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Abstract

We show that the the unit demand auction introduced by Demange, Gale and Sotomayor [5]
is incentive compatible even when bidders have budget constraints. Furthermore we show that
myopic bidding is an ex post equilibrium. Finally, we show that any other incentive compatible
which always outputs a competitive equilibrium (envy free) must coincide with the DGS auction.

1 Introduction

In a unit demand auction each bidder is interested in at most one item. Shapley and Shubik
[10] showed that there exists a competitive equilibrium in this setting. Moreover, they showed
that among all competitive prices there is a unique vector of competitive prices which is minimal,
i.e. pointwise smaller than every other vector of competitive prices. Demange and Gale [4] further
showed that the direct auction that outputs a competitive equilibrium with the minimal competitive
prices is incentive compatible. Demange et. al [5] introduced a dynamic ascending auction, which
we refer to by the DGS auction1, which obtains the competitive equilibrium with the minimal price
vector.

The works mentioned above do not assume that bidders have any budget constraints. In fact
most auction theory ignores this issue. It is often the case that bidders have an upper bound on
what they can or are willing to pay the auctioneer. For instance, in online ad auctions, advertisers
are asked to submit both how much they value each impression, and an upper bound on the amount
they are willing to spend.

Only recently several studies incorporated budgets constraints into their settings. Since util-
ities are no longer quasi linear, this change requires different analysis techniques, which give rise
to different results. Therefore, studying budget constraints is important both conceptually and
technically.

This paper generalizes the unit demand auction by letting bidders also have a limited budget.
We assume both budgets and values are known only to the bidder. We show that if the values and
budgets do not satisfy a simple independence assumption (including ties) a competitive equilibrium
might not exist.2 Under the independence assumption we show that a competitive equilibrium

1In [5] this auction is referred to as the the exact auction mechanism.
2It is well-known that in the case of budget ties (see Che and Gale [3] and Krishna [8]) that the second price

auction with budget constraints is not truthful. In this auction the winner is the bidder with the maximal “bid”
min(vi, bi) and he and pays the second highest bid. We show that a competitive equilibrium might not exist even
when there are no budget ties.
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always exist and that the direct unit demand auction that outputs a competitive equilibrium with
the minimal competitive prices is incentive compatible.

Further we show that in the DGS auction with budgets constraint bidders (not the direct
version), myopic bidding is an ex post equilibrium, which is equivalent to say that if every bidder
uses a proxy bidder then it is a dominant strategy for i also to use a proxy bidder.3 Finally we show
that any other unit demand auction with budgets constrained bidders which is incentive compatible
and outputs a competitive equilibrium must output the one with the minimal competitive prices.

1.1 Related Literature

Roth and Sotomayor [9] consider the setting of two sided matching without contracts. They show
that every mechanism which produces a stable matching, in which it is dominant for the men to
be truthful, must output the men optimal stable outcome. That is, it outputs the stable outcome
produced by the Deferred Acceptance algorithm in which the men propose. Thus, our uniqueness
result can be viewed as a generalization of their uniqueness result.

Building on their work, Hatfiled and Milgrom [7] give a theoretical framework that unifies unit
demand auctions and two sided matching, called “matching with contracts”. In their setting the two
sides are hospitals and doctors, and each doctor can have a contract with at most one hospital, where
a contract includes the wage the hospital pays the doctor. Their setting reduces to ours by fixing the
hospitals’ preferences, and assuming each hospital prefers paying as least as possible. Hatfiled and
Milgrom show that given the hospitals preferences the (generalized) Deferred Acceptance algorithm
outputs a stable outcome (interpreted in our setting as a competitive equilibrium) and it is a
dominant strategy for every doctor to state his true preferences. An important assumption in their
setting is that the preferences are strict. In the context of an auction, this assumption is being
violated in two different ways. First, the items are indifferent about which buyer buys them - in
contrast to the strict preference hospitals have over doctors. Moreover, if buyer x values item y
for z, he is indifferent between paying z and receiving the item, and not receiving this item at all.
Assuming that a buyer buys in the case of indifference is also not enough, as there could be multiple
deals which are just as good for the buyer.

