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Abstract. The problem FTJ (k) consists in computing the value in
[k] = {1,...,k} taken by the root of a balanced d-ary tree of height
h whose internal nodes are labelled with d-ary functions on [k] and
whose leaves are labelled with elements of [k]. We propose FT (k) as
a good candidate for witnessing L C LogDCFL. We observe that the
latter would follow from a proof that k-way branching programs solv-
ing FT? (k) require Q2(kunbounded function(h)) i/ We introduce a “state
sequence” method that can match the size lower bounds on FT. (k)
obtained by the Neéiporuk method and can yield slightly better (yet
still subquadratic) bounds for some nonboolean functions. Both methods
yield the tight bounds ©(k®) and ©(k°/?) for deterministic and nonde-
terministic branching programs solving FT% (k) respectively. We propose
as a challenge to break the quadratic barrier inherent in the Neciporuk
method by adapting the state sequence method to handle F' Tf(k:).

1 Introduction

Let Tj be the balanced d-ary ordered tree Tc? of height h, where we take height
to mean the number of levels in the tree and we number the nodes as suggested
by the heap data structure. Thus the root is node 1, and in general the children
of node i are (when d = 2) nodes 2i,2i + 1 (see Figure 1). For every d, h,k > 2
we define the Tree Fvaluation problem and its associated decision problem:

Definition 1.1 (FT} (k) and BT} (k))

Given: T with each non-leaf node i independently labelled with a function f; :
(k]9 — [k] and each leaf node independently labelled with an element from [k].
Function evaluation problem FT?(k): Compute the value vy € [k] of the root 1
of T, where in general v; = a if i is a leaf labelled a, and v; = fi(vj,,...,v;,)
if j1,...,Ja are the children of 7.

Boolean evaluation problem BT} (k): Decide whether vy = 1.

In the context of uniform complexity measures such as Turing machine space
we rewrite FT7 (k) and BT (k) as FTy(h, k) and BTy(h, k) to indicate that d is
fixed but h, k are input parameters. It is not hard to show that for each d > 2 a
deterministic logspace-bounded poly-time auxiliary pushdown automaton solves
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Fig. 1. A height 3 binary tree 75 with nodes numbered heap style.

BTy(h, k), implying by [Sud78] that BTy(h, k) belongs to the class LogDCFL of
languages logspace reducible to a deterministic context-free language. We know
L € LogDCFL C P (see [Mah07] for up to date information on LogDCFL).
The special case BTy(h,2) was investigated under a different name in [KRW95]
as part of an attempt to separate NC! from NC?. In this paper, we suggest
investigating the space complexity of BTy(h, k) and FT4(h, k).

We choose to study the Tree Evaluation problem as a particularly interesting

candidate for non-membership in L or NL (deterministic or nondeterministic log
space) because pebble games on trees provide natural space bounded algorithms
for solving it: Black pebbling provides deterministic algorithms and, though we
do not consider these in this paper, black-white pebbling provides nondetermin-
istic algorithms. We choose k-way branching programs (BPs) as our model of
Turing machine because the inputs to our problems are tuples of numbers in [k].

For fixed d, h we are interested in how the size (number of states) of BPs solv-

ing FT% (k) and BT (k) grows with k. One of our contributions is an alternative
approach to Neciporuk’s lower bound method [Ne¢66] for this size. Applied to
the problem BTC?(k)7 our “state sequence” approach does as well as (but, so far,
no better than) Neéiporuk’s method. On the other hand, our approach does not
suffer in principle from the quadratic limitation inherent in Neciporuk’s method.
Hence there is hope that the approach can be extended. The current bottleneck
stands at height 4. Proving our conjectured lower bound of £2(k”/lgk) (writing
lg for log,) for the size of deterministic BPs solving BTy (k) would constitute a
breakthrough and would overcome the n? Neéiporuk limitation. However we do
not yet know how to do this.

