the results of four experiments with

our model. The first three experiments use the same

set of parameters for the kinematic evolution and the

same prior over the control parameters for the dynam-
ics. The parameters for the fourth experiment were set

to similar values, but adjusted to account for a differ-

ence in frame rate (30 frames per second for experi-

ments one through three and 60 frames per second for
experiment four). These parameters were empirically

determined. Finally, for each image sequence, we deter-

mine the camera intrinsics and extrinsics with respect
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Fig. 7 Composite images show the subject at several frames, depicting the motion over the 130 frame sequence: (left) the original im-
ages; (middle) the inferred poses of the MAP kinematics overlayed on the images, with the corresponding state of the Anthropomorphic
Walker depicted along the bottom (the stance leg in red); (right) a 3D rendering of MAP poses from a different viewpoint.

Fig. 9 Two rows of cropped images showing every second frame of the MAP trajectory in Experiment 1 for two strides during change
of speed: (top) the kinematic skeleton is overlayed on the subject; (middle) the corresponding state of the Anthropomorphic Walker
is shown with the stance printed in red; (bottom) a 3D rendering of the kinematic state.

to a world coordinate frame on the ground plane based

on 10-12 correspondences between image locations and

ground truth 3D locations in each scene. The direction

of gravity is assumed to be normal to the ground plane.

All experiments used 5000 particles, with resam-

pling when Neff < 500. Experimentally we have found

that, while as few as 1000 particles can result in suc-

cessful tracking of some sequences (e.g., experiment 1),

5000 particles was necessary to consistently track well

across all experiments. Excluding likelihood computa-

tions, the tracker runs at around 30 frames per sec-
ond. The body geometry was set by hand and the mean

initial state was coarsely hand-determined. Initial par-

ticles were sampled with a large variance about that
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Fig. 10 Composite images show the input data (left), background model (middle) and MAP trajectory (right) at several frames for
Experiment 2. Only the outline of the occluder is shown for illustration.

Fig. 11 Cropped images showing every 4th frame of the MAP trajectory (top), the corresponding state of the Anthropomorphic
walker (middle) and the posterior distribution (bottom) in Experiment 2. In the posterior points on the head (blue), left and right
feet (white and yellow), left and right knees (green and red) and hip (blue) are plotted for each particle with intensity proportional to
their log weight.
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Fig. 8 Inferred speed as a function of time for the MAP
trajectory in Experiment 1 (blue). The dashed green line is
p(stance leg = left|z1:t), the probability of the left leg being the
stance leg given the data up to that frame.

mean state. The inference procedure results in a set

of particles that approximate the posterior distribution

p(s1:t | z1:t) for a given time t. Our demonstration of the

results will focus mainly on the maximum a-posteriori

(MAP) trajectory of states over all T frames,

sMAP
1:T = arg max

s1:T
p(s1:T | z1:T ) . (15)

This is crudely approximated by choosing the state se-

quence associated with the particle at time T with the
largest weight. We present the MAP trajectory because

it ensures that the sequence of poses is consistent with

the underlying motion model.

Experiment 1: Changes in Speed. Figure 7 (left)

shows a composite image of a walking sequence in which

the subject’s speed decreases from almost 7 to 3 km/h.

Figure 8 shows the recovered velocity of the subject
over time in the solid blue curve. Also shown with the

dashed green curve is the posterior probability of which

leg is the stance leg. Such speed changes are handled

naturally by the physics-based model. Fig. 7 (middle)
shows the recovered MAP trajectory from the original

camera position while Fig. 7 (right) shows that the re-

covered motion looks good in 3D from other views.
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Fig. 12 3D rendering of the MAP trajectory in Experiment 2.

Figure 9 shows cropped versions of tracking results
for a short subsequence, demonstrating the consistency

of the tracker. Weakness in the conditional kinematic

model at high speeds leads to subtle anomolies, espe-

cially around the knees, which can be seen in the early

frames of this subsequence.

Experiment 2: Occlusion. We simulate occlusion by

blacking out an image region as shown in Figure 10. The
silhouette of the lower body is therefore lost, and we

discard all flow measurements that encroach upon the

occluder. Nevertheless, the subtle motion of the torso

is enough to track the person, infer foot positions, and
recover 3D pose.