We elucidate the problem, by giving examples where the budgets are different, but this problem
occurs, and indeed no competitive equilibrium exists. We then show an independence condition,
which ensures that this can not happen in our mechanism. Finally, we sketch how to change the
mechanism such that the independence condition holds with probability 1.

Finally, in a recent paper Dobzinski et. al [6] showed that there is no incentive compatible Pareto
optimal multi unit auction. Roughly speaking, in our setting a competitive equilibrium implies
that the outcome is Pareto optimal. Hence our results draw the borderline between possibility and
impossibility implementation when bidders have budget constraints, as the unit demand setting is
the richest well-known setting in which it is possible to implement a Pareto efficient outcome in
dominant strategies when bidders also have budget constraints.

We note, that a corollary of our results is an envy free mechanism for multi-unit auctions. To
see this, simply decide before hand to bundle the items into k chunks (of different size), and sell
the chunks subject to the constraint that a player can get at most one chunk. One can show that
a proper choice of the chunk sizes can guarantee a logarithmic fraction of the optimal revenue.

To summarize, our main contributions are (i) uniqueness - the stable outcome produced by
the (generalized) deferred acceptance is the the only possible outcome for stable and incentive

3In [1] the authors describe an incentive compatible auction for the special case of position auctions in which this
result does not hold.

2



compatible (ii) showing that in the dynamic setting myopic bidding is an ex post equilibrium and
mechanisms, and (iii) putting forward an independence assumption, which does not arise when
there are no budgets and generalizes ties.

The paper is organized as follows. In Section 2 we provide the general setting. Incentives results
of the DGS auction are given in Section 3, and the uniqueness result is given in Section 4.

2 Preliminaries

In a unit-demand auction there is a finite set of k items and a finite set of n bidders N where each
bidder is interested in receiving at most one item. We assume that n ≥ k ≥ 1. Every bidder i has
a private valuation vector vi = (vi(x))x∈K where vi(x) ≥ 0 denotes bidder i’s value for item x. In
addition every bidder i has a private budget bi > 0; bidder i’s payment is strictly less than bi.4 A
pair ti = (vi, bi) is called a type. It is convenient to add a null item, denoted by φ, in which its
value for each bidder is zero. We assume that any bidder that does not get an item in K gets the
null item and pays zero.

In the absence of budget constraints, bidder i’s utility from receiving item x and paying pi is
equal to vi(x) − pi. However, as budgets are incorporated in our model, we assume the utility
function for bidder i with type ti = (vi, bi) is given by

u((vi, bi), x, pi) =
{
vi(x)− pi bi > pi
−1 bi ≤ pi

(1)

where the negative utility for the case pi ≥ bi can be thought of as bidder i will not complete the
transaction if he is required to pay bi or more.5

An assignment is a tuple s = (si)i∈N where si ∈ K ∪ {φ} such that for every pair of bidders
i, j ∈ N if si, sj ∈ K then si 6= sj . An outcome in the auction is a tuple (si, pi)i∈N where (si)i∈N
is an assignment and pi is the payment for bidder i.

For simplicity we assume the seller has a reserve price 0 for each item. Note that at this point
nothing has been said about the rules of the auction, in particular what are the possible strategies
and how the outcome is determined.

Throughout this paper we assume that all values and budgets are integers; similar results can
be obtained in the case of general budgets and valuations.

3 The DGS Ascending Auction

In this section we describe and analyze the ascending auction described by Demange et. al [5]
generalized to budget constrained bidders. At each stage in the auction the auctioneer holds a
vector of prices q = (q1, . . . , qk) ∈ RK

+ where qx is the price for item x at stage r.
At the first stage the prices are q = (0, . . . , 0), and every bidder submits a subset of items which

he is interested in. We refer to this subset as a demand set.6 We say that a subset of items (of K)
is overdemanded if the number of bidders interested in/demanding only items in this set is greater
than the number of items in the set. If there is no overdemanded set (with respect to the submitted
demand sets) then it is possible to assign each item to a bidder who demands it and the auction is
over; in this case if item x ∈ K is assigned to bidder i he pays qx and if i is assigned the null object

