
Branching Programs for Tree Evaluation

Mark Braverman1, Stephen Cook2, Pierre McKenzie3, Rahul Santhanam4, and
Dustin Wehr2

1 Microsoft Research
2 University of Toronto

3 Université de Montréal
4 University of Edinburgh

Abstract. The problem FT h
d (k) consists in computing the value in

[k] = {1, . . . , k} taken by the root of a balanced d-ary tree of height
h whose internal nodes are labelled with d-ary functions on [k] and
whose leaves are labelled with elements of [k]. We propose FT h

d (k) as
a good candidate for witnessing L (LogDCFL. We observe that the
latter would follow from a proof that k-way branching programs solv-
ing FT h

d (k) require Ω(kunbounded function(h)) size. We introduce a “state
sequence” method that can match the size lower bounds on FT h

d (k)
obtained by the Nec̆iporuk method and can yield slightly better (yet
still subquadratic) bounds for some nonboolean functions. Both methods
yield the tight bounds Θ(k3) and Θ(k5/2) for deterministic and nonde-
terministic branching programs solving FT 3

2 (k) respectively. We propose
as a challenge to break the quadratic barrier inherent in the Nec̆iporuk
method by adapting the state sequence method to handle FT 4

d (k).

1 Introduction

Let Th
d be the balanced d-ary ordered tree Th

d of height h, where we take height
to mean the number of levels in the tree and we number the nodes as suggested
by the heap data structure. Thus the root is node 1, and in general the children
of node i are (when d = 2) nodes 2i, 2i+ 1 (see Figure 1). For every d, h, k ≥ 2
we define the Tree Evaluation problem and its associated decision problem:

Definition 1.1 (FTh
d (k) and BTh

d (k))
Given: Th

d with each non-leaf node i independently labelled with a function fi :
[k]d → [k] and each leaf node independently labelled with an element from [k].
Function evaluation problem FTh

d (k): Compute the value v1 ∈ [k] of the root 1
of Th

d , where in general vi = a if i is a leaf labelled a, and vi = fi(vj1 , . . . , vjd
)

if j1, . . . , jd are the children of i.
Boolean evaluation problem BTh

d (k): Decide whether v1 = 1.

In the context of uniform complexity measures such as Turing machine space
we rewrite FTh

d (k) and BTh
d (k) as FTd(h, k) and BTd(h, k) to indicate that d is

fixed but h, k are input parameters. It is not hard to show that for each d ≥ 2 a
deterministic logspace-bounded poly-time auxiliary pushdown automaton solves

Fig. 1. A height 3 binary tree T 3
2 with nodes numbered heap style.

BTd(h, k), implying by [Sud78] that BTd(h, k) belongs to the class LogDCFL of
languages logspace reducible to a deterministic context-free language. We know
L ⊆ LogDCFL ⊆ P (see [Mah07] for up to date information on LogDCFL).
The special case BTd(h, 2) was investigated under a different name in [KRW95]
as part of an attempt to separate NC1 from NC2. In this paper, we suggest
investigating the space complexity of BTd(h, k) and FTd(h, k).

We choose to study the Tree Evaluation problem as a particularly interesting
candidate for non-membership in L or NL (deterministic or nondeterministic log
space) because pebble games on trees provide natural space bounded algorithms
for solving it: Black pebbling provides deterministic algorithms and, though we
do not consider these in this paper, black-white pebbling provides nondetermin-
istic algorithms. We choose k-way branching programs (BPs) as our model of
Turing machine because the inputs to our problems are tuples of numbers in [k].

For fixed d, h we are interested in how the size (number of states) of BPs solv-
ing FTh

d (k) and BTh
d (k) grows with k. One of our contributions is an alternative

approach to Nec̆iporuk’s lower bound method [Nec̆66] for this size. Applied to
the problem BTh

d (k), our “state sequence” approach does as well as (but, so far,
no better than) Nec̆iporuk’s method. On the other hand, our approach does not
suffer in principle from the quadratic limitation inherent in Nec̆iporuk’s method.
Hence there is hope that the approach can be extended. The current bottleneck
stands at height 4. Proving our conjectured lower bound of Ω(k7/ lg k) (writing
lg for log2) for the size of deterministic BPs solving BT 4

3 (k) would constitute a
breakthrough and would overcome the n2 Nec̆iporuk limitation. However we do
not yet know how to do this.

