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Abstract. We consider the problem of counting the number of spanning
trees in planar graphs. We prove tight bounds on the complexity of the
problem, both in general and especially in the modular setting. We
exhibit the problem to be complete for Logspace when the modulus is
2k, for constant k. On the other hand, we show that for any other
modulus and in the non-modular case, our problem is as hard in the
planar case as for the case of arbitrary graphs. The techniques used
are algebraic topological that may be useful in many other problems
involving planar or higher genus graphs – such as higher genus graph
recognition in Logspace.
In the spirit of counting problems modulo 2k, we also exhibit a highly
parallel ⊕L algorithm for finding the value of a permanent modulo 2k.
Previously, the best known result in this direction was Valiant’s result
that this problem lies in P. We also show that we can count the number
of perfect matchings modulo 2k in an arbitrary graph in P. This extends
Valiant’s result for the permanent, since the Permanent may be modeled
as counting the number of perfect matchings in bipartite graphs.
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1. Introduction and previous work

Enumeration and counting problems are of paramount importance in both
mathematics and computer science. In addition to being interesting on their
own right, they give us fundamental insights as to the complexity of the deci-
sion problem underlying the counting problem, and at times the sophisticated
methods employed to perform the counting lead to beautiful mathematics.
Modular counting involves counting objects with a certain property modulo
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some number. Modular counting plays a significant role in complexity the-
ory – a few instances are afforded by Toda’s Theorem [Tod91], and also by
Valiant’s result [Val79] stating that if the permanent modulo 3 were tractable,
then the class of unambiguous polynomial time (UP) would collapse to P –
this last being unlikely since it would contradict widely believed cryptographic
assumptions.

The upshot is that most enumeration problems are intractable, although
some examples are known where the counting problem can be resolved in poly-
nomial time. A few instances of the latter case occurring are as follows: count-
ing the number of spanning trees in an arbitrary undirected graph [GR01],
counting the number of perfect matchings in planar undirected graphs [Kas67,
TF61], counting the number of simultaneous source to sink paths in a directed
acyclic graph with n sources and n sinks [GV89]. Valiant in his holographic
algorithms paradigm borrows the result about counting perfect matchings in
planar graphs in a nontrivial way to give instances of several other problems
where the counting version lies in polynomial time.

It has been observed that many of the counting problems which lie in poly-
nomial time reduce to a computation of the determinant of a suitably defined
matrix. Determinant computation effectively captures the complexity of the
parallel class GapL, and it contains the class of nondeterministic logspace, NL
(which in turn contains L). It is also closely related to the class #L, which is
the natural counting class that relates to L in the same way as #P relates to
P.

Let us take this opportunity to describe known results about a close rela-
tive of the determinant, namely, the permanent. The Permanent problem was
shown to be #P-hard by Valiant in his seminal paper [Val79]. Valiant also
showed how the permanent modulo (small) powers of 2 is solvable in P – but
with no further bounds on the parallel complexity of this last problem.

We will consider two (modular) counting problems in this paper, one of
which reduces to a determinant computation in arbitrary graphs, and one that
reduces to a permanent computation.

First, let us give an instance of a situation where a counting problem re-
duces to the computation of the determinant of a suitably defined matrix. The
classical Matrix Tree Theorem [GR01] by Kirchoff (1847) states that the num-
ber of spanning trees in a graph can be found by computing the determinant
of (the minor of) a matrix, namely the Laplacian of the graph. The Laplacian
matrix of a graph is easily derived from the adjacency matrix of a graph, and
appears ubiquitously in expanders, connectivity computations [Rei05], etc. We
can show that computation of the number of spanning trees in a graph has the
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same complexity as that of the determinant. Given this, we may thereby ask as
to whether this complexity reduces for specific graph classes, say for instance,
the class of planar graphs. Does the complexity of modular counting reduce
thereby? Somewhat surprisingly, the answer depends on the modulus.

Secondly, let us consider the problem of counting the number of perfect
matchings in a graph. If the graph is bipartite, it is easy to see that the
permanent of its adjacency matrix exactly captures the (square of the) number
of perfect matchings in the graph, and thus, counting the number of perfect
matchings in a bipartite graph is also #P-hard [Val79]. Valiant proved that
finding the permanent of a matrix modulo small powers of 2 can be done in
P. We extend this result in two respects. First, we show that the permanent
modulo constant powers of two can be computed in ⊕L, thus settling the
complexity of the problem. We then consider the problem of finding the number
of perfect matchings in an arbitrary (not necessarily bipartite) graph modulo
small powers of 2. To the best of our knowledge, there is no obvious way to
model the number of matchings in an arbitrary graph as the permanent of a
suitable matrix. We show that this problem can be solved in P.

In light of the above, this paper considers the following three problems:

◦ computation of the number of spanning trees in planar graphs modulo
2k;

◦ computation of the permanent of an integer matrix modulo 2k;

◦ computation of the number of perfect matchings in arbitrary graphs mod-
ulo 2k.

In the mid-70s, H. Shank [Sha75] formulated the theory of so-called left-
right cycles in planar graphs (this concept will be defined later in the paper).
There is a connection between left-right cycles in planar graphs and the Lapla-
cians of planar graphs (and thereby to modular counting of spanning trees)
that is implicit in [GR01]. To the best of our knowledge, this connection has
not been made explicit before this paper. For instance, Eppstein [Epp96] gives
combinatorial and algebraic characterizations for graphs with an even num-
ber of spanning trees – but the connection to left-right cycles is not observed
therein.

We start by giving our own proof for the basic connection between left-
right cycles and parity of the number of spanning trees in planar graphs in
Section 2, as an illustration of the basic technique we build upon in Section 3.
Henceforth, we make modular counting our principal focus, and having resolved
the complexity of finding out the parity of the number of spanning trees in
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planar graphs in L, we move on to higher powers of 2, and to other prime
moduli. We prove that we can find out the number of spanning trees in planar
graphs modulo 2k (for constant k) in L. On the other hand, we are able to
prove tight lower bounds for the same computation modulo primes other than
2. This is a situation common in computer science, and especially in planar
graphs where duality may make circumstances simpler for modulus 2 compared
to other moduli.

Next, we consider another counting problem in graphs, namely the number
of perfect matchings. We consider the number of perfect matchings in bipartite
graphs, which can be modeled as the permanent of a suitable matrix. This
enables us to consider just the permanent of matrices. While Valiant [Val79]
gives a polynomial time algorithm for computing the permanent modulo 2k, for
a constant k, his method is akin to Gaussian Elimination and does not have an
obvious parallelization. In this paper, we exhibit the complexity of computing
the permanent modulo 2k in a highly parallel class, namely ⊕L. In fact, ⊕L-
hardness of the permanent modulo 2k proves our algorithm to be optimal. We
also use the techniques for the above to prove that the number of matchings in
arbitrary graphs modulo 2k (for constant k) can be found in polynomial time.

It should be mentioned that the Permanent problem enjoys a special sta-
tus with regard to its easiness modulo 2k. Let #SAT denote the problem of
counting the number of satisfying assignments of a formula. It is known that
#SAT mod 2 is ⊕P-hard; note that ⊕P is a relatively large class – the whole
of the polynomial hierarchy (PH) randomly reduces to ⊕P [Tod91]!

Main results and technical contributions. We start by giving the basic
definitions and presenting our basic techniques for modular counting of span-
ning trees in planar graphs in Section 2. In Section 3, we expand on these
techniques using tools from algebraic topology to prove our main result that
counting spanning trees in planar graphs modulo 2k (for constant k) can be
done in L.

Theorem 3.12 Given an integer k and a planar graph G, the number of
spanning trees τ(G) mod 2k can be computed in space O(k2 log n).

After this, we look at other moduli and prove tight hardness results for
prime moduli p > 2 in Section 4.

Theorem 4.1 For prime p > 2, finding out whether τ(G) ≡ 0 mod p for a
planar graph G is complete for ModpL.

Denote the number of spanning trees in a graph by τ . The main results
about the complexity of computing τ are summarized in the table below.
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Problem General G Planar G

τ(G) DET DET
τ(G) modulo
prime p > 2 ModpL ModpL
τ(G) modulo

2k ⊕L L

In Section 5, we consider another counting problem modulo 2k, we prove
that

Theorem 5.1 Finding out the permanent of a matrix modulo 2k (for constant
k) is complete for ⊕L.

Another way of stating the above is that we can find the last k bits of the
permanent of a matrix (for constant k) in ⊕L.

The same techniques also prove the following:

Theorem 6.7 Finding out the number of perfect matchings in a graph G
modulo 2k (for constant k) can be done in P.

We end with some conclusions and open problems in Section 7.
Given that counting the number of spanning trees in a planar graph modulo

2 is in L, it is perhaps natural to conjecture the same modulo 2k – for instance,
it is known that computing the determinant of a matrix modulo 2k is no harder
than computing it modulo 2 [BDHM91]. The question of modular counting of
the spanning trees in planar graphs appears to be of surprising difficulty – and
seems to require the use of algebraic topological techniques. An interesting
feature is that to compute the number of spanning trees in a planar graph
modulo 2k, one has to take recourse, in the current proof, to higher genus
realms! The proof uses a variety of techniques from algebraic topology, such as
universal covers and homology groups. We believe techniques developed here
may be applicable to a variety of other problems on small genus graphs, and
maybe even – as in this case – on planar graphs.

We also show how another modular counting problem, namely the number
of matchings in arbitrary bipartite graphs modulo 2k (which is essentially the
permanent of a suitable matrix modulo 2k) is complete for ⊕L, using LUP -
decompositions. While the proof outlined in [BDHM91] for a similar question
about the determinant seems to involve some ad hoc techniques, our proof for
permanent modulo 2k gives a more uniform approach to such problems – in
particular we get a new, arguably more transparent proof for the result that
determinants of matrices modulo 2k are computable in ⊕L.
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2. Definitions and basic techniques

For definitions of logspace and related complexity classes, we refer the reader
to [BDHM91].

In the following, we will use linear algebra over finite fields, mostly Zp for
prime p. For definitions of rank, kernel, dimension, we refer the reader to any
linear algebra text; see [HK71]. For definitions of planar graphs and their duals,
spanning trees, refer to any standard graph theory text see [GR01, Die05].

Given a continuous closed curve C in the plane, and a point P not lying on
C, we can define a winding number of C with respect to P : it is informally the
number of times the curve C winds around the point P . This number is called
the winding number of C with respect to P . For a formal definition, refer to
any text in algebraic topology, say [Ful95, Hat02].

We denote the (geometric) dual of a planar graph G by G∗. We denote
the number of spanning trees in a graph G by τ(G). The adjacency matrix of
the graph will be denoted by A(G), and the Laplacian matrix of a graph G
(denoted by L(G)) is defined as the matrix L(G) = D(G)−A(G), where D(G)
is a diagonal matrix consisting of the degree of vertex vi of the graph G in its
iith entry. In this paper we will be dealing mostly with connected graphs G.

For instance, the Laplacian matrix of the complete graph on three vertices,
K3 is 


2 −1 −1
−1 2 −1
−1 −1 2




NOTE : We will allow multiple edges in the graphs we consider in this
paper, so for instance, the Laplacian matrix may have off-diagonal entries that
are not 0 or −1.

The Laplacian of a graph has several other remarkable properties, for in-
stance the Kirchoff’s Matrix Tree Theorem:

Theorem 2.1. Given the Laplacian matrix L(G) of a graph G, the number
of spanning trees τ(G) in G equals the determinant of any minor of L(G).

We now proceed with the definition of left-right cycles [GR01].