4We do not allow bi to be a feasible payment just for mathematical convenience.
5Replacing this with any other negative utility does not alter the results.
6We do not assume here that the demand set i submits, necessarily maximizes i’s utility.
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he pays zero. Otherwise the auctioneer computes a minimal overdemanded set (with respect to
the submitted subsets of the bidders) and for each item in this set it raises the price by one unit.
Again, each bidder announces a demand set at the new prices and this process goes on. Eventually
the auctioneer will find a possible assignment, since the prices are raised by a unit at each stage.

3.1 Competitive Prices

Denote by D(q, (vi, bi)) the true demand set of a bidder at prices q when his type is (vi, bi), that is

D(q, (vi, bi)) = {x ∈ K ∪ φ|x ∈ arg max
y∈K∪{φ}

{vi(y)− qy : qy < bi}}. (2)

Let t = ((v1, b1), . . . , (vn, bn)) be a profile of types. A vector of prices q is competitive (with
respect to t) if there is an assignment s = (si)i∈N such that si ∈ D(q, (vi, bi)). Such an assignment
is said to be valid for q.

The following theorem given in [5] (without budget constraints) shows that if all bidders al-
ways announce their true demand set, i.e. each bidder demands all the items that maximize his
utility under the given prices, then the auction terminates at the minimal competitive price vector.
Formally,

Theorem 3.1. Let t = ((v1, b1), . . . , (vn, bn)) be the profile of types. Let qr be the prices at stage r
and let q be the price vector at the end of the auction. If at every stage r, each bidder submits his
true demand set D(qr, (vi, bi)), then q is competitive and for any other competitive price vector q̃,
q ≤ q̃.

The proof of Theorem 3.1 is identical to the proof of Theorem 1 by Demange et. al in [5] and
is therefore omitted. Their proof uses the celebrated Hall theorem which asserts that a possible
allocation exists if and only if there is no overdemanded set. Roughly speaking, the proof of [5]
remains in the “abstract level” of demand sets, and therefore the presence of budgets does not
change any of their arguments.

3.2 Competitive Equilibrium

A tuple (q, s) is called a competitive equilibrium if s is valid for q, and in addition for any item
x ∈ K, if si 6= x for every every bidder i, then qx = 0. In other words the price of non allocated
items in equilibrium is zero.

In [5] Demange et. al also show that for every competitive prices, there exists an assignment
that together form a competitive equilibrium. Interestingly, as illustrated in the following simple
example, this is not true in our context.7

Example 3.2. Consider one item x and two bidders 1 and 2. Let b1 = b2 = 10 and v1 = 15,
v2 = 20. For any qx < 10 both bidders’ true demand set contains x. Therefore any competitive
price is at least 10, but in any such price the item is not allocated.

Example 3.2 shows that if ties are allowed then there is no competitive equilibrium. The
following example shows that a competitive equilibrium does not exist even with no ties.

Example 3.3. Consider two items, x and y and three bidders 1, 2 and 3. Let b1 = 10, b2 = 11 and
b3 = 1000. Let v1(x) = 1500 , v2(y) = 2000, v3(x) = 20, v3(y) = 21 and all other values are zero.
Note that the final prices will be qx = 10 and qy = 11, bidder 3 will get either item x or item y,
and the other item will not be allocated.

7This is consistent with the assumption of strict preferences in Hatfield and Milgrom [7].
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Examples 3.2 and 3.3 motivate the following definition:

Definition 3.4 (Independence). We say that n numbers x1, . . . , xn are independent, if it is not
possible to find two different nonempty subsets containing positive numbers, that sum up to the
same number. Alternatively, for every linear combination

∑n
i=1 eixi where ei ∈ {−1, 0, 1} then if

ei 6= 0 then xi = 0.

For any profile of types t = ((v1, b1), . . . , (vn, bn)) we denote by H(t) the set of numbers
b1, . . . , bn, v1(1), v1(2), . . . , v1(k), v2(1), . . . , v2(k), . . . , . . . , vn(1), . . . , vn(k).