The more specific contributions of this paper are the following:

– we observe that for any d ≥ 2 and unbounded r(h), a lower bound of the
form Ω(kr(h)) on the size of BPs solving FTh

d (k) would prove BTd(h, k) /∈ L;
– we prove tight black pebbling bounds for Th

d and transfer the upper bounds
to size upper bounds of the form kO(h) for deterministic k-way BPs for
FTh

d (k) and BTh
d (k);

– we prove tight size bounds of Θ(k2d−1) and Θ(k2d−1/ lg k) for deterministic
k-way BPs solving FT 3

d (k) and BT 3
d (k) respectively;

– we prove tight size bounds of Θ(k3d/2−1/2) for nondeterministic k-way BPs
solvingBT 3

d (k); in terms of input length, the argument yields anΩ(n3/2/(lg n)3/2)

2

bound for the number of states in nondeterministic binary BPs of arbitrary
outdegree, which improves slightly on the former Ω(n3/2) bound obtained
for the number of edges [Pud87,Raz91] in such BPs;

– we give examples of functions, such as the restriction SumMod3
2(k) of FT 3

2 (k)
in which the root function is fixed to the sum modulo k, and the function
Children4

2(k) which is required to simultaneously compute the root values
of two instances of FT 3

2 (k), for which the state sequence method yields a
better k-way BP size lower bound than a direct application of Nec̆iporuk’s
method (Ω(k3) versus Ω(k2) for SumMod3

2(k), and Ω(k4) versus Ω(k3) for
Children4

2(k)).

Section 2 defines branching programs and pebbling. Section 3 relates peb-
bling and branching programs to Turing machine space, and proves the pebbling
bounds exploited in Section 4 to prove BP size upper bounds. BP lower bounds
obtained using the Nec̆iporuk method are stated in Subsection 4.1. Our state
sequence method is introduced in Subsection 4.2. The proofs left out of this
abstract will appear in the full version of the paper.

2 Preliminaries

We assume some familiarity with complexity theory, such as can be found in
[Gol08]. We write [k] for {1, 2, . . . , k} and let k ≥ 2.
Warning: Recall that the height of a tree is the number of levels in the tree, as
opposed to the distance from root to leaf. Thus T 2

2 has just 3 nodes.

2.1 Branching programs

Many variants of the branching program model have been studied [Raz91,Weg00].
Our definition below is inspired by Wegener [Weg00, p. 239], by the k-way
branching program of Borodin and Cook [BC82] and by its nondeterministic
variant [BRS93,GKM08]. We depart from the latter however in two ways: non-
deterministic branching program labels are attached to states rather than edges
(because we think of branching program states as Turing machine configura-
tions) and cycles in branching programs are allowed (because our lower bounds
apply to this more powerful model).

Definition 2.1 (Branching programs) A nondeterministic k-way branching
program B computing a total function g : [k]m → R, where R is a finite set,
is a directed rooted multi-graph whose nodes are called states. Every edge has
a label from [k]. Every state has a label from [m], except |R| final sink states
consecutively labelled with the elements from R. An input (x1, . . . , xm) ∈ [k]m

activates, for each 1 ≤ j ≤ m, every edge labelled xj out of every state labelled
j. A computation on input ~x = (x1, . . . , xm) ∈ [k]m is a directed path consisting
of edges activated by ~x which begins with the unique start state (the root), and
either it is infinite, or it ends in the final state labelled g(x1, . . . , xm), or it ends

3

in a nonfinal state labelled j with no outedge labelled xj (in which case we say the
computation aborts). At least one such computation must end in a final state.
The size of B is its number of states. B is deterministic k-way if every non-final
state has precisely k outedges labelled 1, . . . , k. B is binary if k = 2.