Definition 2.2. Let us consider a special kind of walk in a planar graph G.
View each vertex of G as a small disk, and each edge as a thin strip. Since
each edge is a thin strip, it has two distinct sides and we can visualize traveling
along the side of an edge. Select a starting point on the graph where the side
of a strip meets the boundary of a disk. Let us form triples (v, e, s) where v is
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Figure 2.1: A left-right cycle and consistent colorings

a vertex, e is an edge, and s is a side of the edge. We call such a (v, e, s) triple
a flag. From there, walk along the side of the edge crossing to the opposite
side of the edge when you reach the point on the edge halfway between its
endpoints. On reaching the neighboring vertex, walk around the boundary of
the disk representing the vertex, leaving the vertex along the side of the edge
lying in the same face as the side of the edge you have just arrived on. Extend
the walk by using the same rules of negotiating edges and vertices. A left-right
walk is the alternating sequence of vertices and edges encountered during such
a walk, together with the starting flag.

A closed left-right walk is a left-right walk that starts and ends at the
same flag. A left-right cycle is an equivalence class of closed left-right walks
under rotation and reversal. Thus, in a left-right cycle, the cyclic order of
the vertices and edges is important and which sides of the edges are used is
important, but the direction and the starting vertex are not.

Let c(G) denote the number of left-right cycles in a graph G.

See Figure 2.1(a) for an illustration. One fact worth noting is that the
underlying sequence of the vertices and edges in a left-right walk is a walk in
the usual sense, but distinct left-right walks may have the same underlying
walk if they start at flags on opposite sides of the same edge. Also, it can be
seen that the number of left-right cycles is independent of the embedding of
the planar graph G. Having defined left-right cycles for planar graphs, we see
that we can extend the definition to any graph embedded on a surface.

Throughout this paper, when we consider equations such as Lx = 0 over
Z2, for L being the Laplacian of a graph G, we will view a solution vector x as
a 0-1 weighting or labeling of the vertices of G.

From Theorem 17.3.5 and Lemma 14.15.3 of [GR01], it follows that:
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Theorem 2.3. Given a planar graph G, the number of left-right cycles in G
is exactly equal to the co-rank of the Laplacian L of G (over Z2). In fact,
each left-right cycle C corresponds to an element in {0, 1}|V (G)| which is a basis
element of the kernel of the Laplacian as follows:

◦ Considering a specific left-right cycle C, we have to give labels to every
vertex v of G: Given C as a closed curve in the plane, which winds around
the vertices of G, find the winding number of C with respect to a vertex
v. The parity of this winding number is the label we give to vertex v.

By the above, we thereby get a vector x ∈ {0, 1}|V (G)|, and this is a basis
element of the kernel of L.

Defining a vector of labels x thus, corresponding to a left-right cycle C, we
say that C realizes x. Given a vector x, and a collection of left-right cycles
C = C1, C2, · · · , Cr, we say that C realizes x if there exist x1, x2, · · · , xr such
that x = Σr

1xi and Ci realizes xi.
We give our own proof of the above theorem, that we extend in Section 3

to obtain new results. The proof will follow from two claims.

Claim 2.4. For every left-right cycle, C, the labeling given to the vertices v
of G via the winding numbers as in the statement of the theorem is a solution
to Lx = 0 over Z2 (where L is the Laplacian matrix of G). Hence it follows
that every collection of left-right cycles C gives a solution to Lx = 0.

Proof. Denote the set of vertices that get label 1 via the winding numbers
by A and the set of vertices that get label 0 by B. We need to show that for
every v ∈ A, the number of neighbors w of v that belong to B is even; also
that for every v ∈ B, the number of neighbors w of v that belong to A is even
– this being a restatement of Lx = 0 mod 2.

Consider the vertex v and let the edges incident on v be e1, e2, · · · , ed where
d is the degree of v in G. Let these edges also be ordered according to the
planar layout of G in the neighborhood of v. Now consider the left-right cycle
C, and we observe that any time the curve C crosses an edge ei only once,
the two endpoints of the edge ei (one of them being v) get different winding
numbers (mod2) and since v belongs to A (by assumption) the other endpoint
belongs to B. So we are left to argue that the number of edges ei which C
crosses only once is even.

This last is now obvious once we note that whenever the curve C approaches
v via some edge ei it has to leave via some other edge ej (j may equal i). Hence,
the total number of (ei, C) incidences is even. These incidences can be counted
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differently as the number of edges ei which are crossed singly by C and twice
the number of edges ej which are crossed twice by C (no edge is crossed more
than twice by any left-right cycle). So the number of interest, the number of
edges ei that are crossed singly by C is even. ¤

The other direction of the proof reads

Claim 2.5. For every solution x of Lx = 0, there is a collection of left-right
cycles C that realizes it.

Proof. Given that x is a solution to Lx = 0, we know that for each vertex
v in G which get label 1, the number of neighbors of v which get label 0 is
even; likewise, for every vertex v which gets label 0, the number of neighbors
of v which get label 1 is even. Let us define x(v) to be the label that vertex v
receives under the labeling x.

Given an edge e of the graph G endowed with the labeling x, we call e
monochromatic under labeling x if the two endpoints of e receive the same
value under the labeling x, otherwise call e bichromatic.

Also if two vertices get labels 0 and 1 in a labeling x, we will refer to them
as having opposite labels.

Let us take some embedding of the graph G on the plane, and draw all the
left-right cycles. Each edge of G is crossed twice by this collection (maybe even
by one left-right cycle).

The left-right cycles decompose the plane into regions. Each vertex of G
belongs to some region; some regions do not contain any vertices and are en-
closed entirely in some face of G. We call the regions that contain vertices
vertex regions and the other regions face regions. There are as many vertex
regions as there are vertices, and as many face regions as there are faces. We
color the vertex region of a vertex v in black if x(v) = 1 and in white otherwise.
We color the infinite (face) region white. We color two adjacent faces the same
color if any of the edges that separate them is monochromatic, and different
colors if any of these edges is bichromatic. If this coloring procedure is possible
without any inconsistencies, we would consider each segment and consider the
XOR of the colors of the two regions adjacent to it (one vertex region and one
face region). We would include such a segment in the collection of left-right
cycles that we are trying to construct from x, only if the XOR is 1. For brevity,
we call this collection of segments S.

We have to prove two things:

1. The coloring in the procedure does not lead to any inconsistencies.
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2. Given a consistent coloring, we can extract out a collection of left-right
cycles by the latter part of the procedure. In other words, S forms a
disjoint collection of left-right cycles. Furthermore, the vertices v for
which the winding number of S around v is odd, are exactly the ones for
which x(v) = 1.

A consistent coloring is illustrated in Figure 2.1(c).
First, we prove the second item: what we need to prove is that if a segment

s1 of a left-right cycle C is included in S, then the segment s2 on C following
s1 is also in S. This would ensure that the whole of C is in S. This is easily
done by considering cases. We only consider the case of a bichromatic edge;
the monochromatic case is similar. Suppose edge e = (a, b) is such that a gets
label 1, b gets label 0. Then by the procedure, the vertex regions corresponding
to a and b get colors black and white respectively. Suppose that, s1 and s2 are
segments of some left-right cycle which crosses e as in Figure 2.1(b). Then
clearly the face region bordering s1 has to be colored white (or else s1 would
not belong to S). But then the procedure outlined above implies that the face
region bordering s2 has to be colored black, so that s2 also belongs to S. It
is not hard to see that by the construction x(v) = 1 iff S has an odd winding
number around v: S will cross a monochromatic edge either 0 or 2 times, and
any other edge exactly once.

Now we prove the first item. If we are unable to color the face regions
consistently, it implies that there is a simple closed walk γ along which the
inconsistency occurs. In other words, γ crosses an odd number of bichromatic
edges, and thus the color of the face is supposed to change an odd number of
times along the closed curve γ.

Suppose such a γ existed. Let I be the set of vertices which are inside the re-
gion enclosed by γ. Consider the bichromatic edges that are crossed by γ. This
number is supposed to be odd. But the number of such bichromatic edges ( mod
2) can also be summed up as: Σv∈I#{vertices of opposite labels neighboring v}
and this is 0 mod 2 since we assumed that x is a solution to Lx = 0 and thus
every v has an even number of neighbors of opposite color. This implies that
a contradiction cannot occur. ¤

This completes the proof of Theorem 2.3. As a corollary, Theorem 2.3
yields:

Corollary 2.6. [GR01] Given a planar graph G, the number of spanning
trees is odd iff there is exactly one left-right cycle in G.

We also record the following:
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Corollary 2.7. Given a planar graph G, if matrix B is a minor of the Lapla-
cian L(G) of G, then the co-rank of B is exactly equal to the number of left-right
cycles in G minus 1.

3. Computing the number of spanning trees modulo 2k

In this section we generalize the construction to compute for a given planar
graph G, the value of τ(G) modulo 2k for a constant k in L. We first show
how to determine whether τ(G) is divisible by 2k. The strategy is to reduce
the problem to the problem of computing the parity of τ(G′) for a graph G′

embedded into a constant genus surface.

3.1. Background: surfaces and homology groups. We make use of some
basic facts about genus g surfaces S and their first homology group modulo 2,
H1(S)2. A comprehensive study of the surfaces and their properties can be
found in any introductory topology text, such as [Ful95, Mun99, Hat02]. We
concentrate on genus g orientable surfaces. For any g, such a surface Sg is just
a sphere with g “handles”. In particular, the sphere is a genus 0 surface and
the torus is a genus 1 surface.

One way to view a genus g surface is by looking at it as a polygon with
4g edges that are glued to each other in a certain way. This gluing is usually
defined by putting letters on the edges so that each letter appears twice. The
surface is obtained by gluing the corresponding letters with an appropriate
direction. The converse is also partially true: if we take a polygon and glue its
edges in pairs in any fashion, there are very few possible outcomes.

Theorem 3.1. (Theorem 77.5 in [Mun99]) Let X be the quotient space ob-
tained from a polygonal region in the plane by pasting its edges together in
pairs. Then X is homeomorphic either to the sphere S2, to the n-fold torus Tn,
or to the m-fold projective plane Pm for suitably chosen m and n.

It can be seen that if the edges that are pasted to each other are always
facing in opposite directions on the polygon then the surface is orientable, and
the resulting surface cannot be a projective plane, and will have to be a genus
g orientable surface. We will use this fact later in the section. For our purpose,
one can present a genus g surface Sg as a gluing of finitely many triangles. A
closed curve γ on Sg is just a closed polygon on the surface, or a collection
of several such polygons. Since our analysis is carried modulo 2, we are not
concerned with the direction of the curves in γ, because a “positive direction”
(+1) is the same as the “opposite direction” (−1).
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For a genus g surface Sg, its homology group H1(S)2 is isomorphic to Z2g
2 .

Informally, for any curve, or collection of curves γ in Sg there is a corresponding
element h(γ) = (x1, x2, . . . , x2g) ∈ H1(S)2

∼= Z2g
2 . The xi’s can be thought of

as the mod 2 “winding” numbers of γ around the 2g essentially different non-
contractible curves β1, . . . , β2g in Sg. We say that a curve γ is simple if the set
of points covered by γ more than once is discrete. We will use the following
properties of the homology group:

Figure 3.1: Examples of genus 1 and genus 2 tori (left) and of the universal
cover of the torus (right)

Theorem 3.2. (i) For two collections of curves γ1 and γ2, if γ = γ1 ∪ γ2

then h(γ) = h(γ1) + h(γ2);

(ii) for a simple γ, h(γ) = 0 if and only if there is a subregion A of S such
that γ is the boundary of A, that is, the points covered by γ are exactly
∂A.

Theorem 3.2 provides us with an algorithmic tool for checking whether a
given collection of simple curves γ has homology 0. This is done by checking
whether the graph of faces which are obtained by the subdivision of γ on Sg

is 2-colorable in black and white. In such a coloring, the black faces exactly
correspond to the set A from Theorem 3.2.