The more specific contributions of this paper are the following:

we observe that for any d > 2 and unbounded r(h), a lower bound of the
form 2(k"(")) on the size of BPs solving FT (k) would prove BTy(h, k) ¢ L;

we prove tight black pebbling bounds for T;L and transfer the upper bounds

to size upper bounds of the form k9™ for deterministic k-way BPs for
FT!(k) and BT} (k);

we prove tight size bounds of O(k??~!) and ©(k*!~1/1gk) for deterministic
k-way BPs solving FT3(k) and BT3 (k) respectively;

we prove tight size bounds of ©(k3?/2=1/2) for nondeterministic k-way BPs
solving BT (k); in terms of input length, the argument yields an 2(n/2/(Ign)3/?)



bound for the number of states in nondeterministic binary BPs of arbitrary
outdegree, which improves slightly on the former £2(n®/?) bound obtained
for the number of edges [Pud87,Raz91] in such BPs;

— we give examples of functions, such as the restriction SumMods (k) of FT3 (k)
in which the root function is fixed to the sum modulo k, and the function
Childreni(k) which is required to simultaneously compute the root values
of two instances of FTj(k), for which the state sequence method yields a
better k-way BP size lower bound than a direct application of Neciporuk’s
method (22(k?) versus 2(k?) for SumMod3(k), and £2(k*) versus Q2(k?) for
Children3(k)).

Section 2 defines branching programs and pebbling. Section 3 relates peb-
bling and branching programs to Turing machine space, and proves the pebbling
bounds exploited in Section 4 to prove BP size upper bounds. BP lower bounds
obtained using the NecCiporuk method are stated in Subsection 4.1. Our state
sequence method is introduced in Subsection 4.2. The proofs left out of this
abstract will appear in the full version of the paper.

2 Preliminaries

We assume some familiarity with complexity theory, such as can be found in
[Gol08]. We write [k] for {1,2,...,k} and let k > 2.

‘Warning: Recall that the height of a tree is the number of levels in the tree, as
opposed to the distance from root to leaf. Thus T3 has just 3 nodes.

2.1 Branching programs

Many variants of the branching program model have been studied [Raz91,Weg00].
Our definition below is inspired by Wegener [Weg00, p. 239], by the k-way
branching program of Borodin and Cook [BC82] and by its nondeterministic
variant [BRS93,GKMO08]. We depart from the latter however in two ways: non-
deterministic branching program labels are attached to states rather than edges
(because we think of branching program states as Turing machine configura-
tions) and cycles in branching programs are allowed (because our lower bounds
apply to this more powerful model).

Definition 2.1 (Branching programs) A nondeterministic k-way branching
program B computing a total function g : [k]™ — R, where R is a finite set,
s a directed rooted multi-graph whose nodes are called states. Fvery edge has
a label from [k]. Every state has a label from [m], except |R| final sink states
consecutively labelled with the elements from R. An input (x1,...,%m) € [k]™
activates, for each 1 < j < m, every edge labelled x; out of every state labelled
j. A computation on input & = (z1,...,2m) € [k]™ is a directed path consisting
of edges activated by T which begins with the unique start state (the root), and
either it is infinite, or it ends in the final state labelled g(x1, ..., xy), or it ends



in a nonfinal state labelled j with no outedge labelled x; (in which case we say the
computation aborts). At least one such computation must end in a final state.
The size of B is its number of states. B is deterministic k-way if every non-final
state has precisely k outedges labelled 1,... k. B is binary if k = 2.

We say that B solves a decision problem (relation) if it computes the char-
acteristic function of the relation.

A k-way branching program computing the function FT! (k) requires k% k-
ary arguments for each internal node i of T(? in order to specify the function
fi, together with one k-ary argument for each leaf. Thus in the notation of
Definition 1.1 FT?(k): [k]™ — R where R = [k] and m = d" o1 pd g ght,
Also BT/ (k): [k]™ — {0,1}.

We define #detFstates’; (k) (resp. #ndetFstates’(k)) to be the minimum num-
ber of states required for a deterministic (resp. nondeterministic) k-way branch-
ing program to solve FT7 (k). Similarly, #detBstates!; (k) and #ndetBstates’; (k)
denote the number of states for solving BT (k).

The next lemma is easy to prove and shows that the function problem is not
much harder to solve than the Boolean problem.

Lemma 2.2 #detBstates! (k) < #detFstates’s (k) < k - #detBstates" (k) and
#ndetBstates” (k) < #ndetFstates” (k) < k - #ndetBstates’; (k).

d—1

2.2 Pebbling

The pebbling game for dags was defined by Paterson and Hewitt [PH70] and was
used as an abstraction for deterministic Turing machine space in [Coo74]. Black-
white pebbling was introduced in [CS76] as an abstraction of nondeterministic
Turing machine space (see [Nor09] for a recent survey).

We will only make use of a simple ‘black pebbling’ game in this paper. Here
a pebble can be placed on any leaf node, and in general if all children of a node i
have pebbles, then one of the pebbles on the children can be moved to ¢ (this is
a “sliding” move). The goal is to pebble the root. A pebbling of a tree T using p
pebbles is any sequence of pebbling moves on nodes of T' which starts and ends
with no pebbles, and at some point the root is pebbled, and no configuration
has more than p pebbles.