It is particularly interesting to examine the poste-

rior distribution p(st|z1:t) which can be seen in the bot-

tom row of Figure 11. These images show colour coded

points for the head, hip, knees and feet for each particle

in the posterior. The brightness of each point is propor-
tional to its log weight. While there is increased poste-

rior uncertainty during the occlusion, it does not diffuse

monotonically. Rather, motion of the upper body allows

the tracker to infer the stance leg and contact location.
Notice that, soon after ground contacts, the marginal

posterior over the stance foot position tends to shrink.

Finally, during occlusion, leg-switching can occur

but is unlikely. This is visible in the posterior distribu-

tion as an overlap between yellow (right foot) and white

(left foot) points. However, the ambiguity is quickly re-
solved after the occlusion.

Experiment 3: Turning. While the Anthropomor-
phic Walker is a planar model we are still able to suc-

cessfully track 3D walking motions because of the con-

ditional kinematics. As can been seen in Figure 14, the

model successfully tracks the person through a sharp
turn in a sequence of more than 400 frames. Despite

the limitations of the physical model, it is able to accu-

rately represent the dynamics of the motion in 2D while
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Fig. 13 MAP trajectory velocity (blue) and stance leg posterior
p(stance leg = left|z1:t) (dashed green) for the times shown in
Figure 14. The highlighted region, corresponding to the middle
row of Figure 14, exhibits significant uncertainty about which leg
is the stance leg.

the conditional kinematic model represents the turning

motion.

Figure 13 shows the speed of the subject and the

posterior probability of which leg is the stance leg. Be-

tween frames 250 and 300 there is significant uncer-
tainty in which leg is in contact with the ground. This

is partly because, in these frames which correspond to

the middle row in Figure 14, there are few visual cues

to disambiguate when a foot has hit the ground.

Experiment 4: HumanEva. To quantitatively assess

the quality of tracking, we also report results on the Hu-

manEva benchmark dataset [43]. This dataset contains

multicamera video, synchronized with motion capture

data that can be used as ground truth. Error is mea-
sured as the average Euclidean distance over a set of

defined marker positions. Because our method does not

actively track the head and arms, we report results us-

ing only the markers on the torso and legs.

As above, tracking was hand initialized and segment
lengths were set based on the static motion capture

available for each subject. The camera calibration pro-

vided with the dataset was used and it was assumed

that the ground plane was located at Z = 0. We report
monocular and binocular results on subjects 2 and 4

from HumanEva II. Error is measured from the poses

in the MAP trajectory of states over all T frames. The

results are summarized in Table 2 and errors over time

are plotted in Figures 15 and 16.
It is important to note that the same model (dynam-

ics and kinematics) is used to track the two HumanEva

subjects as well as the subject in the preceeding exper-

iments. Only the body size parameters were different.

This helps to demonstrate that the model can general-
ize to different subjects.

In this paper, both relative and absolute 3D error

measures are reported. Absolute error is computed as



12

Fig. 14 Cropped images showing every 5th frame of the MAP trajectory through an acceleration and sharp turn, starting at frame
200. The skeleton of the kinematic model is overlayed in green. The middle row corresponds to the shaded portion of Figure 13.

the average 3D Euclidean distance between predicted

and ground truth marker positions [43]. Following Hu-

manEva, relative error is computed by translating the

pelvis of the resulting pose to the correct 3D position

before measuring the 3D Euclidean distance. This re-
moves gross errors in depth.

The type of error reported is significant, as different

measures make meaningful comparisons difficult. Both

error types are reported here to allow a more direct

comparison with other methods. For example, relative
error is often used by discriminative methods which do

not recover absolute 3D depth.

The difference between the relative and absolute er-

rors is also indicative of the nature of errors made by

the tracker. Table 2 shows that, unsurprisingly, absolute
errors are lower when using two cameras. In contrast,

the plots in Figure 16 suggest a negligable gain in rel-

ative error when using two cameras. Taken together,

these results suggest that depth uncertainty remains
the primary source of monocular tracking error. With

these depth errors removed, the errors in binocular and

monocular tracking are comparable.

This is further illustrated in Figures 17(a) and 17(b)

which show frames from the monocular trackers. The
pose of the subject fits well in 2D and is likely to have

a high likelihood at that frame. However, when viewed

from other cameras, the errors in depth are evident.

Table 2 also reveals that relative error can be higher

than absolute error, particularly for binocular tracking.

This peculiar result can be explained with two observa-

tions. First, while relative error removes error from the

pelvic marker, it may introduce error in other markers.
Further, direct correspondences between positions on

any articulated model and the virtual markers of the

motion capture may not be possible as the motion cap-

ture models have significantly more degrees of freedom.
These correspondence errors can then be magnified by

the translation of the pelvic marker, particularly if there

are errors in the pelvic marker itself.