3.2. The surface Sg and its universal cover. As mentioned earlier, one
standard description of the surface Sg is by a 4g-gon with gluing performed on
its edges in the following order a1b1a

−1
1 b−1

1 a2b2a
−1
2 b−1

2 . . . agbga
−1
g b−1

g . That is,
the first edge is glued with the reverse third edge, the second edge is glued with
the reverse fourth edge etc. Presentations of S1 (the torus) and S2 can be seen
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on Fig. 3.1. Note that the edges a1, b1, . . . , ag, bg correspond to 2g curves on
the surface. These curves are called the generators of Sg. If these curves are
removed, we get the original 4g-gon.

For any surface Sg there is a map p : R2 → Sg called the universal cover
of Sg. Every point x in Sg has infinitely many preimages x̃ under p. These
preimages are called lifts. For any such x̃, p is a local homeomorphism be-
tween a neighborhood of x̃ and a neighborhood of x. Furthermore, for any two
preimages x̃1 and x̃2 of x, there is a unique deck transformation t such that
t(x̃1) = x̃2 and p ◦ t = p. The universal cover of Sg can be viewed as an infinite
lamination of R2 with 4g-gons such that every two neighbors share exactly one
of the edges. This is illustrated on Fig. 3.1 (right).

Finally, we define the following operation that turns a genus g surface into
a genus 2g − 1 surface.

Definition 3.3. For a genus g surface T , and for a function

f : {a1, b1, . . . , ag, bg} → {0, 1},

the doubling of T by f , T#fT , or T f in short, is defined as follows. If f ≡ 0
then T f := T . Otherwise, consider the first generator on which f is not 0.
Without loss of generality suppose that f(ai) = 1 for some i. Consider two
copies of the 4g-gon of T . Denote them by T1 and T2. We glue ai in T1 to a−1

i

in T2, thus obtaining a 8g − 2-gon T ′. We then proceed by gluing the rest of
the edges of T ′ as follows. For an edge xj in T1, if f(xj) = 0, then xj is glued
to x−1

j in T1. If f(xj) = 1, then it is glued to x−1
j in T2. The gluing is done

similarly for xj in T2.

It is not hard to see that T f is well defined. By Theorem 3.1, Tf is a surface,
and since it is orientable (we always glue opposite facing edges), Tf must be a
genus k surface for some k. We can use Euler’s Characteristic to compute k.
We know that

2− 2k = χ(T f ) = F − E + V = 2− 4g + 2 = 4− 4g.

Thus k = 2g − 1. A sample construction of T f is illustrated on Fig. 3.2.

3.3. Solving linear equations on a surface. We are now ready to prove
the main technical lemma of the section.

Lemma 3.4. For any g and k and a graph G embedded in a genus g surface
T ∼= Sg, there is a machine that uses O(log n+g+k log(k+g)) space and either
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Figure 3.2: An example of T f where g = 2; the resulting surface is isomorphic
to S3

(i) finds vectors v1, . . . , vj spanning ker L(G), with j ≤ k; or

(ii) outputs “dim ker L(G) > k”.

The remainder of the current subsection is dedicated to proving Lemma 3.4.
First, we give an algorithm and then prove that it works.

Let X = {x1, x2, . . . , x2g} be generator curves on T . For each of the 22g

functions f : X → {0, 1} we consider the surface T f . If f 6= 0, then there is
a natural 2n-vertex graph Gf in T f obtained by taking the union of the two
copies of G such that the edges are connected according to the new gluing in
T f . The algorithm proceeds as follows:

1. For all possible f : X → {0, 1}, compute all the left-right walks in Gf

embedded into T f ;

2. let A(f) be the collection of the left-right walks in Gf ;

3. if |A(f)| > 4g + 2k, return “dim ker L(G) > k”;

4. otherwise, try all the possible 2|A(f)| combinations of curves in A(f);

5. for each combination a of elements in A(f) check whether there is a 2-
coloring of the vertices of Gf such that vertices separated by a curve are
colored in different colors; denote the set of vertices colored 1 by ba; ba

can naturally be viewed as a vector in {0, 1}V (Gf );

6. let B(f) be the collection of all such vectors; note that |B(f)| ≤ 2|A(f)|;
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7. if f = 0, let C(f) = B(f), otherwise there is a natural way to view
vectors in B(f) as vectors in {0, 1}V (G)+V (G), as V (Gf ) consists of two
copies of V (G); let

C(f) = {v : (v, v) ∈ B(f)};

8.
⋃

f C(f) spans ker L(G), a basis v1, . . . , vj can be found in space O(log n+
k log(k + g) + g) using Gaussian elimination.

All steps except step 8 take O(log n + k + g) space, because there are 22g

possible f ’s and we exit if |A(f)| > 4g+2k. It remains to see that the algorithm
is correct.

Claim 3.5. If for some f , |A(f)| > 4g + 2k, then dim ker L(G) > k.

Proof. We first deal with the case when f 6= 0. Suppose there are a =
|A(f)| > 4g + 2k left-right curves of Gf in T f . Denote the curves by γ1,
γ2, . . . , γa. Each of the curves corresponds to an element of the homology
group H1(T

f )2
∼= Z4g−2

2 . For a collection of curves β1, . . . , βd we denote by
span{β1, . . . , βd} the set of all 2d possible sums from the set {β1, . . . , βd}. For
some ` ≤ 4g−2 there is a collection of ` γ’s such that the subgroup of H1(T

f )2

they span is equal to the subgroup of H1(T
f )2 all the γ’s span. Without loss

of generality we say that those are γ1, . . . , γ`.
Any element in the span of B = {γ`+1, . . . , γa} corresponds to an element

of H1(T
f )2 that is also spanned by some elements of {γ1, . . . , γ`}. Thus any

element γ in the span of B can be completed to an element γ′ in the span of
A(f) that corresponds to 0 in H1(T

f )2. Note that |B| = a− ` > 2k + 2. Each
such γ′ introduces a subdivision of the surface T f and also of the graph Gf .
Such a subdivision corresponds to an element of ker L(Gf ). It may be the zero
element only if no curves are present. Thus there are at least 2a−` different
elements in ker L(Gf ), and dim ker L(Gf ) ≥ a− ` > 2k + 2.

Observe that if (s1, s2) ∈ ker L(Gf ) then s1 + s2 is in ker L(G). Also if
(s, s) ∈ ker L(Gf ), then s ∈ ker L(G). Consider the operator M : ker L(Gf ) →
{0, 1}V (G), (s1, s2) 7→ s1+s2. Then Im(M) ⊆ ker L(G), and thus dim Im(M) ≤
dim ker L(G). On the other hand, ker M consists of elements of the form (s, s) ∈
ker L(Gf ), and hence dim ker(M) ≤ dim ker L(G). Together, we obtain

dim ker L(G) ≥ 1

2
(dim Im(M) + dim ker(M)) =

1

2
· dim ker L(Gf ) > k + 1.
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Figure 3.3: An example of T and a solution of L(G)x = 0 (a), the corresponding
coloring of face regions in the covering of T (b), and the resulting left-right cycle
that divides T f into two regions producing the solution (x, x) (c)

The case when f = 0 is more straightforward, as there any combination
of curves that corresponds to 0 in H1(T )2 gives rise to a different element of
ker L(G). ¤

It is not hard to see that every element in any C(f), and thus all the
elements the algorithm outputs are in ker L(G). It is trickier to see that any
element of ker L(G) can be obtained this way.

Claim 3.6. For any x ∈ ker L(G) there is an f such that x ∈ C(f), and thus
x is obtained by the algorithm.



Space-efficient counting in graphs on surfaces 17

Proof. The main idea is that an element x of ker L(G) gives rise to an

element of the kernel on the infinite graph which is the lift L̃(G) of L(G) to the
universal cover of T . The lift and the solution is illustrated on Fig. 3.3(a,b).

Note that the lift L̃(G) is embedded into the simply-connected plane R2, and
the analysis from the proof of Claim 2.5 holds here.

In particular, we can start with the vertex regions colored in w if x is 0
on the vertex and b otherwise, and then color the face regions consistently as
in the proof of Claim 2.5, so that when we take XOR of the “b” regions we
obtain a valid left-right walk. Note that once we decide on the color of one face,
the colors of all other faces follow. Denote the resulting collection of left-right
walks by W .

We now consider T as a 4g-gon P with its edges glued. The covering plane
is laminated with pre-images of P such that every two adjacent pre-images
share the pre-image of one of the edges of P . Every copy of P contains one
copy of the graph G and a part of the collection W . Every pre-image P̃ of P
is colored in b and w in a certain way. Note that the color of one face region

of L̃(G) within P̃ dictates the coloring of the entire plane. In particular, there
are only two distinct ways in which the pre-images of P may be colored. There
are two cases.

Case 1: All the pre-images have the same color scheme. This means that
W ∩ P̃ is the same for all pre-images P̃ , and hence W projects to a collection
of left-right walks on L(G) embedded in T . Hence x ∈ C(f) for f = 0.

Case 2: There are two different color schemes, we call them A and B. In
this case the color schemes A and B for the face regions must be exact negations
of each other, because if A and B disagree in the color of one face region, they
will be forced to disagree in the color of all face regions. Furthermore, if a is one
of the edges of P , then two preimages P̃1 and P̃2 of P that share a preimage of
a must either always have the same color scheme or the opposite color scheme.
This is because any two copies of a may be copied to each other through a deck
transformation on the covering space, and a deck transformation can either
keep all the coloring schemes, or flip all of them.

We take two copies of polygon P , PA and PB and we glue them as follows.
Let the edges of PA be labeled with {aA

1 , bA
1 , . . . , aA

g , bA
g } and the edges of PB

with {aB
1 , bB

1 , . . . , aB
g , bB

g }. Each label appears exactly twice. We glue an edge
aA

i (or bA
i ) to the other edge with the same label in PA if copies of P sharing

aA
i have the same color scheme. In this case we define f(ai) := 0. Otherwise

we glue aA
i with the corresponding edge in PB and define f(ai) := 1. It is not

hard to see that by definition the resulting surface is T f . By the construction,
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the curves W project to a collection of left-right walks in T f giving rise to the
projected solution (x, x). This implies that x ∈ C(f), and completes the proof.

The last stages of the proof are illustrated on Fig. 3.3. When the solution
is lifted into the universal cover, we see that there are two possible colorings
of each fundamental domain, labeled A and B. When we cross a we alternate
between A and B, when we cross b, we do not. Thus f(a) = 1 and f(b) = 0.
On Fig. 3.3(c) we see the solution on the surface T f with the left-right curve
that yields the solution (x, x). As before, the left-right cycle is obtained by
XORing the color of the face with the color of the vertex. ¤

3.4. Solving divisibility by 2k. We can now apply the result from Section
3.3 to solve divisibility of τ(G) modulo 2k for a planar G, as well as some other
related algebraic problems. In the case of divisibility by 2, the fact that we can
compute the basis for the kernel of the Laplacian matrix L(G) was sufficient.
Here we will need more.

Lemma 3.7. For any k, let A be the adjacency matrix of an Eulerian planar
graph G (that is, a graph for which A = L(G) mod 2), and let A′ be the matrix
obtained from A by removing k rows. Then there is a Turing Machine that
uses space O(log n + k log k) and either

(i) finds a basis v1, v2, . . . , vs for ker A′ with s ≤ 2k; or

(ii) outputs “dim ker A′ > 2k”.

v
1

v2 .......... v
k

V1 V2

V
k..........

G’

G’

G’

G’

Figure 3.4: The graph G̃ in the proof of Lemma 3.7 and its embedding into a
genus k surface
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Proof. Suppose that A′ is obtained from A by removing rows corresponding
to vertices v1, v2, . . . , vk. Let G′ be the graph G with the vertices v1, . . . , vk

removed. Consider the graph G̃ on 2n − k vertices depicted on Fig. 3.4. It is
obtained from two copies of G′ with one copy of the vertices v1, . . . , vk attached
to both copies of G′ as in G. Denote its adjacency matrix by Ã. Then

Ã =




|
A′ | 0

|
∗ ∗ | ∗ | }k rows

|
0 | A′

|




.