We say that B solves a decision problem (relation) if it computes the char-
acteristic function of the relation.

A k-way branching program computing the function FTh
d (k) requires kd k-

ary arguments for each internal node i of Th
d in order to specify the function

fi, together with one k-ary argument for each leaf. Thus in the notation of

Definition 1.1 FTh
d (k): [k]m → R where R = [k] and m = dh−1−1

d−1 · kd + dh−1.

Also BTh
d (k): [k]m → {0, 1}.

We define #detFstates
h
d(k) (resp. #ndetFstates

h
d(k)) to be the minimum num-

ber of states required for a deterministic (resp. nondeterministic) k-way branch-
ing program to solve FTh

d (k). Similarly, #detBstates
h
d(k) and #ndetBstates

h
d(k)

denote the number of states for solving BTh
d (k).

The next lemma is easy to prove and shows that the function problem is not
much harder to solve than the Boolean problem.

Lemma 2.2 #detBstates
h
d(k) ≤ #detFstates

h
d(k) ≤ k · #detBstates

h
d(k) and

#ndetBstates
h
d(k) ≤ #ndetFstates

h
d(k) ≤ k · #ndetBstates

h
d(k).

2.2 Pebbling

The pebbling game for dags was defined by Paterson and Hewitt [PH70] and was
used as an abstraction for deterministic Turing machine space in [Coo74]. Black-
white pebbling was introduced in [CS76] as an abstraction of nondeterministic
Turing machine space (see [Nor09] for a recent survey).

We will only make use of a simple ‘black pebbling’ game in this paper. Here
a pebble can be placed on any leaf node, and in general if all children of a node i
have pebbles, then one of the pebbles on the children can be moved to i (this is
a “sliding” move). The goal is to pebble the root. A pebbling of a tree T using p
pebbles is any sequence of pebbling moves on nodes of T which starts and ends
with no pebbles, and at some point the root is pebbled, and no configuration
has more than p pebbles.

We allow “sliding moves” as above (as opposed to placing a new pebble on
node i) because we want pebbling algorithms for trees to closely correspond to
k-way branching program algorithms for the tree evaluation problem.

We use #pebbles(T) to denote the minimum number of pebbles required to
pebble T . The following result is proved easily using standard techniques.

Theorem 2.3. For every d, h ≥ 2, #pebbles(Th
d) = (d− 1)h− d+ 2.

3 Connecting TMs, BPs, and Pebbling

Let FTd(h, k) be the same as FTh
d (k) except now the inputs vary with both h

and k, and we assume the input to FTd(h, k) is a binary string X which codes

4

h and k and codes each node function fi for the tree Th
d by a sequence of kd

binary numbers and each leaf value by a binary number in [k], so X has length

|X| = Θ(dhkd lg k) (1)

The output is a binary number in [k] giving the value of the root. The problem
BTd(h, k) is the Boolean version of FTd(h, k): The input is the same, and the
instance is true iff the value of the root is 1.

Obviously BTd(h, k) and FTd(h, k) can be solved in polynomial time, but we
can prove a stronger result.

Theorem 3.1. For each d ≥ 2 the problem BTd(h, k) is in LogDCFL.

The best known upper bounds on the number of states required by a BP
to solve FTh

d (k) grow as kΩ(h). The next result shows (Corollary 3.3) that any
provable nontrivial dependency on h, for the power of k expressing the minimum
number of such states, would separate L, and perhaps NL (deterministic and
nondeterministic log space), from LogDCFL.

Theorem 3.2. For each d ≥ 2, if BTd(h, k) is in L (resp. NL) then there is a
constant ωd and a function cd(h) such that #detFstates

h
d(k) ≤ cd(h)k

ωd (resp.
#ndetFstates

h
d(k) ≤ cd(h)k

ωd) for all h, k ≥ 2.