Interestingly, the monocular tracking errors shown

in Figure 15 (the green and blue curves) tend to have
significant peaks which fall off slowly with time. While

evident in all experiments, this can be most clearly seen

when tracking subject 4 from camera 2. These peaks are

the combined result of depth uncertainty and a physi-

cally plausible motion model. According to the motion
model, the only way the subject can move in depth

is by walking there. If a foot is misplaced it cannot

gradually slide to the correct position, rather the sub-

ject must take a step. This results in errors persisting
over at least one stride. However, this is also the same

behaviour which prevents footskate and ensures more

realistic motions.
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Sequence Error Type
Monocular (Camera 2) Monocular (Camera 3) Binocular (Cameras 2 and 3)
Median Mean Median Mean Median Mean

Subject 2, Combo 1, Frames 25-350
Absolute 82mm 88mm ± 38 67mm 82mm ± 34 52mm 53mm ± 9

Relative 67mm 70mm ± 13 67mm 67mm ± 11 64mm 66mm ± 9

Subject 4, Combo 4, Frames 15-350*
Absolute 98mm 127mm ± 70 77mm 96mm ± 42 52mm 54mm ± 10
Relative 74mm 76mm ± 17 71mm 70mm ± 10 65mm 66mm ± 10

Table 2 Quantitative results on sequences from HumanEva II. (*) As noted on the HumanEva II website, frames 298-335 are excluded
from the calculation due to errors in the ground truth motion capture data.
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Fig. 15 Average absolute marker error over time for Subject 2, Combo 1 (left) and Subject 4, Combo 4 (right). Plots are shown
for monocular tracking with camera 2 (solid blue) and camera 3 (dashed green) as well as binocular tracking with cameras 2 and 3
(dot-dashed red).
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Fig. 16 Average relative marker error over time for Subject 2, Combo 1 (left) and Subject 4, Combo 4 (right). Plots are shown
for monocular tracking with camera 2 (solid blue) and camera 3 (dashed green) as well as binocular tracking with cameras 2 and 3
(dot-dashed red).

(a) Subject 2, Combo 1, Camera 3. The pose at frame 225 of
the MAP trajectory is shown from camera 3 on the left. On
the right are the views from cameras 2 and 4 respectively.

(b) Subject 4, Combo 4, Camera 2. The pose at frame 125 of
the MAP trajectory is shown from camera 2 on the left. On
the right are the views from cameras 3 and 4 respectively.

Fig. 17 Monocular tracking errors due to depth ambiguities. In both examples, the model appears to fit well in the view from which
tracking is done. However, when viewed from other cameras the errors in depth become evident.
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7 Discussion and Future Work

In this paper we showed that physics-based models of-

fer significant benefits in terms of accuracy, stability,

and generality for person tracking. Results on three dif-
ferent subjects in a variety of conditions, including in

the presence of severe occlusion, are presented which

demonstrate the ability of the tracker to generalize.

Quantitative results for monocular and binocular 3D
tracking on the HumanEva dataset [43] allows for di-

rect comparison with other methods.

Here we used a simple powered walking model, but

we are currently exploring more sophisticated physical

models [4] which may yield even more general trackers

for other types of motion. There will, generally, be a

trade-off between model generality and the difficulty of
designing a controller [50]. We note that, while control

of humanoid dynamical models is a challenging prob-

lem, there is a substantial literature in robotics and

animation from which to draw inspiration.

Although our approach employs online Bayesian in-

ference, it should also be possible to incorporate phys-
ical laws within other tracking frameworks such as dis-

criminative methods. Models similar to this may also

be used for modelling and tracking other animals [15].

Acknowledgements Thanks to Zoran Popović and Allan Jep-
son for valuable discussions. Thanks to Jack Wang for some initial
software.
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A Equations of motion

Here we describe the equations of motion for the Anthropomor-

phic Walker, shown in Fig. 2. While general-purpose physics en-

gines may be used to implement the physical model and the
impulsive collisions with the ground, most do not support ex-
act ground constraints, but instead effectively require the use

of springs to model static contact. In our experience it is not
possible to make the springs stiff enough to accurately model the
data without resulting in slow or unstable simulations. Hence, we
derive equations of motion which exactly enforce static contact
constraints. These equations produces stable simulations which
allow (3) to be solved efficiently.