The first n and the last n entries of any element of ker Ã form a vector in ker A′,
hence dim ker Ã ≤ 2 · dim ker A′. On the other hand, for every w ∈ ker A′ there
is a corresponding vector in ker Ã. It is obtained by assigning the vertices in the
two copies of G′ and the vertices v1, . . . , vk in G̃ according to their corresponding
values in w. Hence the projection of ker Ã on the first n entries contains ker A′

as a subspace.
Next, we observe that G̃ can be easily embedded into a genus k surface.

This is done by putting two identical copies of G′ on two parallel planes, and
for each face of G′ that contains a vi (or several vi’s) attaching a “tube” between
the faces in the two copies and putting vi in the middle between the two planes.
This is illustrated on Fig 3.4.

By Lemma 3.4 in space O(log n+k log k) we can either find a basis of ker Ã

or decide that dim ker Ã > 4k, in which case dim ker A′ > 2k. From a basis
for ker Ã with at most 4k elements we can compute a basis for ker A′ in space
O(log n + k). ¤

The following lemma generalizes Lemma 3.7.

Lemma 3.8. For any k, let A be the adjacency matrix of an Eulerian planar
graph G. Let A′ be obtained from A by

(i) removing a set S of rows, with |S| ≤ k;

(ii) removing a set T of columns, with |T | ≤ k;

(iii) adding a set B of columns, |B| ≤ k.



20 Braverman, Kulkarni & Roy

Then there is a Turing Machine that uses space O(log n+k log k) in case |B| = 0
and O(k log n) otherwise, and either

(i) outputs the basis for ker A′; or

(ii) outputs “dim ker A′ > 2k”.

Proof. We first prove the lemma under the assumption |B| = 0, and then
show how to use this special case to solve the general case where |B| ≤ k.

The case |B| = 0. Let Ã be the matrix A with the set S of rows removed.
Without loss of generality assume that the first |T | columns of A are removed.

For v ∈ ker A′ the vector (0, . . . , 0︸ ︷︷ ︸
|T |

, v) is in ker Ã. Hence ker Ã contains a copy

of ker A′ as a subspace.
On the other hand, if a = dim ker Ã, then ker Ã has a subspace K1 of

dimension ≥ a− |T | that has |T | zeros in the beginning of each vector. Hence

dim ker A′ ≥ a − k, and if dim ker Ã > 3k, then we may output “dim ker A′ >
2k”.

Apply Lemma 3.7 on the matrix Ã with 2k instead of k. If dim ker Ã > 4k,
then we know that dim ker A′ > 2k. Otherwise, we obtain 4k vectors that
span ker Ã. From these vectors we can compute a basis for ker A′ in space
O(log n + k). This completes the case when |B| = 0. As a special case, what
we have proved so far allows us to compute the determinant of any minor
(n− k)× (n− k) or bigger of A modulo 2 in space O(log n + k log k).

The general case. Denote b = |B|. Without loss of generality, assume
that the columns in B are the first b columns in A′. Denote the matrix A′

without the columns B added by A′′. By the previous case we can compute
ker A′′. Note that if v ∈ ker A′′, then (0, . . . , 0︸ ︷︷ ︸

b

, v) is in ker A′. In particular,

dim ker A′′ ≤ dim ker A′. We now need to find those elements of ker A′ that are
not all-0 in the first b positions. For every z ∈ {0, 1}b we will check whether
there is an element of the form (z, v) in ker A′, and find one if it exists. Since
there are just 2b ≤ 2k possible z’s to check, this would allow us to compute a
basis for ker A in O(log n + k) extra space.

For a fixed z we want a linear combination of the columns of A′′ that adds up
to b′ =

∑b
i=1 bizi. In other words, we are trying to solve the equation A′′x = b′.

Using brute force, in space O(k log n) we can find a square minor M in A′′ such
that DET(M) = 1 and rank M = rank A′′ (we know that co-rank A′′ ≤ 2k).
For simplicity assume that M occupies the first n− ` rows and columns of A′′.
Then the first n− ` columns span the column space of A′′, and it is enough to
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try to find a linear combination of these columns that yields b′. In particular,
we obtain the linear equation Mx[1..n−`] = b′[1..n−`]. This last equation can be
solved using Cramer’s Rule to obtain the unique possible first n − ` entries
of x. We can do this because by the special case of b = 0 we can compute
determinants of minors of A′′, and thus of M . Finally, a simple check would
determine whether the vector x = (x[1..n−`], 0, . . . , 0︸ ︷︷ ︸

`

) satisfies A′′x = b′. ¤

Finally, we are ready to prove the main theorem of the section.

Theorem 3.9. Given a planar graph G and a number k, in space O(k2 log n)
we can output either

(i) An ` ≤ k such that 2` is the highest power of 2 dividing τ(G); or

(ii) “ 2k+1|τ(G)” (the power is too big to determine).

Proof. Let A = L(G), and let A0 be its minor. We know that τ(G) =
DET(A0), hence we need to evaluate the biggest power of 2 that divides
DET(A0). We do this by iteratively applying Lemma 3.8 at most k times,
thus obtaining an algorithm that runs in space O(k2 log n).

On the i-th iteration we have a matrix Ai that differs from A0 in at most i
rows such that the highest power of 2 dividing DET(Ai) is equal to the highest
power of 2 dividing DET(A0) minus i. Thus we will need at most k iterations
before concluding that 2k+1 divides DET(A0).

On iteration i we apply Lemma 3.8 to AT
i thus obtaining a linear combina-

tion of rows of Ai that adds up to a row that only has even entries. Suppose
that the rows that yield this sum have indexes i1, i2, . . . , im. Denote the rows
of Ai by v1, v2, . . . , vn−1. Let A′

i be obtained from Ai by replacing vi1 with
vi1 + vi2 + . . . + vim , then DET(A′

i) = DET(Ai), and the i1-th row of A′
i has

all-even entries. Let Ai+1 be obtained from A′
i by dividing the i1-th row by 2.

Then Ai+1 differs from A0 in at most i+1 rows, and DET(Ai+1) = 1
2
·DET(Ai).

This process continues until we either reach Ak+1 and return “2k+1|τ(G)”,
or until we reach A` such that ker A` = {0}, so that DET(A`) is odd, and we
can return 2` as the highest power of 2 dividing DET(A0) = τ(G). ¤

We note that the results in this section hold in a slightly more general
setting where G is a constant-genus rather than a planar graph. The key to
this claim is an analogue of Lemma 3.7.
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Lemma 3.10. For any k, let A be the adjacency matrix of an Eulerian graph
G that is given with its embedding into a genus c ≤ k surface, and let A′ be the
matrix obtained from A by removing k rows. Then there is a Turing Machine
that uses space O(log n + k log k) and either

(i) finds a basis v1, v2, . . . , vs for ker A′ with s ≤ 2k; or

(ii) outputs “dim ker A′ > 2k”.

Proof. The proof is exactly the same as the proof of Lemma 3.7. The only
difference is that G′ is now embeddable into a genus 2c+k ≤ 3k surface instead
of a genus k surface. Thus the result carries. ¤

Corollary 3.11. Given a number k and a graph G embedded into a genus
c ≤ k surface, in space O(k2 log n) we can output either

(i) An ` ≤ k such that 2` is the highest power of 2 dividing τ(G); or

(ii) “ 2k+1|τ(G)” (the power is too big to determine).

Proof. The corollary follows from Lemma 3.10 in the same way Theorem
3.9 follows from Lemma 3.7. Note that the proofs of Lemma 3.8 and Theorem
3.9 follow from Lemma 3.7 in a completely algebraic fashion. Thus the proofs
work with a G of genus c instead of a planar G. ¤

3.5. Computing τ(G) mod 2k. In the previous section we have shown how
to compute the highest power of 2 (up to k) that divides τ(G) for a planar
or low-genus G in L. For example given a graph G, with k = 3 we could
decide in which set τ(G) mod 8 belongs: {1, 3, 5, 7}, {2, 6}, {4}, {0}. We had
no way, however, of determining whether τ(G) mod 8 is 2 or 6, for example.
In this section we show how to compute the actual value of τ(G) mod 2k. The
constructions are stated for a planar G, but work as well for graphs embedded
into a low-genus (≤ k) surface.

Theorem 3.12. Given an integer k and a planar graph G, τ(G) mod 2k can
be computed in space O(k2 log n).

The remainder of the section consists of the proof of Theorem 3.12. As a
first step, we show that it suffices to deal with graphs whose degree is bounded
by 3.
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Lemma 3.13. Given a planar graph G, one can compute a planar graph G′ in
space O(log n) so that τ(G′) ≡ τ(G) mod 2k, and the degrees of vertices in G′

are bounded by 3.

Figure 3.5: The gadget Td from the proof of Lemma 3.13

Proof. We replace every degree d vertex in G with the (2d−1)2k-edge gadget
Td shown on Figure 3.5. Td is a tree with d leafs, and every leaf corresponds
to one of the “exits” from v. Note that contracting all the Td’s will yield the
original graph G. Thus the number of spanning trees of G′ that contain all the
gadgets Td is exactly τ(G). By symmetry, it is not hard to see that the number
of spanning trees of G′ for which at least one of the edges from the gadgets is
missing is divisible by 2k. Thus τ(G′) ≡ τ(G) mod 2k. ¤

From now on, we will assume that G has degrees bounded by 3. The
strategy of the proof is as follows. First, we assume that τ(G) is odd. We find
a sequence of planar graphs Gn−1, Gn−2, . . . , G1 computable from G in space
O(log n) such that the following conditions hold.

1. for each i, Gi has i + 1 vertices;

2. for each i, Gi and Gi+1 differ from each other by one vertex and a constant
(≤ 10) number of edges;

3. G differs from Gn−1 by a constant (≤ 3) number of edges;

4. for each i, τ(Gi) is odd (recall that we assume here that τ(G) is odd).
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Then we will show that computing τ(H1)/τ(H2) mod 2k for “similar” graphs
H1 and H2 with odd τ(H1), τ(H2) can be done in space O(k2 log n). τ(G1)
is trivial to compute (as it only has two nodes) and the computations of
τ(Gi+1)/τ(Gi) mod 2k will be performed in parallel. Finally, we will have

τ(G) =
τ(G)

τ(Gn−1)
× τ(Gn−1)

τ(Gn−2)
× . . .

τ(G2)

τ(G1)
× τ(G1) mod 2k.

First, we define the graphs Gi. We order the vertices of G, {v1, v2, . . . , vn}
so that if we remove Ai = {vi+1, . . . , vn} from G, then in the residual graph G′

all the vertices that have neighbors in Ai are on the same outside face. There
are many ways to accomplish this. For example, if the graph G is drawn on
the plane, then ordering the vertices from left to right accomplishes this goal.
Furthermore, we assume there is some arbitrary order ≺ on the edges of G.

The vertices of Gi are Vi = {v1, v2, . . . , vi, v
∗}, where v∗ is a special vertex

on the outside of the graph. It is added to make sure that τ(Gi) is odd.

Figure 3.6: An example of obtaining Gi from G

Let the graph G′
i be obtained from G by removing Ai = {vi+1, . . . , vn}.

Consider G′
i along with the edges from G′

i to Ai as on Fig. 3.6. Consider the
(pieces of) left-right walks in G′

i. If there are s edges from G′
i to Ai then there

will be s such pieces – one for each “loose edge”. Denote the “loose edges” by
e1 ≺ e2 ≺ . . . ≺ es. For each edge ej there are two ends of the left-right walk
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to trace. If either one of them reaches an end of some e` with ` < j, we just
continue the loop from the other end on e`. If, as a result, we reach e` with
` > j, we remove the edge ej. If we reach the other end of ej without reaching
any higher-ranking edge, we connect the other end of ej to v∗. In the example
on Fig. 3.6, curves starting at e1 hit e2, hence e1 is discarded. Curves starting
at e2 go through e1 and back to e2, so e2 connects to v∗. Similarly, e3 also
connects to v∗.