Proof. By Lemma 2.2, arguing for #detBstates
h
d(k) and #ndetBstates

h
d(k) in-

stead of #detFstates
h
d(k) and #ndetFstates

h
d(k) suffices. In general a Turing ma-

chine which can enter at most C different configurations on all inputs of a given
length n can be simulated (for inputs of length n) by a binary (and hence k-ary)
branching program with C states. Each Turing machine using space O(lg n) has
at most nc possible configurations on any input of length n ≥ 2, for some constant
c. By (1) the input for BTd(h, k) has length n = Θ(dhkd lg k), so there are at
most (dhkd lg k)c′ possible configurations for a log space Turing machine solving
BTd(h, k), for some constant c′. So we can take cd(h) = dc′h and ωd = c′(d+ 1).
�

Corollary 3.3 Fix d ≥ 2 and any unbounded function r(h). If #detFstates
h
d(k)

(resp. #ndetFstates
h
d(k)) ∈ Ω(kr(h)) then BTd(h, k) /∈ L (resp. /∈ NL).

The next result connects pebbling upper bounds with BP upper bounds.

Theorem 3.4. If Th
d can be pebbled with p pebbles, then deterministic branching

programs with O(kp) states can solve FTh
d (k) and BTh

d (k).

Corollary 3.5 #detFstates
h
d(k) = O(k#pebbles(T h

d)).

5

4 Branching Program Bounds

In this section we prove optimal bounds (up to a constant factor) for the number
of states required for both deterministic and nondeterministic k-way branching
programs to solve the Boolean problems BT 3

d (k) for all trees of height 3. (The
bound is obviously Θ(kd) for trees of height 2, because there are d + kd input
variables.) We also prove bounds for the function problem FTh

d (k).
For the deterministic case our nearly best bounds come from pebbling via

Theorem 3.4, although we can improve on them for BTh
2 (k) by a factor of lg k.

Theorem 4.1 (BP Upper Bounds).

#detBstates
h
d(k) = O(k(d−1)h−d+2) (2)

#detFstates
h
d(k) = O(k(d−1)h−d+2) (3)

#ndetBstates
3
2(k) = O(k5/2) (4)

#detBstates
h
d(k) = O(k(d−1)h−d+2/ lg k), for h ≥ 3 (5)

We can combine the above upper bounds with the Nec̆iporuk lower bounds
in Subsection 4.1, Figure 2, to obtain the following tight bounds.

Corollary 4.2 (Height 3 trees)

#ndetBstates
3
2(k) = Θ(k5/2)

#detBstates
3
d(k) = Θ(k2d−1/ lg k)

#detFstates
3
d(k) = Θ(k2d−1).

4.1 The Nec̆iporuk method

The Nec̆iporuk method still yields the strongest explicit binary branching pro-

gram size lower bounds known today, namely Ω(n2

(lg n)2) for deterministic [Nec̆66]

and Ω(n3/2

lg n) for nondeterministic (albeit for a weaker nondeterministic model in

which states have bounded outdegree [Pud87], see [Raz91]).
By applying the Nec̆iporuk method to a k-way branching program B comput-

ing a function f : [k]m → R, we mean the following well known steps [Nec̆66]:

1. Upper bound the number N(s, v) of (syntactically) distinct branching pro-
grams of type B having s non-final states, each labelled by one of v variables.

2. Pick a partition {V1, . . . , Vp} of [m].
3. For 1 ≤ i ≤ p, lower bound the number rVi

(f) of restrictions fVi
: [k]|Vi| → R

of f obtainable by fixing values of the variables in [m] \ Vi.
4. Then size(B) ≥ |R| + ∑

1≤i≤p si, where si = min{ s : N(s, |Vi|) ≥ rVi
(f) }.

Theorem 4.3. Applying the Nec̆iporuk method yields Figure 2.