In order to derive the equations of motion for the walking
model, we employ the TMT method [49], a convenient recipe
for constrained dynamics. The TMT formulation is equivalent to
Lagrange’s equations of motion and can be derived in a similar
way, using d’Alembert’s Principle of virtual work [16]. However,
we find the derivation of equations of motion using the TMT
method simpler and more intuitive for articulated bodies.

We begin by defining the kinematic transformation, which
maps from the generalized coordinates q = (φ1, φ2) to a 6 × 1
vector that contains the linear and angular coordinates of each
rigid body which specify state for the Newton-Euler equations
of motion. The torso is treated as being rigidly connected to the
stance leg and hence we have only two rigid parts in the An-
thropomorphic Walker. The kinematic transformation can then
be written as

k(q) =













−Rφ1 − (C1 − R) sinφ1

R+ (C1 −R) cosφ1

φ1

−Rφ1 − (L− R) sinφ1 + (L− C) sinφ2

R+ (L−R) cosφ1 − (L− C) cosφ2

φ2













(16)

where C1 =
(Cmℓ+Lmt)

mℓ+mt
is the location along the stance leg of

the combined center rigid body. Dependence of angles on time
is omitted for brevity. The origin, O, of the coordinate system is
on the ground as shown in Fig. 2. The origin is positioned such
that, when the stance leg is vertical, the bottom of the stance
leg and the origin are coincident. Assuming infinite friction, the
contact point between the rounded foot and the ground moves as
the stance leg rotates.

The equations of motion are summarized as

TT MTq̈ = f + TT M (a − g) (17)

where the matrix T is the 6×2 Jacobian of k, i.e., T = ∂k/∂q.
The reduced mass matrix is

M = diag(m1,m1, I1,mℓ,mℓ, Iℓ) , (18)

where m1 = mℓ +mt is the combined mass of the stance leg. The
combined moment of inertia of the stance leg is given by

I1 = Iℓ + It + (C1 − C)2mℓ + (L− C1)2mt (19)

The convective acceleration is

g =
∂

∂q

(

∂k

∂q
q̇

)

q̇ (20)

and a = g[0,−1, 0, 0,−1, 0]T is the generalized acceleration vector
due to gravity (g = 9.8m/s2). The generalized spring force is
f = κ[φ2 − φ1, φ1 − φ2]T . By substitution of variables, it can be
seen that (17) is equivalent to (1), with M(q) = TT MT and
F(q, q̇, κ) = f + TT M (a − g).

B Collision and support transfer

Since the end of the swing leg is even with the ground when
φ1 = −φ2, collisions are found by detecting zero-crossings of
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C(φ1, φ2) = φ1 + φ2. However, our model also allows the swing
foot to move below the ground2, and thus a zero-crossing can
occur when the foot passes above the ground. Hence, we detect

collisions by detecting zero-crossings of C when φ1 < 0 and Ċ < 0.
The dynamical consequence of collision is determined by a

system of equations relating the instantaneous velocities imme-
diately before and after the collision. By assuming ground colli-
sions to be impulsive and inelastic the result can be determined
by solving a set of equations for the post-collision velocity. To
model toe-off before such a collision, an impulse along the stance
leg is added. In particular, the post-collision velocities q̇+ can be
solved for using

T+T MT+q̇+ = T+T (v + MTq̇−) (21)

where q̇− are the pre-collision velocities, T is the pre-collision
kinematic transfer matrix specified above,

k+(q−) =













−Rφ2 −(L−R) sinφ2 + (L−C) sinφ1

R + (L−R) cosφ2 − (L−C) cosφ1

φ1

−Rφ2 − (C1−R) sinφ2

R+ (C1−R) cos φ2

φ2













(22)

is the post-collision kinematic transformation function, T+ =
∂k+/∂q, is the post-collision kinematic transfer matrix, M is
the mass matrix as above and

v = ι[− sinφ1, cosφ1, 0, 0, 0, 0]
T (23)

is the impulse vector with magnitude ι. Defining

M+(q) = T+TMT+T (24)

M−(q) = T+TMT (25)

I(q, ι) = T+Tv (26)

and substituting into (21) gives (2).
At collision, the origin of the coordinate system shifts forward

by 2(Rφ2 +(L−R) sinφ2). The swing and stance leg switch roles;
i.e., φ1 and φ2 and their velocities are swapped. Simulation then
continues as before.

2 Because the Anthropomorphic Walker does not have knees,
it can walk only by passing a foot through the ground.