Independence Assumption: For every type profile t, the numbers in H(t) are independent.8

Note that in Example 3.3, the types are not independent, since v3(y) + b1 = v3(x) + b2. We will
show:

Theorem 3.5. Under the independence assumption if q is the minimal competitive price vector
then there exist an assignment s such that (q, s) is a competitive equilibrium.

The proof of Theorem 3.5 is given in Subsection 3.3.1. We first develop a useful tool in the next
subsection.

3.3 (Almost) Envy Graphs

In this section we define an almost envy free graph and provide some useful properties. Roughly
speaking in such a graph bidder i “points” to bidder j if i would envy j had the price of sj would
have been smaller by one unit. Formally,

Definition 3.6. Let t = ((v1, b1), . . . , (vn, bn)) be a profile of types. Let q be a minimal competitive
price vector w.r.t t and let s be a valid assignment for q. In a (q, s)-graph or an almost envy
free graph T = (V,E), the set of nodes is the set of bidders N , and there exist a directed edge
(i, j) ∈ E if and only if decreasing the price by one unit the price of sj will cause i to envy j, i.e.
u((vi, bi), si, qsi) < u((vi, bi), sj , qsj − 1). An edge (i, j) ∈ E is colored green if qsj = bi and red
otherwise.

Intuitively, a green edge from i to j captures bidder i’s envy due to his budget limit, and a red
edge (i, j) implies that i has the budget for getting j’s item in his price but is indifferent to such
an outcome, i.e. vi(si)− pi = vi(sj)− pj .

Lemma 3.7. Let q be a minimal competitive price vector and let s be a valid assignment for q.
Let T be the (q, s)-graph and let pi = qsi.

1. If pi > 0 then the indegree of i is at least 1.

2. If pi > 0, then there exist two vertices j, l such that l is a predecessor of i (possibly l = i), j
points to l, and either pj = 0 or the edge (j, l) is green.

3. T contains no cycles.

4. If pi > 0 then pi 6= vi(si).

8Unless specified otherwise we will have this assumption through the entire paper.
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Proof. 1. Let i be such that pi > 0 and suppose the indegree of i is zero. Then the price vector
q̃ in which q̃si = qi − 1 and q̃j = qj for all j 6= i is competitive since s is valid for q̃. This
contradicts the minimality of q.

2. Let i be such that pi > 0 and assume the claim doesn’t hold. This implies that there exists
a cycle of red edges. Let i1, i2, . . . , im, i1 be such cycle. Since for every l = 1, . . . ,m we have
pil − pil+1 = vi(sil)− vi(sil+1

) (l + 1 is taken modulo m) we obtain that

0 = pi1 − pi2 + pi2 − pi3 + · · ·+ pim − pi1 =

vi1(si1)− vi1(si2) + vi2(si2)− vi2(si3) + · · · vim(sim)− vim(si1),

contradicting the independence assumption.

3. We first show that no vertex has in-degree greater than 1. Suppose that i has indegree
strictly greater than 1. Let α 6= β be two predecessors of i. According to part 2, there exists
two paths jα1, jα2, . . . , jαk = α such that either pjα1 = 0 or the edge (pjα1 , pjα2) is green,
and similarly there exists a path jβ1, jβ2, . . . jβr = β such that either pjβ1

= 0 or the edge
(pjβ1

, pjβ2
) is green. We can now express the payment pi by using any one of the two paths

(which contradicts the independence assumption). For example, if pjs1 = 0 then

and if (pjα1 , pjα2) is green then

4. We first show that no node has an indegree larger than 1. Suppose towards a contradiction
that i has indegree i > 0. By part 2 of the lemma there exist two different predecessors paths
i1, i2, . . . , im and j1, j2, . . . , jr where im = jr = i with satisfy the conditions in part 2. We
choose these paths such that all edges are red perhaps but the first one, i.e. if the first is
green then it is close as possible to i. Consider the first path; either (i1, i2) is green or pi1 = 0.
Note that on the first path for every 2 < l < m pil+1 = vil(sil)− vil(sil+1

)− pil and for l = 2
either pi2 = vi1(si1) − vi1(si2) or pi2 = b1. Since the payments of the second path can be
written similarly, this implies that we can express pi in two different ways only with budgets
or values, contradicting the independence assumption.