We need to see that the resulting Gi will have one left-right cycle, and thus
τ(Gi) is odd. Note that every left-right walk in G′

i has its ends on one of the
edges ej, because by the assumption τ(G) is odd, and thus G has one left-right
walk. After we discard all the edges ej for which the left-right walk originating
at ej reaches some e` for ` > j, we are left with t loose edges, ei1 , ei2 , . . . , eit

such that a left-right walk starting at eij ends on the other end on eij . It is
straightforward to see that connecting v∗ to the edges ei1 , . . . , eit results in a
graph with a single left-right cycle.

It remains to see that Gi+1 and Gi are similar to each other and that Gn−1

is similar to G. First of all, by the construction, in Gn−1 the node v∗ may only
be connected to vertices to which vn was connected. Since deg vn ≤ 3 this
means that Gn−1 differs from G by ≤ 3 edges.

For an arbitrary i, we first add a vertex we call v′i+1 to Gi and connect it to

v∗. The resulting graph G̃i has i + 2 vertices, and can be directly compared to
Gi+1. v′i+1 is a degree 1 vertex, and thus does not affect the left-right cycle in

Gi. We also have τ(Gi) = τ(G̃i). We claim that Gi+1 and G̃i differ by at most

10 edges. The differences between Gi+1 and G̃i are: (1) the edges leaving vi+1

in Gi+1 are different from edges leaving v′i+1 in Gi. The degree of vi+1 is ≤ 3
and the degree of v′i+1 is 1 – hence the difference amounts to ≤ 4 edges; (2) the
edges leaving v∗ may be different in Gi+1 and in Gi.

We need to bound the number of edges in (2). If there is an edge from vj

to v∗ in Gi+1 but not in Gi, it means that the left right cycle that yielded the
edge has been disturbed by the removal of vi+1 in transition from Gi+1 to Gi.
Thus it must have crossed one of the edges touching vi+1. There are at most
three such cycles, and thus at most 3 of the vj’s are affected.

If there is an edge from vj to v∗ in Gi but not in Gi+1, it means that the
left-right path that caused vj to connect to v∗ in Gi is not valid in Gi+1. For
this to happen such a path should cross one of edges that connect vi+1 to its
neighbors. Up to three paths may become invalid.

Overall, we see that G̃i differs from Gi+1 in ≤ 4+3+3 = 10 edges. Now we
need to show that τ(Gi+1)/τ(Gi) mod 2k can be computed in space O(k2 log n).
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It is here that we use Corollary 3.11.

Lemma 3.14. For two planar graphs G1 and G2 on n vertices that differ in
≤ c edges for some constant c, and such that τ(G1) and τ(G2) are odd, we can
compute τ(G1)/τ(G2) mod 2k in space O(k2 log n).

Proof. Denote the edges in which G1 and G2 are different by e1, . . . , ec. We
start by creating a “hybrid” graph G where all the edges from both G1 and G2

appear. While G1 and G2 are planar, G may not be. However, it is obtained
from either G1 or G2 by adding at most c/2 edges. Hence by adding a “handle”
for each newly added edge we see that G can always be embedded into a genus
c/2 surface.

Figure 3.7: The gadget g(αi, βi)

We replace every edge ei in G with the gadget g(αi, βi) depicted on Fig. 3.7.
It consists of one “chain” of αi edges and βi− 1 more regular edges connecting
the endpoints. The idea is that if in G there were B spanning trees containing
ei and A spanning trees excluding ei, then with the gadget it will have Bβi

spanning trees where edges from the gadget connect the endpoints and Aαi

spanning trees where they disconnect the endpoints to a total of Aαi + Bβi.

For every possible combination of αi, βi ∈ {1, 2, . . . , 2k} let us consider
τ(α1, β1, . . . , αc, βc) – the number of spanning trees modulo 2k of the graph
G with each ei replaced with g(αi, βi). According to Corollary 3.11 we can
compute the highest power of 2 dividing τ(α1, β1, . . . , αc, βc) for all possible
combinations in space O(k2 log n).

Consider τ(α1, β1, . . . , αc, βc) as a function of the α’s and β’s. If we fix
all the variables but αi and βi for some i, we have seen that the expression
for τ(α1, β1, . . . , αc, βc) will have the form Aαi + Bβi. This implies that τ is
multilinear in the α’s and β’s, and moreover each of its additive terms contains
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exactly one of {αi, βi} for all i. Thus

(3.15) τ(α1, β1, . . . , αc, βc) =
∑

f :{1..c}→{0,1}
Afγ

f
1 γf

2 . . . γf
c whereγf

i =

{
αi if f(i) = 0
βi if f(i) = 1

From now on we consider all equalities to be modulo 2k. The coefficients
Af thus can be always taken from {0, 1, . . . , 2k − 1}. Note that there are 2c

coefficients. This number is constant (≤ 210), and thus the entire calculation
is easily done on the main tape.

Note that if one multiplies all the coefficients Af by some odd integer,
then for each possible choice of the α’s and β’s the highest power of 2 di-
viding τ(α1, β1, . . . , αc, βc) is not affected. Thus there is no hope of finding
the actual values of the Af . Fortunately, we do not need to. We will show
how to find coefficients cf ∈ {0, . . . , 2k − 1} such that Af = cfA0 for some
A0 (recall that all equalities are modulo 2k). We know that there is an as-
signment of α’s and β’s that gives a graph equivalent to G1, for which τ is
odd. Thus A0 must be odd. Once we find the coefficients cf , we can compute
τ(G1)/τ(G2). Let (α1, β1, . . . , αc, βc) be the assignment corresponding to G1,

and (α̃1, β̃1, . . . , α̃c, β̃c) the assignment corresponding to G2. Then

τ(G1)

τ(G2)
=

∑
f :{1..c}→{0,1} Afγ

f
1 γf

2 . . . γf
c∑

f :{1..c}→{0,1} Af γ̃
f
1 γ̃f

2 . . . γ̃f
c

=

∑
f :{1..c}→{0,1} cfγ

f
1 γf

2 . . . γf
c∑

f :{1..c}→{0,1} cf γ̃
f
1 γ̃f

2 . . . γ̃f
c

,

thus if we know the cf ’s, we can compute τ(G1)/τ(G2). To complete the proof,
we need (everything in the claim and in what follows is modulo 2k):

Claim 3.16. Given an expression of the form (3.15), and given for each as-
signment of α’s and β’s the highest power of 2 dividing τ(α1, β1, . . . , αc, βc) we
can compute cf such that Ac = A0cf for some common A0. Furthermore, at
least one of the cf ’s can be made odd.

We prove the claim by induction on c. It is obvious for c = 0, as there is
only one coefficient A0, and we can take cf = 1. For the step we will be using
the following claim.

Claim 3.17. Suppose that τ1 and τ2 are given by two formulas as in (3.15).
Suppose that the highest power of 2 dividing all the coefficients of τ1 is 2d1 ,
and of τ2, 2d2 . Then there is an assignment ~α, ~β such that (simultaneously) the

highest power of 2 dividing τ1(~α, ~β) is 2d1 , and the highest power of 2 dividing

τ2(~α, ~β) is 2d2 .
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Now we can do the induction step for Claim 3.16. Write

τ(α1, β1, . . . , αc, βc) =

αcτ1(α1, β1, . . . , αc−1, βc−1) + βcτ2(α1, β1, . . . , αc−1, βc−1).

Setting αc = 1, βc = 0 we can use the induction hypothesis to compute df such
that Af = A1df for some A1 and for all f with f(c) = 0 and such that at least
one of these df ’s is odd. Similarly, we can compute df such that Af = A2df for
some A2 and for all f with f(c) = 1. Without loss of generality assume that
the power of 2 dividing A2 is greater or equal to the power of 2 dividing A1.
To complete the proof, we need to find a d such that A2 = d · A1 (recall that
the equality is modulo 2k). Then we choose A0 = A1, and

cf =

{
df if f(c) = 0
d · df if f(c) = 1

Figure 3.8: Making τ(G) odd by removing m edges, {e1, e2, e4} in this case

By Claim 3.17 there is an assignment of (α1, β1, . . . , αc−1, βc−1) for which the
highest power of 2 dividing τ1(α1, β1, . . . , αc−1, βc−1) is the same as the highest
power of 2 dividing A1, and the same is true for τ2. By looking at all possible as-
signments we can find one with this property. After substituting the assignment
we will have τ1(α1, β1, . . . , αc−1, βc−1) = A1s1, and s1 must be odd. Similarly
τ2(α1, β1, . . . , αc−1, βc−1) = A2s2 for an odd s2. Fixing (α1, β1, . . . , αc−1, βc−1)
at this assignment we have

τ(αc, βc) = A1s1αc + A2s2βc.
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By fixing βc = −1 and trying all possible αc, we can find αc such that

A1s1αc − A2s2 = 0.

Thus A2 = (s1αcs
−1
2 ) · A1. This completes the proof. ¤

To finish the proof of Lemma 3.14, it remains to prove Claim 3.17.

Proof. (of Claim 3.17) Once again, we prove the claim by induction on c.
The statement is trivial for c = 0. Assume it is true for c− 1. Write





τ1(α1, β1, . . . , αc, βc) =
αcτ3(α1, β1, . . . , αc−1, βc−1)+βcτ4(α1, β1, . . . , αc−1, βc−1)

τ2(α1, β1, . . . , αc, βc) =
αcτ5(α1, β1, . . . , αc−1, βc−1) + βcτ6(α1, β1, . . . , αc−1, βc−1)

There are three cases.
Case 1: There is a coefficient of the form 2d1 · odd in τ3(·) and a coefficient

of the form 2d2 · odd in τ5(·). In this case we can set αc = 1, βc = 0, and the
assignment exists by the induction hypothesis applied to the pair τ3, τ5.

Case 2: There is a coefficient of the form 2d1 · odd in τ4(·) and a coefficient
of the form 2d2 · odd in τ6(·). This case is exactly symmetric to case 1.

Case 3: The cases above do not hold. Then all the coefficients of τ3 must
be divisible by 2d1+1 and all the coefficients of τ6 must be divisible by 2d2+1 (or,
a similar statement is true for τ4 and τ5, a case which is dealt with in exactly
the same fashion). Set αc = βc = 1. By the induction hypothesis with τ4, τ5

there is an assignment for which τ4 has a form 2d1 · odd, and hence τ1 has this
form (because τ3 is divisible by 2d1+1), and τ5 has a form 2d2 · odd, and hence
τ2 has this form. ¤

So far we have seen how to compute τ(G) mod 2k in space O(k2 log n) in
the case τ(G) is odd. To complete the proof of Theorem 3.12 we need to show
how to deal with all other cases. Let ` be the highest power of 2 dividing τ(G).
If ` ≥ k we can output “0” and we do not need any further computations.
Otherwise, it is not hard to see that we must have dim ker L(G) ≤ ` + 1.
Thus G has at most ` + 1 left-right cycles. Furthermore, we can assume that
G is connected, because otherwise τ(G) is trivially 0. Suppose that G has
m+1 ≤ `+1 left-rights cycles. As a first step we show how to remove m edges
{e1, . . . , em} from G to obtain a G′ with one left-right cycle (and hence an odd
τ(G′)).

First of all, note that if C1 and C2 are two different left-right cycles, which
intersect at an edge e, then the effect of removing e from the graph is that C1
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and C2 are merged and become one cycle. The same effect is achieved if e is
replaced by a chain of even length. Let C1, . . . , Cm+1 be the left-right cycles in
G. We construct an adjacency graph H for cycles, where two cycles Ci and Cj

are connected if and only if they share an edge e′. We label the edge (Ci, Cj)
in H with e′. H is connected because G is connected. Thus we can find an
m-edge spanning tree T in H. Let the edges of T be labeled with e1, . . . , em.
It is not hard to prove by induction on the size of T that removing e1, . . . , em

from G will result in a graph G′ where all the cycles C1, . . . , Cm are merged
into one, and hence τ(G′) is odd. The transition is illustrated on Fig. 3.8.