6

Model Lower bound for FT h
d (k) Lower bound for BT h

d (k)

Deterministic k-way
branching program

dh−2
−1

4(d−1)2
· k2d−1 dh−2

−1
3(d−1)2

· k2d−1

lg k

Deterministic binary
branching program

dh−2
−1

5(d−1)2
· k2d = Ω(n2/(lg n)2) dh−2

−1
4d(d−1)

· k2d

lg k
= Ω(n2/(lg n)3)

Nondeterministic k-
way BP

dh−2
−1

2d−2
· k 3d

2
−

1

2

√
lg k dh−2

−1
2d−2

· k 3d
2

−

1

2

Nondeterministic bi-
nary BP

dh−2
−1

2d−2
· k 3d

2

√
lg k = Ω(n3/2/ lg n) dh−2

−1
2d−2

· k 3d
2 = Ω(n3/2/(lg n)3/2)

Fig. 2. Size bounds, expressed in terms of n = Θ(kd lg k) in the binary cases, obtained
by applying the Nec̆iporuk method. Rectangles indicate optimality in k when h = 3
(Cor. 4.2). Improving any entry to Ω(kunbounded f(h)) would prove L (P (Cor. 3.3).

Remark 4.4. The Ω(n3/2/(lg n)3/2) binary nondeterministic BP lower bound for
the BTh

d (k) problem and in particular for BT 3
2 (k) applies to the number of states

when these can have arbitrary outdegree. This seems to improve on the best
known former bound of Ω(n3/2/ lg n), slightly larger but obtained for the weaker
model in which states have bounded degree, or equivalently, for the switching
and rectifier network model in which size is defined as the number of edges
[Pud87,Raz91].

Let Childrenh
d(k) have the same input as FTh

d (k) with the exception that
the root function is deleted. The output is the tuple (v2, v3, . . . , vd+1) of values
for the children of the root.

Theorem 4.5. For any d, h ≥ 2, the best k-way deterministic BP size lower
bound attainable for Childrenh

d(k) by applying the Nec̆iporuk method is Ω(k2d−1).

Proof. The function Childrenh
d(k) : [k]m → R has m = Θ(kd). Any partition

{V1, . . . , Vp} of the set of k-ary input variables thus has p = O(kd). Claim:
for each i, the best attainable lower bound on the number of states querying
variables from Vi is O(kd−1).

Consider such a set Vi, |Vi| = v ≥ 1. Here |R| = kd, so the number

Nk-way
det (s, v) of distinct deterministic BPs having s non-final states querying

variables from Vi satisfies

Nk-way
det (s, v) ≥ 1s · (s+ |R|)sk ≥ (1 + kd)sk ≥ kdsk.

Hence the estimate used in the Nec̆iporuk method to upper bound Nk-way
det (s, v)

will be at least kdsk. On the other hand, the number of functions fVi
: [k]v → R

obtained by fixing variables outside of Vi cannot exceed kO(kd) since the number
of variables outside Vi is Θ(kd). Hence the best lower bound on the number of
states querying variables from Vi obtained by applying the method will be no

7

larger than the smallest s verifying kckd ≤ kdsk for some c depending on d and
k. This proves our claim since then this number is at most s = O(kd−1). �

Let SumModh
d(k) have the same input as FTh

d (k) with the exception that
the root function is preset to the sum modulo k. In other words the output is
v2 + v3 + · · · + vd+1 mod k.

Theorem 4.6. The best k-way deterministic BP size lower bound attainable for
SumMod3

2(k) by applying the Nec̆iporuk method is Ω(k2).

4.2 The state sequence method

Here we give alternative proofs for some of the lower bounds given in Section
4.1. These proofs are more intricate than the Nec̆iporuk proofs but they do not
suffer a priori from a quadratic limitation. The method also yields stronger lower
bounds to Children4

2(k) and SumMod3
2(k) than those obtained by applying the

Nec̆iporuk’s method as expressed in Subsection 4.1 (see Theorems 4.5 and 4.6).

Theorem 4.7. #ndetBstates
3
2(k) ≥ k2.5 for sufficiently large k.

Proof. Consider an input I to BT 3
2 (k). We number the nodes in T 3

2 as in Figure
1, and let vI

j denote the value of node j under input I. We say that a state in

a computation on input I learns vI
j if that state queries f I

j (vI
2j , v

I
2j+1) (recall

2j, 2j + 1 are the children of node j).
Definition [Learning Interval] Let B be a k-way nondeterministic BP that
solves BT 3

2 (k). Let C = γ0, γ1, · · · , γT be a computation of B on input I. We
say that a state γi in the computation is critical if one or more of the following
holds:

1. i = 0 or i = T
2. γi learns vI

2 and there is an earlier state which learns vI
3 with no intervening

state that learns vI
2 .