Since by the first part of the lemma the maximum indegree is one, to complete the proof it is
enough to show that there does not exist a cycle in which all it nodes have exactly outdegree
1. Suppose that there exists such a cycle i1, i2, . . . , im, i1. Let q̃ be the price vector in which
for every j = 1, . . . ,m let q̃sij = qsij −1. and all other prices remain the same. We claim that
q̃ is a competitive price vector contradicting the minimality of q: let s̃ be the assignment for
every bidder j = 1, . . . ,m sij = sij+1 (where j+ 1) is taken modulo m). Note that s̃ is a valid
for q̃.

5. Suppose pi > 0 and assume pi = vi(si). By part 2 there exist a path i1, i2, . . . , im where
im = i where either pi1 = 0, or pi1 = bi1 . Similarly to part 2 we can express pi in a
linear combination of values and/or budgets, except i’s. But since pi also equals vi(si) this
contradicts the independence assumption.

3.3.1 Proof of Theorem 3.5

Let q be a minimal competitive price vector and s a valid assignment for q. We show that (q, s) is
an equilibrium. Suppose there exist an item x ∈ K such that qx > 0 and no bidder gets this item.
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Observe that there exist two different bidders l, j ∈ N such that for each i ∈ {l, j} either qx = bi
or qx = vi(si) − vi(x) − pi. We first show that for each i ∈ {l, j} there is a linear combination of
elements in H(t) that sum up to qj . Fix some arbitrary i ∈ {l, j}. If qj = bi we are done. Suppose
qx = vi(si)− vi(x)− pi. If pi = 0 we are done. If pi > 0 then by part 2 of Lemma 3.7 there exists a
simple path i1, i2, . . . , im where im = i, such that either (i1, i2) is a green edge or pi1 = 0. But this
implies the existence of such a linear combination. It remains to show that for each i the linear
combination is different as this contradicts the independence assumption. This follows since for
each i ∈ {l, j} either qx = bi or −vi(x) appear only in the linear combination we found for i. �

4 Incentive Compatibility

In this section we analyze the incentive properties of the DGS auction. For any stage r let Hr be
the history of demand sets of the bidders up to stage r. A bidding strategy for i is a sequence
τ1
i , τ

2
i , . . . , such that for each r ≥ 1, τ ri : Hr × RK

+ → 2K∪{φ} maps a history in Hr and a vector of
prices to a demand set. Our results do not depend on the histories’ structure. Thus, with a slight
abuse of notation we write τ ri (q) to denote the demand set i submits at round r under the strategy
τi, when the price vector is q.

We say that a strategy τi for i is consistent w.r.t to type (vi, bi) if for every price vector q and
every stage r, τ ri (q) = Di(q, (vi, bi)). A strategy is consistent if there exist a type for which it is
consistent with it.9 Thus every consistent strategy is a myopic strategy w.r.t to the the type it is
consistent with.

4.1 The Direct DGS Auction

Essentially, by limiting all bidders to use consistent strategies, the auction is a direct revelation
mechanism in which each bidder only submit a type and the auctioneer computes the outcome (e.g.
by simulating the whole process). We call this auction the direct DGS auction. Formally, the direct
DGS auction is defined as follows:

• Every bidder i, submits a bid (vi, bi).

• Let t = ((v1, b1), . . . , (vn, bn)). If H(t) do not satisfy the independence assumption the auction
is terminated.

• The auctioneer computes a competitive equilibrium with (s,q) where q is a minimal price
vector, assigns si to bidder i and charges his qsi .

In the next theorem we show that bidding the direct DGS auction is incentive compatible or
truthful, that is for every bidder it is a dominant strategy to report his true type.

Theorem 4.1. The direct DGS auction is truthful.