For a function f : {1 . . .m} → {0, 1} let Gf be obtained from G by

1. removing edges ei when f(i) = 0;

2. replacing edges ei with a chain of 2k edges if f(i) = 1.

The effect of replacing ei with a chain of 2k edges is that the cycles that intersect
at ei are merged. Hence, like G′, Gf always has a single left-right cycle, and
thus τ(Gf ) is odd and can be computed modulo 2k. For a spanning tree T in
G and an f : {1 . . . m} → {0, 1}:

1. if T contains some ei for which f(i) = 0, then T corresponds to 0 trees
in τ(Gf ); otherwise

2. if T omits t ≥ 1 ei’s for which f(i) = 1, then T corresponds to (2k)t trees
in τ(Gf ); otherwise

3. T corresponds to exactly one tree in Gf .

Hence, modulo 2k, τ(Gf ) is equal to the number of spanning trees in G which
include all the ei’s for which f(i) = 1 and exclude all other ei’s. Thus

τ(G) =
∑

f :{1...m}→{0,1}
τ(Gf ) mod 2k,

and by evaluating the right-hand-side we complete the computation of τ(G)
modulo 2k.

4. Hardness of the Laplacian rank modulo primes p > 2

In this section we show how 2 is special when it comes to divisibility properties
of τ(G) even for planar G. It is not hard to show that computing τ(G) mod 2
for arbitrary G is ⊕L-complete. We have seen that this is not the case for
planar G (unless L = ⊕L). On the other hand, we have the following:
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Theorem 4.1. For prime p > 2, finding out whether τ(G) ≡ 0 mod p for a
planar graph G is complete for ModpL.

The general idea for proving this is the following:
We will show the following chain of reductions from the computation of the

rank of a general symmetric matrix to computing the rank of the Laplacian of
a planar graph:

RANKAdjacency ≤ RANKLaplacian ≤ RANKPlanarLaplacian

where all the RANKs are being considered over Zp. The reductions will be
such that if we start with an adjacency matrix whose co-rank is 0, we will get
a Laplacian matrix with co-rank 1. If we start with an adjacency matrix with
co-rank at least 1, then we will get the Laplacian matrix with co-rank at least 2,
all co-ranks being considered modulo the prime p. Then the planarizing gadgets
will transform an arbitrary Laplacian into a planar Laplacian while preserving
the co-rank modulo p. Overall, the singularity testing of a matrix modulo p
will be reduced to testing whether co-rank of a planar Laplacian is 1 or more,
i.e. whether a planar τ(G) is divisible by p or not. The idea hence is: given
an arbitrary graph Laplacian L(G), first transform it into a graph Laplacian
with every vertex degree 0 mod p. In this transformation, we would want to
“preserve” the rank; i.e. given the rank of the new Laplacian, we should be able
to retrieve the rank of the original graph Laplacian, and vice versa. But now
that the transformed graph (call this H) has all degrees 0 mod p, its Laplacian
matrix is essentially its adjacency matrix too!

Next, we replace the crossovers in this graph H to get a planar graph H ′

which has the following properties:

◦ H ′ preserves co-rank of H. That is if x is a vector such that Hx = 0
(over Zp), then there corresponds a vector y of suitable length such that
H ′y = 0. Vice versa, for every y, there corresponds an x so that the
transformation preserves co-ranks.

◦ every vertex in H ′ has degree 0 mod p.

So, the (planar) graph H ′ again has its adjacency matrix (essentially) the
same as its Laplacian (over Zp). Hence, this would prove that finding the rank
of planar Laplacian matrices (over Zp) is hard for ModpL.
RANKAdjacency ≤ RANKLaplacian: Note that SINGULARITY and
RANKAdjacency for matrices over Zp are complete for ModpL, see [BDHM91].

We begin with a
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Lemma 4.2. SINGULARITY mod p (for p prime) reduces to computation of
the rank of arbitrary graph Laplacians (over Zp).

Proof. Consider an arbitrary matrix A. We convert that into a Laplacian
matrix L by describing a minor of L first (call this minor L′):

L′ =




0 0 0 0 0 A

0 0 0 0 . . . 0
0 0 0 A 0 0
0 0 At 0 0 0

0 . . . 0 0 0 0
At 0 0 0 0 0




where there are p A’s and p At’s on the diagonal (At being the transpose of A).
Let L be now obtained from the above matrix L′ by adding one row and

one column, so that sum of entries in every row and column is 0. While going
from L′ to L, new row added is row 1 of L and new column added is column 1
of L. Clearly, L is the Laplacian matrix of some graph G with possibly multiple
edges. Since we have p copies of A and p copies of At, the (1, 1) entry of L is
0 mod p, which means that for the graph G, every vertex degree is 0 mod p (all
the other diagonal entries of L are zero since A has 0 on its diagonal). Note
that if A has full rank (i.e. co-rank 0), then L has co-rank 1. If dim ker A ≥ 1,
then dim ker L′ ≥ p, so dim ker L ≥ (p− 1). So if we could determine the rank
of L, we could find out if A is singular or not (over Zp). ¤

For the future, we record the following direct corollary of the Matrix Tree
Theorem:

Claim 4.3. Given a graph G with Laplacian matrix L, τ(G) is not divisible
by p if and only if the co-rank of L is 1.

RANKLaplacian ≤ RANKPlanarLaplacian: Now we transform a non planar
graph G with every vertex degree 0 mod p into a planar graph H with every
vertex degree 0 mod p while preserving the co-rank. Since the vertex degrees
concerned are all 0 mod p, the Laplacians are the same as the adjacency ma-
trices.

Let A,B be the adjacency matrices of G,H respectively. Since in the fol-
lowing we are working over Zp, we will not mention Zp for brevity’s sake unless
otherwise necessary.

The construction consists of two stages:
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Figure 4.1: Gadget for Stage 1

◦ Stage 1: Make all the intersections in the graph simple, so that each
edge would intersect at most one other edge.

◦ Stage 2: Replace simple intersections with planar gadgets.

STAGE 1 : The gadget we construct preserves the property that every vertex
has degree 0 mod p, and is shown in Figure 4.1. Some remarks about the
diagram are in order: we allow the edge intersections (of the original graph) to
take place only at the bold lines in Figure 4.1. Since an edge of the original
graph G might have at most n intersections with other edges (where n is the
number of vertices of the graph), we have to extend each edge of G into a path
of length 2n−1 with n−1 “subgadgets” as enclosed in between the dotted lines
in Figure 4.1. Solutions x to Ax = 0 translate to “weights” on each vertex, so
that the sum of the weights on all the neighbors of any vertex is 0. The squiggly
double arrows in Figure 4.1 with p − 1 written above refer to the multiplicity
of the corresponding edges of the graph H ′.

Having done this, it is clear that the objective of Stage 1 is fulfilled: all
intersections in the resulting graph are simple.

Suppose the graph resulting from the above (in which every intersection is
simple) is H ′ with adjacency matrix B′. Since we are trying to preserve the
co-rank of the adjacency matrix in this transformation, we will assume that we
are given a vertex labeling by values over Zp (i.e. a Zp-valued weighting on the
vertices) which encodes a solution x to Ax = 0, and make such a solution x
correspond to a solution y′ of B′y′ = 0 (and vice versa). Given “weights” on
each vertex as above, solutions x to Ax = 0 translate to weightings where for
any vertex the sum of the weights on all the neighbors of that vertex is 0.

Now it is clear from the figure that there is a unique way of extending a
solution x to Ax = 0 to produce a solution to B′y′ = 0. On the other hand, the
process is invertible, so that for every y′ there corresponds an x. The easiest
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p−1 of these

p−2 p−2 p−2
...................................

....................................

−b
−a

−c −d

−b −a

−c −d

d c
d c

a b
a b

b
2c−d

c 2b−a

a

d

Figure 4.2: Gadget for Stage 2

way to see that the successive values are as marked in the figure is via induction.
We leave out the details of this easy induction.
STAGE 2 : Now, we replace each simple intersection in H ′ by a gadget as
shown in Figure 4.2. Call this final graph H, and its adjacency matrix B.

Again, we note that the initial values at the endpoints of an edge (and the
neighbors of the endpoints) corresponding to a solution y′ for B′y′ = 0 uniquely
extend to a solution for By = 0. The easiest way to see this is by induction,
as before.

Altogether, at the end of the two stages, we have transformed G into a
planar graph H which has the same co-rank as G, and has every vertex degree
0 mod p. Hence Theorem 4.1 is proved.

We also observe that the graphs produced by the transformation can be
made bipartite if the original graphs are. To this end, note that there are
always two ways to apply Stage 2 to an intersection, and one of them will keep
the graph bipartite.

The modular results yield the following corollary for the hardness of com-
puting τ(G) for a planar G.

Corollary 4.4. The problem of computing the value of τ(G) for a planar
graph G is complete for DET under a Logspace Turing reduction.

Proof. In fact the reduction can be made into a Logtime-uniform TC0

reduction. Given an integer matrix A we need to reduce the computation
of DET(A) to a series of computations of τ(Gi) for some planar Gi’s. Let
(p1, p2, . . . , pk) = (3, 5, . . .) be an enumeration of the first k = nO(1) primes,
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starting with 3. We may assume that A is symmetric, since computing the
determinant of symmetric matrices is complete for DET.

By Theorem 4.1, computing DET(A) modulo pi is reduced to verifying
whether τ(Gij) = 0 modulo pi for at most pi planar graphs Gij. This obviously
reduces to computing the actual value of τ(Gij). Finally, the calculations of
τ(Gij) mod pi and the reconstruction of DET(A) from its residues modulo
p1, . . . , pk can be done in Logtime-uniform TC0 according to [HAB02], which
completes the proof. ¤

As the last item in this section, we prove the following contrapuntal result
for p = 2.

Theorem 4.5. Finding out if τ(G) for a planar graph G given along with its
planar embedding is odd is L-complete under AC0[2] reductions.

Proof. Since we have already shown that the problem is contained in L, we
need to show hardness for L.

The proof idea is simple: we reduce SCP – Single Cycle Permutation (cf.
[CM87]) to the above problem. The problem SCP is the following: Given a
permutation presented pointwise, determine whether the permutation consists
of a single cycle. Equivalently, we are given the edges of a 2-regular graph H
listed as vertex pairs (a, b) and we are to determine if it consists of a single
cycle. The intuition is as follows: a planar graph G has an odd number of
spanning trees iff it has exactly one left-right cycle. Given graph H, we will
output a graph G such that G is planar with an explicit embedding, and H is
essentially the graph derived from the left-right cycles in G.

The main challenge of the proof is to get a G that is given with an explicit
planar embedding. The graph H itself, for example, is 2-regular and thus
planar, but we do not have an explicit embedding of H into the plane. Note
that [CM87] prove SCP to be complete for L under NC1 reductions, but we can
easily verify that their proof in fact gives completeness under AC0 reductions.

Place n points corresponding to the n vertices of H on a circle. Consider all
the edges between the n points joined as according to H. The edges of the circle
are absent unless they are specified as being in H. We can always arrange the
points so that no three edges intersect at the same point. These edges divide
the plane up into regions, which are bounded by segments. Call two regions
crossing if they intersect only in a point, and do not share a segment. Let
us color the regions in two colors, black and white. Let the regions adjacent
to the vertices of H be colored black. Complete the coloring such that two
regions which share an edge get opposite colors. This is always possible. Now
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Figure 4.3: Graph G from graph H

we create the graph G. Place a vertex vr inside each black region r. We say
that vr corresponds to region r and vice versa. We place an edge between v1

corresponding to black region r1 and v2 corresponding to black region r2 iff the
two regions r1 and r2 are crossing in the layout (because they have the same
color, they clearly cannot share a segment). Performing this procedure for all
vertices vr, we get our graph G. See Figure 4.3. It is clear from construction
that G has the cycles of H as its left-right cycles. So G has an odd number of
spanning trees iff H has exactly one cycle.