We allow “sliding moves” as above (as opposed to placing a new pebble on
node i) because we want pebbling algorithms for trees to closely correspond to
k-way branching program algorithms for the tree evaluation problem.

We use #pebbles(T) to denote the minimum number of pebbles required to
pebble T'. The following result is proved easily using standard techniques.

Theorem 2.3. For every d,h > 2, #pebbles(T?) = (d — 1)h — d + 2.

3 Connecting TMs, BPs, and Pebbling

Let FTy(h,k) be the same as FT? (k) except now the inputs vary with both h
and k, and we assume the input to FTy(h,k) is a binary string X which codes



h and k and codes each node function f; for the tree T by a sequence of k¢
binary numbers and each leaf value by a binary number in [k], so X has length

| X| = O(d"k1gk) (1)

The output is a binary number in [k] giving the value of the root. The problem
BT,(h,k) is the Boolean version of FT;(h,k): The input is the same, and the
instance is true iff the value of the root is 1.

Obviously BTy(h, k) and FT4(h, k) can be solved in polynomial time, but we
can prove a stronger result.

Theorem 3.1. For each d > 2 the problem BT4(h, k) is in LogDCFL.

The best known upper bounds on the number of states required by a BP
to solve FT} (k) grow as k(M. The next result shows (Corollary 3.3) that any
provable nontrivial dependency on h, for the power of k expressing the minimum
number of such states, would separate L, and perhaps NL (deterministic and
nondeterministic log space), from LogDCFL.

Theorem 3.2. For each d > 2, if BTy(h,k) is in L (resp. NL) then there is a
constant wq and a function cq(h) such that #detFstates’ (k) < cq(h)k“® (resp.
#ndetFstates’ (k) < cq(h)k“e) for all h,k > 2.

Proof. By Lemma 2.2, arguing for #detBstates’ (k) and #ndetBstates’ (k) in-
stead of #detFstates” (k) and #ndetFstates’ (k) suffices. In general a Turing ma-
chine which can enter at most C' different configurations on all inputs of a given
length n can be simulated (for inputs of length n) by a binary (and hence k-ary)
branching program with C' states. Each Turing machine using space O(lgn) has
at most n® possible configurations on any input of length n > 2, for some constant
c. By (1) the input for BT,(h,k) has length n = O(d"k%1gk), so there are at
most (d"k%1g k:)c, possible configurations for a log space Turing machine solving
BTy (h, k), for some constant ¢’. So we can take cq(h) = d" and wg = ¢ (d+1).
O

Corollary 3.3 Fiz d > 2 and any unbounded function r(h). If #detFstates” (k)
(resp. #ndetFstates) (k)) € (k™M) then BTy(h,k) ¢ L (resp. ¢ NL).

The next result connects pebbling upper bounds with BP upper bounds.

Theorem 3.4. IchﬁI can be pebbled with p pebbles, then deterministic branching
programs with O(kP) states can solve FT (k) and BT} (k).

Corollary 3.5 #detFstates! (k) = O(k#pebb'es(Tu?)).



4 Branching Program Bounds

In this section we prove optimal bounds (up to a constant factor) for the number
of states required for both deterministic and nondeterministic k-way branching
programs to solve the Boolean problems BT (k) for all trees of height 3. (The
bound is obviously ©(k?) for trees of height 2, because there are d + k¢ input
variables.) We also prove bounds for the function problem FT (k).

For the deterministic case our nearly best bounds come from pebbling via
Theorem 3.4, although we can improve on them for BT (k) by a factor of Ig k.

Theorem 4.1 (BP Upper Bounds).

#detBstates; (k) = O(kd-Dh=d+2) (2)
#detFstates) (k) = O(k(4~Dh=d+2) (3)
#ndetBstates (k) = O(k°/?) (4)
#detBstates); (k) = O(K(4" V=442 /19 k), for h >3 (5)

We can combine the above upper bounds with the Neciporuk lower bounds
in Subsection 4.1, Figure 2, to obtain the following tight bounds.

Corollary 4.2 (Height 3 trees)

#ndetBstates (k) = O(k*/?)
#detBstatess (k) = O(k*71/1gk)
#detFstates) (k) = O(k?1).