3. γi learns vI
3 and no earlier state learns vI

3 unless an intervening state learns
vI
2 .

We say that a subsequence γi, γi+1, · · · γj is a learning interval if γi and γj are
consecutive critical states. The interval is type 3 if γi learns vI

3 , and otherwise
the interval is type 2.

Thus type 2 learning intervals begin with γ0 or a state which learns vI
2 , and

never learn vI
3 until the last state, and type 3 learning intervals begin with a

state which learns vI
3 and never learn vI

2 until the last state.
Now let B be as above, and for j ∈ {2, 3} let Γj be the set of all states of B

which query the input function fj . We will prove the theorem by showing that
for large k

|Γ2| + |Γ3| > k2
√
k. (6)

For r, s ∈ [k] let F r,s
yes be the set of inputs I to B whose four leaves are labelled

r, s, r, s respectively, whose middle node functions f I
2 and f I

3 are identically 0

8

except f I
2 (r, s) = vI

2 and f I
3 (r, s) = vI

3 , and f I
1 (vI

2 , v
I
3) = 1 (so vI

1 = 1). Thus
each such I is a ‘YES input’, and should be accepted by B.

Note that each member I of F r,s
yes is uniquely specified by a triple

(vI
2 , v

I
3 , f

I
1) where f I

1 (vI
2 , v

I
3) = 1 (7)

and hence F r,s
yes has exactly k2(2k2−1) members.

For j ∈ {2, 3} and r, s ∈ [k] let Γ r,s
j be the subset of Γj consisting of those

states which query fj(r, s). Then Γj is the disjoint union of Γ r,s
j over all pairs

(r, s) in [k] × [k]. Hence to prove (6) it suffices to show

|Γ r,s
2 | + |Γ r,s

3 | >
√
k (8)

for large k and all r, s in [k]. We will show this by showing

(|Γ r,s
2 | + 1)(|Γ r,s

3 | + 1) ≥ k/2 (9)

for all k ≥ 2. (Note that given the product, the sum is minimized when the
summands are equal.)

For each input I in F r,s
yes we associate a fixed accepting computation C(I) of

B on input I.
Now fix r, s ∈ [k]. For a, b ∈ [k] and f : [k]× [k] → {0, 1} with f(a, b) = 1 we

use (a, b, f) to denote the input I in F r,s
yes it represents as in (7).

To prove (9), the idea is that if it is false, then as I varies through all inputs
(a, b, f) in F r,s

yes there are too few states learning vI
2 = a and vI

3 = b to verify that
f(a, b) = 1. Specifically, we can find a, b, f, g such that f(a, b) = 1 and g(a, b) = 0,
and by cutting and pasting the accepting computation C(a, b, f) with accepting
computations of the form C(a, b′, g) and C(a′, b, g) we can construct an accepting
computation of the ‘NO input’ (a, b, g).

We may assume that the branching program B has a unique initial state γ0

and a unique accepting state δACC .
For j ∈ {2, 3}, a, b ∈ [k] and f : [k] × [k] → {0, 1} with f(a, b) = 1 define

ϕj(a, b, f) to be the set of all state pairs (γ, δ) such that there is a type j learning
interval in C(a, b, f) which begins with γ and ends with δ. Note that if j = 2
then γ ∈ (Γ r,s

2 ∪ {γ0}) and δ ∈ (Γ r,s
3 ∪ {δACC}), and if j = 3 then γ ∈ Γ r,s

3 and
δ ∈ (Γ r,s

2 ∪ {δACC})
To complete the definition, define ϕj(a, b, f) = ∅ if f(a, b) = 0.
For j ∈ {2, 3} and f : [k] × [k] → {0, 1} we define a function ϕj [f] from [k]

to sets of state pairs as follows:

ϕ2[f](a) =
⋃

b∈[k]

ϕ2(a, b, f) ⊆ S2

ϕ3[f](b) =
⋃

a∈[k]

ϕ3(a, b, f) ⊆ S3

where S2 = (Γ r,s
2 ∪ {γ0}) × (Γ r,s

3 ∪ {δACC}) and S3 = Γ r,s
3 × (Γ r,s

2 ∪ {δACC}).