We will assume w.l.o.g. that all bid profiles discussed in the proof satisfy the independence
assumption. Through out the proof we fix some bidder i and fix the submitted types of all bidders
but i, these are t−i = (tj)j∈N\{i}. For any type ti let µ(ti) = (q(ti), s(ti)) be the competitive
equilibrium when i bids ti, and let pi(ti) = qsi(ti) be his payment.

Lemma 4.2. For any ti, t′i in which si(ti) = si(t′i) (i is assigned the same item), pi(ti) = pi(t′i) (i
pays the same price).

9Consistent strategies can be thought of bidding through a proxy bidder (see e.g. [2]).
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Proof. Fix some type ti = (vi, bi) in which bidder i is assigned an item x ∈ K and let t̂i = (ṽi, b̃i)
be the type obtained by ti by letting ṽi(x) = vi(x), ṽi(y) = 0 for all other items, and b̃i = bi. It is
enough to show that si(t̃i) = si(ti) and pi(ti) = pi(t̃i): Suppose this is true. Let ti and t′i be two
different types in which bidder i obtains the same item x but pi(ti) < pi(t′i). Therefore pi(t̃i) <
pi(t̃′i). But q(t̃i) are competitive prices with respect to (t̃i, t−i) (as s(t̃i) is a valid assignment)
contradicting the minimality of q(t̃′i).

In the following sequence of claims we prove that si(t̃i) = si(ti) and pi(ti) = pi(t̃i).

Claim 4.3. For every item y, qy(t̃i) ≤ qy(ti).

Proof. Since q(ti) are competitive with respect to (t̃i), t−i), and the auction outputs the minimal
competitive prices this follows.

Claim 4.4. si(t̃i) = x, i.e. i is also assigned x when he reports t̃i.

Proof. Assume that this is not the case and let si(t̃i) = y 6= x. Since ṽi(y) = 0 and since by the
previous claim qx(t̃i) ≤ qx(ti) it must be that qx(t̃i) = qx(ti) = vi(x) otherwise this contradicts that
q(t̃i) are competitive. But qx(ti) = vi(x) contradicts part 4 of Lemma 3.7.

For every item x ∈ K with qx > 0 denote by w(x) the winner of item x, and let z(x) be a bidder
such that (z(x), w(x)) is an edge in the µ-graph.

For the next claim we need some definitions. Let A denote the set of items in which their prices
decreased from the case that i bids ti to the case that i bids t̃i. That is

A = {y ∈ K : qy(t̃i) < qy(ti)}.

We also define two functions from K to K ∪ {φ}.
We let δ(y) = z if sj(ti) = y and sj(t̃i) = z. We let γ(y) = z if there exist a pair of bidders j, l

and an item w, such that sj(ti) = w, sj(t̃i) = z sl(ti) = l and (j, l) is an edge in the µ(ti)-graph.

Claim 4.5. If y ∈ A, then δ(y) ∈ A. Moreover, if qy(ti) > 0, and γ(y) 6= x, then γ(y) ∈ A.

Proof. Assume sj(ti) = y and z = δ(y). Since q are competitive with respect to (ti, t−i), j does
not prefer z at qz(ti) to y at qy(ti). But this means that if qy(t̃i) < qy(ti), and qz(t̃i) = qz(ti), then
j would prefer y when i submits ĩ contradicting the competitiveness of q(t̃i).

To prove the second part suppose qy(ti) > 0 and z = γ(y) 6= x. Let j be such that sj(ti) = w
and sj(t̃i) = z, and l be such that sl(ti) = y. If (j, l) is red. Such a configuration exists by part 1
of Lemma 3.7. Thus, j is indifferent between getting w in qw(ti) and y in qy(ti). Therefore if y ∈ A
then j is strictly better off getting y in qy(t̃i) then getting any other item x′ in qx′(ti), implying that
w ∈ A. If (j, l) is green, then obtaining y in qy(t̃i)− 1 or less is strictly better for j than obtaining
any item x′ in qx′(ti), again implying that y ∈ A.