4.1 The Neciporuk method

The Neciporuk method still yields the strongest explicit binary branching pro-
2
gram size lower bounds known today, namely Q((lg”T)g) for deterministic [Ne¢66]

and Q( ) for nondeterministic (albeit for a weaker nondeterministic model in
which states have bounded outdegree [Pud87], see [Raz91]).

By applying the Neciporuk method to a k-way branching program B comput-
ing a function f : [k]™ — R, we mean the following well known steps [Nec66]:

1. Upper bound the number N(s,v) of (syntactically) distinct branching pro-
grams of type B having s non-final states, each labelled by one of v variables.

2. Pick a partition {V1,...,V,} of [m].

3. For 1 < i < p, lower bound the number v (f) of restrictions fy, : [k]/Vil — R
of f obtainable by fixing values of the variables in [m] \ V;.

4. Then size(B) > |R| + 3, <;<, i, where s; = min{ s : N(s, [V;[) > rv;(f) }-

Theorem 4.3. Applying the Neciporuk method yields Figure 2.



Model H Lower bound for FT% (k) H Lower bound for BT (k)

Deterministic k-way d""?-1  2d-1 dh—2_1 241t
. —1)2 —1)2
branching program 4d-1) 3d-1) lgk
Deterministic binary d"?-1 p2d _ 0,2 2 =21 k24 _ 2 3
. =02(n*/(lgn i =0 /(Ign

branching program 5(d-1)% (n”/(1gn)”) dd(d—1) gk (n”/(1gn)")
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Nondeterministic bi-||a"—2-1 -k%\/lgi: Qn?'?/1gn) ah2-1 3 2(n?/2)(1gn)*'?)

2d—2 2d—2

nary BP

Fig. 2. Size bounds, expressed in terms of n = ©(k?1gk) in the binary cases, obtained
by applying the Neciporuk method. Rectangles indicate optimality in k& when h = 3
(Cor. 4.2). Improving any entry to 2(k""Pounded (1)) would prove L € P (Cor. 3.3).

Remark 4.4. The 2(n*/2/(1gn)?/?) binary nondeterministic BP lower bound for
the BT (k) problem and in particular for BT3 (k) applies to the number of states
when these can have arbitrary outdegree. This seems to improve on the best
known former bound of £2(n%/2/1gn), slightly larger but obtained for the weaker
model in which states have bounded degree, or equivalently, for the switching
and rectifier network model in which size is defined as the number of edges
[Pud87,Raz91].

Let Children! (k) have the same input as FT7 (k) with the exception that
the root function is deleted. The output is the tuple (vg,vs,...,v441) of values
for the children of the root.

Theorem 4.5. For any d,h > 2, the best k-way deterministic BP size lower
bound attainable for Childrenlt(k) by applying the Neciporuk method is 2(k?3~1).

Proof. The function Children”t(k) : [k]™ — R has m = ©(k?). Any partition
{Vi,...,Vp} of the set of k-ary input variables thus has p = O(k?). Claim:
for each ¢, the best attainable lower bound on the number of states querying
variables from V; is O(k?~1).

Consider such a set V;, |V;| = v > 1. Here |R| = k¢, so the number
N j;:vay(s,v) of distinct deterministic BPs having s non-final states querying

variables from V; satisfies

Nar™ (5,0) 2 12 (s + |R)™ 2 (14 k9)F = kP,
Hence the estimate used in the Neciporuk method to upper bound N, je:v (s,v)
will be at least k9°*. On the other hand, the number of functions fy, : [k]* — R
obtained by fixing variables outside of V; cannot exceed kO since the number
of variables outside V; is ©(k?). Hence the best lower bound on the number of
states querying variables from V; obtained by applying the method will be no



larger than the smallest s verifying ek < k%* for some ¢ depending on d and
k. This proves our claim since then this number is at most s = O(k?~1). (]

Let SumMod!;(k) have the same input as FT?(k) with the exception that
the root function is preset to the sum modulo k. In other words the output is
vg +v3+ -+ vg41 mod k.

Theorem 4.6. The best k-way deterministic BP size lower bound attainable for
SumMod3(k) by applying the Neciporuk method is 2(k?).

4.2 The state sequence method

Here we give alternative proofs for some of the lower bounds given in Section
4.1. These proofs are more intricate than the Neciporuk proofs but they do not
suffer a priori from a quadratic limitation. The method also yields stronger lower
bounds to Childrenj(k) and SumModj(k) than those obtained by applying the
Neciporuk’s method as expressed in Subsection 4.1 (see Theorems 4.5 and 4.6).