9

For each f the function ϕj [f] can be specified by listing a k-tuple of subsets of
Sj , and hence there are at most 2k|Sj | distinct such functions as f ranges over the

2k2

Boolean functions on [k]× [k], and hence there are at most 2k(|S2|+|S3|) pairs
of functions (ϕ2[f], ϕ3[f]). If we assume that (9) is false, we have |S2|+ |S3| < k.
Hence by the pigeonhole principle there must exist distinct Boolean functions
f, g such that ϕ2[f] = ϕ2[g] and ϕ3[f] = ϕ3[g].

Since f and g are distinct we may assume that there exist a, b such that
f(a, b) = 1 and g(a, b) = 0. Since ϕ2[f](a) = ϕ2[g](a), if (γ, δ) are the endpoints
of a type 2 learning interval in C(a, b, f) there exists b′ such that (γ, δ) are
the endpoints of a type 2 learning interval in C(a, b′, g) (and hence g(a, b′) =
1). Similarly, if (γ, δ) are endpoints of a type 3 learning interval in C(a, b, f)
there exists a′ such that (γ, δ) are the endpoints of a type 3 learning interval in
C(a′, b, f).

Now we can construct an accepting computation for the ‘NO input’ (a, b, g)
from C(a, b, f) by replacing each learning interval beginning with some γ and end-
ing with some δ by the corresponding learning interval in C(a, b′, g) or C(a′, b, g).
(The new accepting computation has the same sequence of critical states as
C(a, b, f).) This works because a type 2 learning interval never queries v3 and a
type 3 learning interval never queries v2.

This completes the proof of (9) and the theorem. �

Theorem 4.8. Every deterministic branching program that solves BT 3
2 (k) has

at least k3/ lg k states for sufficiently large k.

Proof. We modify the proof of Theorem 4.7. Let B be a deterministic BP which
solves BT 3

2 (k), and for j ∈ {2, 3} let Γj be the set of states in B which query fj

(as before). It suffices to show that for sufficiently large k

|Γ2| + |Γ3| ≥ k3/ lg k. (10)

For r, s ∈ [k] we define the set F r,s to be the same as F r,s
yes except that we

remove the restriction on f I
1 . Hence there are exactly k22k2

inputs in F r,s.
As before, for j ∈ {2, 3}, Γj is the disjoint union of Γ r,s for r, s ∈ [k]. Thus

to prove (10) it suffices to show that for sufficiently large k and all r, s in [k]

|Γ r,s
2 | + |Γ r,s

3 | ≥ k/ lg2 k. (11)

We may assume there are unique start, accepting, and rejecting states γ0, δACC ,
δREJ . Fix r, s ∈ [k].

For each root function f : [k] × [k] → {0, 1} we define the functions

ψ2[f] : [k] × (Γ r,s
2 ∪ {γ0}) → (Γ r,s

3 ∪ {δACC , δREJ})
ψ3[f] : [k] × Γ r,s

3 → (Γ r,s
2 ∪ {δACC , δREJ})

by ψ2[f](a, γ) = δ if δ is the next critical state after γ in a computation with input
(a, b, f) (this is independent of b), or δ = δREJ if there is no such critical state.
Similarly ψ3[f](b, δ) = γ if γ is the next critical state after δ in a computation

10

with input (a, b, f) (this is independent of a), or δ = δREJ if there is no such
critical state.

CLAIM: The pair of functions (ψ2[f], ψ3[f]) is distinct for distinct f .