To finish the proof we need to show that pi(ti) = pi(t̃i). Suppose that pi(ti) > pi(t̃i). Hence
x ∈ A. Therefore since there are no cycles in µ(ti)-graph, by the last claim it must be that some
item whose price is zero when i submits ti belongs to A - a contradiction.

By Lemma 4.2 bidder i is given a “menu” of prices, a price for each item which does not depend
on his submitted type. To complete the proof of Theorem 4.1 it remains to show that if i submits
his true type he obtains the item that maximizes his utility in these prices. Formally,

Lemma 4.6. Let ti = (vi, bi) be bidder i’s type and let pi be the prices i is provided, that is qix is
the price i will pay if he is assigned item x. Then si(ti) = maxx∈K∪{φ} u(ti, x, pix).
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Proof. Fix the types t−i of all other bidders but i and assume towards a contradiction that item x
maximizes i’s utility but i prefers item y in the given prices. That is piy < bi and

vi(y)− piy > vi(x)− pix.

Let t′i = (v′i, b
′
i) where b′i = ∞,vi(y) = ∞ and for every item z 6= y vi(z) = 0. by the

competitiveness of q(t′i), i must get item y when the profile of types is (t′i). Moreover since his
payment does not depend on his type qy(t′i) = piy.

By competitiveness of the prices q(ti) it must be that qy(ti) > piy (otherwise i would demand y in
when his type is ti). To finish the proof we show that piy > qy(ti) which is of course a contradiction.

Let A = {z ∈ K |qx(ti) > qx(t′i)}, i.e. A is the set of items which their prices decreased from ti
to t′i. If bidder j got an item z ∈ A, i.e. sj(ti) = z, then sj(t′i) ∈ A otherwise j would demand z
when i bids ti. Similarly, if z ∈ A and (j, i) is en edge in the µ(ti)-graph then sj(t′i) ∈ A.

We showed more than |A| items belong to A which is a contradiction.

4.2 Ex-Post Equilibrium in the (non-direct) DGS Auction

In this section we show that myopic bidding is an ex post equilibrium in the ascending DGS auction.
That is, if all bidders but i use consistent strategies then using the consistent strategy consistent
with ti is a best response for i. In particular this implies that if all bidders but i use consistent
strategies then after every stage bidder i is better off submitting his true demand set. In [1] an
truthful mechanism is given for a special case of unit demand auctions (position auctions) in which
myopic bidding is not an ex post equilibrium.

Theorem 4.7. If all players but i are restricted to be consistent then it is a dominant strategy for
i to be truthful (even allowing him non consistent strategies).

Proof. Fix all bidders strategies but i to be consistent, and suppose i is better off using a non
consistent strategy in which he gets slot s. Raise both i’s value for slot s and his budget to ∞,
and assume he follows the consistent strategy with respect to the altered type. Clearly i will still
get slot s, and his price at most as he paid by using his non consistent strategy, since the auction
outputs a minimal competitive equilibrium. But being truthful is at least as good for i as any other
consistent strategy which completes the proof.

4.3 Independence

So far, the mechanism was stated under the assumption that the valuations and budgets are integers.
We begin by relaxing this assumption (assuming that independence still holds). Let

δ = min
ei,j ,fi

|
∑

ei,jvi(j) +
∑

fibi|

where ei,j , fi ∈ {−1, 0, 1}. The value δ is the smallest non negative number that can be reached
by substraction and addition of valuations and budgets. As we still assume independence, we have
δ 6= 0.

Consider modifying the mechanism by increasing the prices each step by ε (for some ε > 0).
However, even if the players are truthful, different values of ε could lead to different allocations
or prices. Thus, we define the result of the mechanism as the allocation (and pricing) which is is
obtained in the limit ε→ 0.
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We begin by showing that this is well defined. Fix a sequence ε1, ε2, . . . , εk, . . .→ 0. As the set
of outcomes (including pricing) is compact, there exists a partial limit to the outcomes generated
by this sequence. Thus, we only need to show that there is at most one such limit. Indeed, if there
are two limits, they differ either in the allocation or in the price of at least one item. Assume first
that the outcomes differ in price. Taking ε to be this difference multiplied by δ/n, and considering
the perturbed envy graph (where i points to j if i envies j’s price up to ε) shows that the higher
price is not obtained. Given the identical pricing, it is easy to show that the same allocation is
obtained.