Theorem 4.7. #ndetBstatess (k) > k25 for sufficiently large k.

Proof. Consider an input I to BTg (k). We number the nodes in T as in Figure
1, and let vJI- denote the value of node j under input I. We say that a state in
a computation on input I learns va-
27,27 + 1 are the children of node j).
Definition [Learning Interval] Let B be a k-way nondeterministic BP that
solves BT3 (k). Let C = 0,71, ,yr be a computation of B on input I. We
say that a state ; in the computation is critical if one or more of the following
holds:

if that state queries f](vg;,v3;,,) (recall

1.i=0o0rt=T
2. v; learns vl and there is an earlier state which learns vi with no intervening

state that learns v .

3. 7 learns v and no earlier state learns vl unless an intervening state learns

ol.

We say that a subsequence vy;,Yiy1,--7y; S a learning interval if v; and vy; are
consecutive critical states. The interval is type 3 if 7; learns vi, and otherwise
the interval is type 2.

Thus type 2 learning intervals begin with o or a state which learns v, and
never learn vl until the last state, and type 3 learning intervals begin with a
state which learns v{ and never learn v{ until the last state.

Now let B be as above, and for j € {2,3} let I; be the set of all states of B
which query the input function f;. We will prove the theorem by showing that
for large k

|| + || > E*VE. (6)

For r, s € [k] let F}:% be the set of inputs I to B whose four leaves are labelled

yes
r,s,7,s respectively, whose middle node functions f{ and fI are identically 0



except fi(r,s) = vk and fi(r,s) = vi, and f{(vi,vl) =1 (so v{ = 1). Thus
each such I is a “YES input’, and should be accepted by B.
Note that each member I of F/;% is uniquely specified by a triple

(v3,v3, f{) where f{ (v}, vf) =1 (7)

and hence F,:7 has exactly k> (2"'2_1) members.

For j € {2,3} and r,s € [k] let I',>” be the subset of I'; consisting of those
states which query f;(r,s). Then I'; is the disjoint union of Fjr’s over all pairs
(r,s) in [k] x [k]. Hence to prove (6) it suffices to show

|55+ 1157°) > vk (®)

for large k and all r, s in [k]. We will show this by showing
(57 + D37 +1) > k/2 (9)

for all k¥ > 2. (Note that given the product, the sum is minimized when the
summands are equal.)

For each input I in Fy;5 we associate a fixed accepting computation C(I) of
B on input [.

Now fix 7, s € [k]. For a,b € [k] and f : [k] x [k] — {0,1} with f(a,b) =1 we
use (a,b, f) to denote the input I in Fy.3 it represents as in (7).

To prove (9), the idea is that if it is false, then as I varies through all inputs
(a,b, f) in Fy; there are too few states learning vl = a and vl = b to verify that
f(a,b) = 1. Specifically, we can find a, b, f, g such that f(a,b) =1 and g(a,b) =0,
and by cutting and pasting the accepting computation C(a, b, f) with accepting
computations of the form C(a, ¥, g) and C(a’, b, g) we can construct an accepting
computation of the ‘NO input’ (a,b, g).

We may assume that the branching program B has a unique initial state g
and a unique accepting state dacc.

For j € {2,3}, a,b € [k] and f : [k] x [k] — {0,1} with f(a,b) = 1 define
@;(a,b, f) to be the set of all state pairs (vy, §) such that there is a type j learning
interval in C(a,b, f) which begins with v and ends with 4. Note that if j = 2
then v € (I5°U{v}) and 6 € (I3 U{dacc}), and if j = 3 then v € I'3"® and
d € (I3 U{dacc})

To complete the definition, define ¢;(a,b, f) = @ if f(a,b) = 0.

For j € {2,3} and f : [k] x [k] — {0,1} we define a function ¢;[f] from [k]
to sets of state pairs as follows:

902[.](.}(0’) = U SOQ(GH b, f) g SQ
be[k]
()03[f](b) = U @3(&7 ba f) - SS

a€k]

where Sy = (I3° U{v0}) X (I'y°" U{dacc}) and Sz =Iy° x (Iy* U{bacc}).



For each f the function ¢;[f] can be specified by listing a k-tuple of subsets of
S;, and hence there are at most 2" 1531 distinct such functions as f ranges over the
2+* Boolean functions on [k] x [k], and hence there are at most 2(S21+15:) pairs
of functions (p2[f], ps[f]). If we assume that (9) is false, we have |Sz|+ |S3| < k.
Hence by the pigeonhole principle there must exist distinct Boolean functions
f, g such that ps[f] = p2[g] and @3[f] = @3g].