Note in the above, that if we had placed a vertex in the unbounded region,
which is colored white and produced a graph G′ by connecting up vertices in the
white regions (like we did above for the black regions), we would have created
the planar dual of the graph G (which has the same number of spanning trees
as G).

The reduction above can be implemented in AC0[2], because all we need
to color the regions in black and white is a parity gate. To make sure that
we get one representative vr for each black region r we begin with a collection
of Θ(n3) points P , such that any potential region contains at least one point.
We create an equivalence relation on P so that p, q ∈ P are in the same class
iff they are on the same region. Every bounded region is convex, and hence
p ∼ q iff there is no line between two vertices of H intersecting the segment
pq. Thus the relation can be computed in AC0, and we can obtain a unique
representative vr for every black region r. ¤
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5. The permanent modulo powers of 2

Given a matrix A, it is clear that the permanent of A (denoted PERM(A)) is of
the same parity as that of the determinant (denoted DET(A)). For definitions
of the permanents and determinants of matrices, see for instance, [Min84].
Valiant proves in his seminal paper [Val79], that finding out the value of the
PERM of a matrix modulo 2k (for constant k) is in P, however the method
he uses is akin to Gaussian elimination, and is inherently sequential. Here, we
prove

Theorem 5.1. Finding out the permanent of a matrix modulo 2k (for constant
k) is complete for ⊕L.

Hardness for ⊕L follows from the fact that for k = 1, it corresponds to singu-
larity of the DET (over Z2). Hence we have to prove containment in ⊕L.

The structure of the proof will be as follows: we first show how the question
4|PERM(A) can be resolved in ⊕L. We use this, along with facts about LUP-
decompositions (cf. [Ebe91]) to show how we can find out PERM(A) mod 4
in ⊕L. After we have accomplished this, we can easily see how to find out
PERM(A) mod 2k (for constant k) in ⊕L. As a first step, we prove that finding
out whether 4|PERM(A) can be done in ⊕L.

Given an n× n matrix A, we first check if DET(A) is even. Having passed
this check, we proceed to find a non-zero solution x ∈ {0, 1}n for AT x = 0
(over Z2), and this can be done in ⊕L. Let xt = (x1, x2, · · · , xn). This means
that the sum of the rows of A corresponding to the xi’s which are 1 is 0 mod 2.
Without loss of generality we may assume x1 = 1. If ri denotes the ith row
of A, then replace the 1st row of A by the sum of rows Σixi · ri to get a new
matrix A′. The first row of A′ consists only of even entries.

Let Ai denote the matrix A with the 1st row replaced by the ith row of A
(for instance, A1 = A). We can write that PERM(A′) = ΣiPERM(Ai) · xi.

Note that each matrix Ai (for i > 1) has two rows equal, and hence
PERM(Ai) is even. To see that the permanent of a matrix with two equal
rows is even, one may observe that the determinant of such a matrix is zero
and that the determinant and the permanent of any matrix have the same
parity.

For each i > 1 and for each (j, k), build matrix Bijk as follows: from matrix
Ai, delete the 1st and ith rows (these rows actually being equal), and delete the
jth and kth columns. Find out PERM(Bijk) mod 2. Then we can use linearity
of the permanent function to figure out the value of PERM(Ai) mod 4.
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Matrix A′ is of a slightly different form: it has its first row which consists
wholly of even entries. Let Ci denote the matrix obtained from A′ by deleting
the first row and column i. We can find out PERM(Ci) mod 2, and then use
linearity of the permanent to find out the value of PERM(A′) mod 4. Finally,
we have PERM(A) = PERM(A1) = PERM(A′) − Σi>1PERM(Ai) · xi, which
allows us to compute PERM(A).

Note that the above algorithm for divisibility of the permanent by 4 actually
gives us the modulus when PERM(A) is even. Therefore, we have to devise an
algorithm only for the case when PERM(A) is odd – we reduce this case to the
case of the permanent being even. We prove

Lemma 5.2. We can find out the exact value of PERM(A) mod 4 in ⊕L.

Proof. Since we have dealt with the situation that if PERM(A) is even,
we can find out its value mod4, here we need to deal with the situation where
PERM(A) is not even.

So, suppose PERM(A) is odd. We want to get hold of a suitable cofactor
of A (call this cofactor Ai,j) such that PERM(Ai,j) is odd too. Clearly, if
PERM(A) is odd, then some minor Ai,j of A also has odd determinant (hence
odd permanent).

We observe first that given A, we can always find a matrix C (depending
on i, j) such that PERM(C) = PERM(A) + PERM(Ai,j). This is easy to do:

just increase the (i, j)th entry of matrix A by 1 to get matrix C. Expanding
the matrix C by its ith row and using the fact that the permanent function
is linear, we get that PERM(C) is equal to sum of the permanents of two
matrices, one of which has the same ith row as that of A (and is equal to A),
and the other has its ith row consisting wholly of 0’s except for the jth entry
which is a 1. Expanding the second matrix by its ith row, we find that its
permanent is exactly PERM(Ai,j). This proves the equation above.

Given the above, we give a sequential algorithm for finding PERM(A) mod
4, and then we comment on how to parallelize it suitably. Suppose we start
with the matrix A with odd permanent. We can find (by checking all minors
of dimension n − 1) a minor Ai,j such that PERM(Ai,j) is also odd. By the
above, we can find a matrix C such that PERM(C) equals the sum of the
odd permanents, PERM(A) and PERM(Ai,j). Since PERM(C) is even, we can
find out its value modulo 4. Thereby we can find out whether PERM(A) ≡
+PERM(Ai,j) or ≡ −PERM(Ai,j) mod 4. Now we can continue with Ai,j in
order to get a new matrix A2 (formed by removing two rows and two columns
from A) such that PERM(Ai,j)+PERM(A2) is even. We continue this process
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until we reach a matrix of constant dimensions, for which we can evaluate the
permanent directly. Thus, we have a sequential process for finding out the
permanent of a matrix modulo 4.

Let us now turn to an efficient parallelization of the above sequential al-
gorithm. Any matrix that is nonsingular (over the relevant field where the
entries of the matrix live) admits a decomposition of the form LUP, where L is
a lower triangular matrix, U an upper triangular matrix, and P a permutation
matrix. It is well known that a matrix has a LU-decomposition over a field ,
cf. [Ebe91], if and only if all its principal minors ((i, i) minors) are nonzero in
the field. Over Z2, this translates to all the principal minors being odd. In the
above sequential process, we note that if we started with a matrix which has
a LU-decomposition, then it is easy (in Logspace) to find out its permanent
modulo 4. This is because given a matrix A′ (which has odd permanent) in
the procedure, we will not have to do any work in order to find a minor of A′

which also has odd permanent – a principal minor of A′ would already do the
job.

Now all that is left to do is the following: given an invertible matrix M ,
find a permutation matrix P such that MP has a LU decomposition. In other
words, we want to find a permutation matrix P such that all the principal
minors of MP are odd; and the procedure for finding this P should be in ⊕L.

For this, we closely follow the reduction given in [Ebe91] from the above
problem to the Determinant. We show thereby that over Z2, the reduction
can be implemented in ⊕L. Eberly [Ebe91] reduces the problem of finding a
suitable permutation matrix P to rank computations thus: suppose a matrix
A = M t is nonsingular over Z2 (i.e. has DET ≡ 1 mod 2), let Ai be the n × i
matrix formed from the first i columns of A, and let Si ⊆ {1, 2, · · · , n} be the
set of the lexicographically first maximal independent subset of the rows of Ai

for 1 ≤ i ≤ n (i.e Si consists of the indices of the rows of Ai which constitute
the lexicographically first maximal independent subset).

For this purpose, let the n rows of Ai be ri
1, r

i
2, · · · , ri

n. Consider the matrices
Ak

i which have rows ri
1, r

i
2, · · · , ri

k (for instance, A1
i consists of just the single

row ri
1, An

i = Ai). Find out the ranks of these matrices (over Z2) for 1 ≤ k ≤ n.
These can be found in parallel in ⊕L.

Given these ranks, the lexicographically first maximal independent subset
of the rows is obtained as follows:

1. The base case: Include row ri
1 in the independent subset if and only if

rank(A1
i ) = 1;
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2. Include row ri
j in the independent subset if and only if

rank(Aj
i ) = rank(Aj−1

i ) + 1

(clearly, since in the matrices Ak
i , we are increasing by a row at a time,

the difference of two adjacent ranks can be at most 1).

It is easy to see that this set of j’s constitutes the lexicographically first
maximal independent subset of the rows of Ai. Thereby, we find Si for each
1 ≤ i ≤ n in ⊕L.

Now |Si| = i for 1 ≤ i ≤ n and Si ⊂ Si+1 for 1 ≤ i < n (since each Si

is the lexicographically first maximal independent subset of the rows of Ai).
Set j1 to be the unique element of S1, and set ji to be the unique element of
Si− Si−1 for 2 ≤ i ≤ n. Then the desired permutation (matrix) P is such that
the ith row of P T A is the ji

th row of A, and can be easily computed in L. Here
all the principal minors of P tA = P tM t are odd. Thus we get the required
permutation matrix P, which we wanted, such that, MP has all the principal
minors odd.

This completes the proof that finding PERM(A) mod 4 is in ⊕L. ¤

Now it is easy to see how we can find out PERM(A) mod 8 (say) in ⊕L:
we would first check whether A has an even permanent, if it does, then we find
the decomposition as in the algorithm outlined above for finding out whether
4|PERM(A), finding out all the values of the submatrices modulo 4 (this gives
us the value of PERM(A) mod 8). If A has an odd permanent, we reduce it to
the even case as above, by finding a suitable P (as in the LUP-decomposition:
note however that we do not need to find the L, U factors), and solving the
implicit system of equations mod 8. This procedure clearly generalizes to any
power 2k for constant k. This completes the proof of Theorem 5.1.

Note that the same method as above gives us another proof that DET(A)
mod 2k is in ⊕L. In the end, we note down the following theorem.

Theorem 5.3. Finding out the DET and PERM of a matrix modulo 2k can
be done in complexity ⊕(SPACE(k2 log n)). Hence for constant k, DET and
PERM modulo 2k is in ⊕L.

6. The number of perfect matchings modulo 2k

In Section 5, we proved that the permanent of a matrix modulo 2k (for constant
k) can be found in ⊕L. In this section, we want to generalize this result in two
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directions. As we will see, the techniques of Section 5 may be applied to han-
dle these generalizations. The generalizations are motivated by the following
questions.

◦ Is the modulus 2 special?

◦ Noting that the permanent exactly embodies the number of perfect match-
ings in bipartite graphs, we want to answer the same question for arbitrary
graphs, viz. can we find out the number of perfect matchings in arbitrary
graphs modulo 2k in ⊕L?

The first question is slightly speculative, in that, for the permanent it is in-
deed true that 2 is special, since modulo 2, the permanent and the determinant
of a matrix are the same. But this is the only point where 2 is important as
we show below. Note also that Valiant [Val79] proves hardness results for the
permanent with respect to moduli other than powers of 2.

First we construct other matrix functions which are related to the determi-
nant function.

Given a matrix A = (aij) we define the function

(6.1) h(A) = Σσ∈Sn:σ even2 · a1σ1a2σ2 · · · anσn + Σσ∈Sn:σ odda1σ1a2σ2 · · · anσn

We have thereby created a new matrix function similar to the permanent.
First we make the

Claim 6.2. The matrix function h is #P-hard.

Proof. Given a matrix A consider the two quantities

(6.3) X = Σσ∈Sn:σ evena1σ1a2σ2 · · · anσn

(6.4) Y = Σσ∈Sn:σ odda1σ1a2σ2 · · · anσn

Then it is transparent that h(A) = 2X + Y while DET(A) = X − Y . If
h were computable in polynomial time, so would 2h − DET = 3X + 3Y . But
3(X + Y ) is exactly three times the permanent of A, which is known to be
#P-hard. ¤

Now we may observe that modulo 3, the function h satisfies

(6.5) h(A) ≡ −DET(A).