After removing the assumption that the valuations and budgets are integers, one can pick εi,j
at random, such that εi,j is a discount player i gets if he buys item j. Under these new incentives
the valuations and budgets are independent with probability 1.

5 Uniqueness

In this section we prove that any incentive compatible unit demand auction which outputs a com-
petitive equilibrium must output the same outcome as the DGS auction. We will need the following
notation. Let M be a truthful auction which for every type t outputs a competitive equilibrium.
We denote by µM (t) the competitive equilibrium which auction M outputs when the profile of
types is t. For the DGS auction this graph is denoted as usual by µ(t). Formally,

Theorem 5.1. Let M be a truthful unit demand auction with no positive transfers. Then µM (t) =
µ(t) for every profile of types t .

Proof. Fix some profile of types t = ((v1, b1), . . . , (vn, bn)) and let qM (t) and q(t) be the competitive
price vectors in M and DGS respectively when the bidders report t. Similarly let sM (t) and s(t)
be the assignments in M and DGS at t. As usual we let pMi (t) and pi(t) i’s payment in M and
DGS respectively at t. By minimality of the competitive prices in DGS we have qM (t) ≥ q(t).

Claim 5.2. The set of players that pay zero is identical in DGS and M , i.e. pMi (t) = 0 if and
only if pi(t) = 0

Proof. Assume otherwise and let i be a bidder who paid zero in DGS, has been assigned an item
x in M and qMx (t) > 0. Since the prices are competitive and qM (t) ≥ q(t) there exists a bidder i′

which obtains item x in DGS and (i, i′) is an edge in the µ(t)-graph. Again by the competitiveness
of the prices it must be that qMx (t) = qx(t) and (i, i′) is red. If i′ doesn’t receive any item in M ,
then by the competitiveness of qM (t) it must be that qMx (t) = vi′(x) contradicting part 4 of Lemma
3.7. Otherwise, i′ received a different item y in M . Following a similar argument we have that
qMy (t) = qy(t) and if bidder i′′ obtained y in DGS, then (i′, i′′) is a red edge in the µM (t)-graph.
As the number of bidders is finite, some bidder j which received an item in DGS will obtain no
item in M - a contradiction.

Let x be an item which maximizes qMx (t)− qx(t), and let i be the bidder that is assigned x in
DGS. We show:

Lemma 5.3. sMi (t) = x, i.e. i is assigned x in M .

Proof. Let d = qMx (t)− qx(t). Assume that i is not assigned x in M . By Claim 5.2, i gets an item
y ∈ K in M . By the competitiveness of qM (t), we have qMy (t) − qy(t) = d, and there is a red
edge (i, i′) in the µ(t)-graph where i′ is the bidder who obtained y in DGS. The proof continues
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similarly as the proof of Claim 5.2 while for each item the price difference for each item between
the auctions remains d.

Consider now the following type profile t̃. For every i′ 6= i, t̃i′ = ti′ , and for bidder i let
ṽi(x) = qMx (t)+qx(t)

2 , ṽi(y) = 0 for every y 6= x and b̃i = bi.

Claim 5.4. sMi (t̃) = x, i.e. i still gets x in M in the type profile t̃.

Proof. Since q(t) is also a competitive price vector with respect to t̃, we have q(t) ≤ q(t̃)DGS .
Therefore it must be that si(t̃) = x. Since DGS is truthful, q̃x(t̃) = qx(t) > 0. Therefore by Claim
5.2 i also gets an item the bidders report t̃ in M and pays a positive price. Since ṽi(y) > 0 only
for y = x we obtain the result.

Claim 5.4 leads to a contradiction; If qMx (t) > qMx (t̃) then i is strictly better off reporting t̃i

when his type is ti. If qMx (t) ≤ qMx (t̃) then since ṽi(x) = qMx (t)+qx(t)
2 < qMx (t), i pays more then he

values x in t̃i.
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