Since f and g are distinct we may assume that there exist a,b such that
f(a,b) =1 and g(a,b) = 0. Since @3[f](a) = p2lg](a), if (v,0) are the endpoints
of a type 2 learning interval in C(a,b, f) there exists b such that (v,d) are
the endpoints of a type 2 learning interval in C(a,b’,g) (and hence g(a,b’) =
1). Similarly, if (v, ) are endpoints of a type 3 learning interval in C(a,b, f)
there exists a’ such that (v, d) are the endpoints of a type 3 learning interval in
C(a',b, f).

Now we can construct an accepting computation for the ‘NO input’ (a, b, g)
from C(a, b, f) by replacing each learning interval beginning with some « and end-
ing with some § by the corresponding learning interval in C(a, b, g) or C(da’, b, g).
(The new accepting computation has the same sequence of critical states as
C(a,b, f).) This works because a type 2 learning interval never queries v3 and a
type 3 learning interval never queries vs.

This completes the proof of (9) and the theorem. O

Theorem 4.8. Every deterministic branching program that solves BT3 (k) has
at least k3 /1gk states for sufficiently large k.

Proof. We modify the proof of Theorem 4.7. Let B be a deterministic BP which
solves BT3(k), and for j € {2,3} let I'; be the set of states in B which query f;
(as before). It suffices to show that for sufficiently large k

|[To| + 13 > K2/ g k. (10)

For r,s € [k] we define the set F'™* to be the same as F}. except that we
remove the restriction on f{. Hence there are exactly |22k inputs in F™5.
As before, for j € {2,3}, I'; is the disjoint union of I'™* for r,s € [k]. Thus

to prove (10) it suffices to show that for sufficiently large k and all 7, s in [k]

3

+ |15 > k/ gy k. (11)

We may assume there are unique start, accepting, and rejecting states vo, d acc,
5REJ. Fix r,s e [k‘}
For each root function f : [k] x [k] — {0,1} we define the functions

Yol f] = [k] x (Iy° U{v}) = (I3 U{dacc,dres})
Ys[f] : [k] x I'y® — (I'y* U{dacc,drEs})

by ¥a[f](a,y) = § if § is the next critical state after v in a computation with input
(a,b, ) (this is independent of b), or § = dgpy if there is no such critical state.
Similarly 13[f](b,d) = v if v is the next critical state after § in a computation

10



with input (a,b, f) (this is independent of a), or § = drgy if there is no such
critical state.

CLAIM: The pair of functions (¢2[f], 13[f]) is distinet for distinct f.

For suppose otherwise. Then there are f,g such that is[f] = 12[g] and
Y3[f] = wslg] but f(a,b) # g(a,b) for some a,b. But then the sequences of
critical states in the two computations C(a,b, f) and C(a,b,g) must be the
same, and hence the computations either accept both (a,b, f) and (a,b,g) or
reject both. So the computations cannot both be correct.

Finally we prove (11) from the CLAIM. Let sy = |I,"°| and let s3 = [I3°°,
and let s = s9 + s3. Then the number of distinct pairs (12,%3) is at most

(83 4 2)k(82+1)(82 + 2)k53 S (8+ 2)k(s+1)
and since there are 2¢° functions f we have
2+ < (5 + 2)k(sTD)

so taking logs, k? < k(s +1)lgy(s +2) so k/lgy(s+2) < s+ 1, and (11) follows.
(|

Recall from Theorem 4.5 that applying the Nec¢iporuk method to Children (k)
yields an 2(k?®) size lower bound and from Theorem 4.6 that applying it to
SumMod3(k) yields £2(k?). The state sequence method also proves the next two
theorems.

Theorem 4.9. Any deterministic k-way BP for Childrens(k) has at least k* /2
states.

Theorem 4.10. Any deterministic k-way BP for SumModg(k‘) requires at least
k3 states.

5 Conclusion

Our main open question is whether we can adapt the state sequence method
to break the £2(n?) barrier for the size of deterministic branching programs. In
particular, can the method be extended to handle trees of height 47 Specifically,
can we prove a lower bound of 2(k”/lgk) for BT3 (k) (see Theorem 4.1)?

Another question arises from the O(k°/2) upper bound from Theorem 4.1.
Is there a pebbling to justify such a non-integral exponent? As it turns out, the
answer is yes. One can introduce fractional black-white pebbling and develop an
interesting theory. Our work on that issue will be the subject of another paper.
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