Hence modulo 3, the function h can be computed in P (in fact, it is complete
for Mod3L). We may then ask the question as to whether it is easy to compute
over all small powers of 3. This is answered by



42 Braverman, Kulkarni & Roy

Claim 6.6. The function h modulo 3k for constant values of k is complete for
Mod3L.

Proof. We will only give a proof sketch since it is similar to the proof of
Theorem 5.1.

It is clear that finding out the value of h(A) for a matrix A modulo 3 is in
Mod3L. Mod3L-hardness follows from Equation (6.5).

The proof follows the same route as for Theorem 5.1: first we prove that
finding out whether 9 divides h(A) can be done in Mod3L, and then this fact
is used to get the value of h(A) modulo 9, which is then used to find out if 27
divides h(A) and so on.

The details are omitted. ¤

Now we answer the second question regarding the number of perfect match-
ings in arbitrary graphs modulo 2k. For brevity, we denote the number of
perfect matchings in a graph G by m(G).

We prove the following

Theorem 6.7. Finding out the number of perfect matchings in a graph G
modulo 2k (for constant k) can be done in P.

Proof. As in Theorem 5.1, we will work in two stages:

◦ First, we prove that we can find out if 4 divides the number of perfect
matchings m(G) in a graph G in ⊕L ⊆ P.

◦ Given that we can find out “m(G)
?≡ 0 mod 4” in P, we want to find out

m(G) mod 4 in P, which we would then use to resolve m(G)
?≡ 0 mod 8

and so on.

We begin with the following

Observation 6.8. Given an undirected graph with no self-loops G, the num-
ber of perfect matchings in the graph is of the same parity as the determinant
of its adjacency matrix A(G).

Proof. We use the fact that the adjacency matrix of an undirected graph
is symmetric. Let the ijth entry of the adjacency matrix A be denoted by aij.

Consider a typical term in the expression for the determinant of the ad-
jacency matrix: tσ = a1σ1 · a2σ2 · · · anσn , where σ ∈ Sn is a permutation of
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( 1 2 3 4 ) ( 1 4 3 2 )

( 1 2 )

Figure 6.1: A 4-cycle and a 2-cycle

{1, 2, · · · , n}. Here, we are forgetting the sign of the permutation σ since we
are working over Z2.

Decompose the chosen σ into cycles: if one of its constituent cycles is of
length > 2, then we derive a companion σ′ which is of the same length and
also contributes to the determinant mod 2. This σ′ is just the inverse of σ:
we essentially want to get to the term tσ′ = aσ11 · aσ22 · · · aσnn. It is easy to
see that this term corresponds to σ′ being the inverse of σ. Because matrix
A is symmetric, tσ′ has the same value as tσ. Since we are computing the
determinant mod 2, terms tσ and tσ′ pair up and vanish. We claim that the
only terms remaining are the ones in which every constituent cycle in σ is a
2-cycle.

This can be made clearer by a diagram as in Figure 6.1. It might make
more sense to view a permutation as a directed cycle cover of the ground set
{1, 2, · · · , n}. Given a cycle (a1, a2, · · · , ak) in permutation σ, we draw edges
directed from ai to ai+1 (with wrapping around modulo the length of the cycle).
We see that if σ consists entirely of 2-cycles, then the new (directed) graph we
get from reversing the orientations of the edges is the same: in short, the σ’s
consisting just of 2-cycles are the fixed points of the action of taking inverse
(of a permutation).

But the σ’s where every constituent cycle is a 2-cycle correspond exactly to
perfect matchings in G. (This is essentially Tutte’s theorem for Z2.) ¤

This indicates that we have to “use” the adjacency matrix A(G) of the
graph G to handle mod 2k calculations.

We proceed to prove that m(G)
?≡ 0 mod 4 is in ⊕L. Consider the deter-

minant of the adjacency matrix A(G). If it is odd then it cannot be divisible
by 4 and we are done. If the determinant of A(G) is even then we proceed. In
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Figure 6.2: Partitioning the edges of G1

that case suppose that rows ri1 , ri2 , ... ril sum up to zero modulo 2, then we
consider a new graph G̃ which is on the same vertex set as graph G, but vertex
vi1 is joined to all the neighbors of vertices vi2 , . . . , vil in G (with multiplicities).

Note that the adjacencies of all the vertices (but for vi1) are the same across
G and G̃. Also observe that even if G did not have loops, there may be a few
loops introduced in G̃ (on vertex vi1). Remove all of these loops from G̃ to get
a graph G′ – removal of these loops makes sense because a loop on a vertex
can never participate in a perfect matching. Note that G̃ (or G′) may have
multiple edges too, even if the original graph G were simple.

Since G, G̃ and G′ all share the same vertex set, we will call the common
vertex set V .

Let X = {vi1 , . . . , vil}. X ⊆ V (G′) = V . Denote the neighborhood set of a
vertex v ∈ V by N(v) (the graph in which we are considering the neighborhood
relation will be clear from the context). Then, the subset of vertices X in the
graph G has the following property: for every v ∈ V , N(v) ∩X is even. This
translates to the following property for the graph G′: For every v ∈ V − {vi1},
v is joined to vi1 by an even number of edges.
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Now we state an easy lemma that corresponds to the multilinearity of the
permanent, but applies to perfect matchings in graphs:

Lemma 6.9. Given a graph H and a vertex v ∈ V (H). Look at the set of
edges Ev incident on v and consider a partition Ev = E1 ∪E2 ∪ · · ·Ek (for any
suitable value of k). Define k new graphs Hi as follows: each Hi is defined
on the vertex set V (H), and the incidence relation for each pair of vertices
w, z ∈ V (H) − {v} is the same as in H. The edges incident on v are exactly
the edges in Ei. Then

(6.10) m(H) = m(H1) + m(H2) + · · ·m(Hk)

The idea is now to partition the edges incident on vi1 in G′ and allocate
them to several subgraphs so that each of the new subgraphs have

1. an even number of perfect matchings; and

2. this can be easily certified (this last term being admittedly vague).

Consider the set E ′ of edges incident on vi1 in G′. The set E ′ will be
partitioned into sets of edges, with it being implicitly understood that an
edge set corresponds to a subgraph of G′. We will describe k such subgraphs
G1, G2, · · · , Gk. The construction would be such that in Gj (1 ≤ j ≤ k) there
is no edge between vi1 and vij ; also, the neighborhoods of vi1 and vij are the
same.

Note, that across all the Gj’s, the adjacencies of all the vertices (but for vi1)
are the same (since the subgraphs Gj arise from partitioning of edges incident
on vi1). Define Gj as follows: keep an edge between vi1 and some vertex v iff
there is an edge between vij and v in G.

Observe that G1 = G by this construction.
It is easy to convince oneself that this describes a partition of E ′; see Fig-

ure 6.2.
Thereby, we get a collection of graphs G1 = G,G2, G3, · · · , Gk.
Note that Equation (6.10) now reads

(6.11) m(G′) = m(G1) + m(G2) + m(G3) + · · ·m(Gk)

= m(G) + m(G2) + m(G3) + · · ·m(Gk)

While the graph G′ has the property that it has a vertex which shares an
even number of edges with every other vertex, the graphs G2, G3 · · ·Gk have
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the property that two vertices in Gj (2 ≤ j ≤ k) have the same neighborhood
set, namely vi1 and vij .

Each of the graphs G′, G2, G3, · · · , Gk have m(·) ≡ 0 mod 2. The easiness
certificate for G′ is the vertex vi1 which shares an even number of edges with
every vertex v ∈ V − {vi1}. The easiness certificate for Gj (2 ≤ j ≤ k) are the
two vertices vi1 and vij which have the same neighborhood set. Intuitively, the
easiness certificate for a graph X with m(X) ≡ 0 mod 2 gives a short reason
as to why m(X) is even.

In either of the above cases, it is easy to find out m(·) mod 4 in ⊕L (as
this computation reduces to a few mod 2 computations) – this is similar to
the corresponding calculation in the proof of Theorem 5.1. Altogether from

Equation (6.11), we see that we can resolve the question m(G)
?≡ 0 mod 4 in

⊕L.
Now we consider the problem of getting the exact value of m(G) mod 2k

(for constant k). As in Theorem 5.1, we will show how to get the value of m(G)

mod 4, then use this to resolve m(G)
?≡ 0 mod 8 and continue to find out the

value mod 2k (for constant k).
As a first step,

Lemma 6.12. Suppose graph G has m(G) odd, then we can find a subgraph
G1 of G in polynomial time, such that m(G1) is odd.

Proof. Consider a vertex v ∈ V (G), and look at the set of edges incident
on it. Apply Lemma 6.9 to m(G), with the corresponding partition consisting
of single edges. Equation (6.10) then describes m(G) as the sum of some other
m(·)’s. Since m(G) is odd, some term on the RHS of Equation 6.10 has to be
odd too. ¤

In fact, the subgraph G1 has a single edge going out of v (v becomes a
pendant vertex); say that this single edge is the edge (v, u). Note that the
edge (v, u) has to be present in any perfect matching of G1, so G1 may also be
thought of as G−{u, v} (for purposes of consideration of the perfect matchings).

We can iterate this process to yield the following: Given a graph G with
m(G) odd, we can find in polynomial time subgraphs G1, G2, · · · (Gi+1 is a
subgraph of Gi) each of which has an odd number of perfect matchings.

Now we claim that we can construct a graph H1 such that m(H1) = m(G)+
m(G1). In the graph G1, the vertex v has degree 1; let the only edge incident
on v be (v, u). Construct H1 as follows: in the graph G, add a path of length 3
between vertices v and u. It is easy to observe that m(H1) = m(G) + m(G1).
Likewise we can construct H2 such that m(H2) = m(G1) + m(G2) and so on.
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For each of the graphs H1, H2, · · · , we can find out m(·) mod 4 (given that
m(Hi) for i ≥ 1 is even). Finally we can solve this simple system of linear
equations in m(G), m(G1), · · · in P. This gives us the value of m(G) mod 4
in P. By iterating the above process, the result generalizes for any constant k
following the proof of Theorem 5.1.

Note that it is the step which involves Lemma 6.12 that causes the whole
procedure to lie in P rather than ⊕L. ¤

7. Conclusion and open problems

We have shown that the Laplacian matrix for a planar graph encodes useful
information for computing the number of spanning trees, modulo small powers
of 2, but does not reduce the complexity of the same computation for odd
prime moduli. One may ask, how about the adjacency matrix? Does planarity
help in computing say, the rank of the adjacency matrix of a graph over Z2?
We can also show that this is not the case; in fact, computing the rank of the
adjacency matrix of a cubic planar graph (over Z2) is hard for ⊕L.

As we mentioned earlier, our proof that computing τ(G) mod 2k for planar
G seems to take recourse to graphs of higher genera. We also have a distinct
proof for the special case of k = 2; one that does not go through higher genus
surfaces. This last is purely graph theoretic; unfortunately, it does not seem
to extend to higher values of k. Is there a proof of Theorem 3.12 that is
purely graph theoretic and does not involve higher genus surfaces when we are
restricting ourselves to planar graphs?

As mentioned in the Introduction, the PERM function is but an incarnation
of the number of perfect matchings in bipartite graphs. Taking our cue from
here, we may also ask – can we count the number of perfect matchings in
arbitrary graphs modulo 2k (for constant k) in ⊕L? Note that the problem for
non-bipartite graphs doesn’t translate to a permanent computation. Yet, we
have shown that this counting problem lies in P. Also, it is easy to see that
we can indeed count them modulo 2 in ⊕L. This would seem to imply that
this question may be answered affirmatively. The complexity of computing the
permanent modulo non-constant powers of 2 remains open.
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