For suppose otherwise. Then there are f, g such that ψ2[f] = ψ2[g] and
ψ3[f] = ψ3[g] but f(a, b) 6= g(a, b) for some a, b. But then the sequences of
critical states in the two computations C(a, b, f) and C(a, b, g) must be the
same, and hence the computations either accept both (a, b, f) and (a, b, g) or
reject both. So the computations cannot both be correct.

Finally we prove (11) from the CLAIM. Let s2 = |Γ r,s
2 | and let s3 = |Γ r,s

3 |,
and let s = s2 + s3. Then the number of distinct pairs (ψ2, ψ3) is at most

(s3 + 2)k(s2+1)(s2 + 2)ks3 ≤ (s+ 2)k(s+1)

and since there are 2k2

functions f we have

2k2 ≤ (s+ 2)k(s+1)

so taking logs, k2 ≤ k(s+ 1) lg2(s+ 2) so k/ lg2(s+ 2) ≤ s+ 1, and (11) follows.
�

Recall from Theorem 4.5 that applying the Nec̆iporuk method to Children4
2(k)

yields an Ω(k3) size lower bound and from Theorem 4.6 that applying it to
SumMod3

2(k) yields Ω(k2). The state sequence method also proves the next two
theorems.

Theorem 4.9. Any deterministic k-way BP for Children4
2(k) has at least k4/2

states.

Theorem 4.10. Any deterministic k-way BP for SumMod3
2(k) requires at least

k3 states.

5 Conclusion

Our main open question is whether we can adapt the state sequence method
to break the Ω(n2) barrier for the size of deterministic branching programs. In
particular, can the method be extended to handle trees of height 4? Specifically,
can we prove a lower bound of Ω(k7/ lg k) for BT 4

3 (k) (see Theorem 4.1)?
Another question arises from the O(k5/2) upper bound from Theorem 4.1.

Is there a pebbling to justify such a non-integral exponent? As it turns out, the
answer is yes. One can introduce fractional black-white pebbling and develop an
interesting theory. Our work on that issue will be the subject of another paper.

Acknowledgment James Cook played a helpful role in the early parts of
this research. The second author is grateful to Michael Taitslin for suggesting a
version of the tree evaluation problem in which the nodes are labelled by fixed
quasi groups (see [Tai05]).

11

References

[BC82] A. Borodin and S. Cook. A time-space tradeoff for sorting on a general
sequential model of computation. SIAM J. Comput., 11(2):287–297, 1982.

[BRS93] A. Borodin, A. Razborov, and R. Smolensky. On lower bounds for read-k-
times branching programs. Computational Complexity, 3:1–18, 1993.

[Coo74] S. Cook. An observation on time-storage trade off. J. Comput. Syst. Sci.,
9(3):308–316, 1974.

[CS76] S. Cook and R. Sethi. Storage requirements for deterministic polynomial
time recognizable languages. J. Comput. Syst. Sci., 13(1):25–37, 1976.

[GKM08] A. Gál, M. Koucký, and P. McKenzie. Incremental branching programs.
Theory Comput. Syst., 43(2):159–184, 2008.

[Gol08] O. Goldreich. Computational Complexity: A Conceptual Perspective. Cam-
bridge University Press, 2008.

[KRW95] M. Karchmer, R. Raz, and A. Wigderson. Super-logarithmic depth lower
bounds via direct sum in communication complexity. Computational Com-
plexity, 5:191–204, 1995. An abstract appeared in the 6th Structure in Com-
plexity Theory Conference (1991).

[Mah07] M. Mahajan. Polynomial size log depth circuits: between NC1and AC1.
Bulletin of the EATCS, 91:30–42, February 2007.

[Nec̆66] È. Nec̆iporuk. On a boolean function. Doklady of the Academy of the USSR,
169(4):765–766, 1966. English translation in Soviet Mathematics Doklady 7:4,
pp. 999-1000.

[Nor09] J. Nordström. New wine into old wineskins: A survey of some
pebbling classics with supplemental results. Available on line at
http://people.csail.mit.edu/jakobn/research/, 2009.

[PH70] M. Paterson and C. Hewitt. Comparative schematology. In Record of Project
MAC Conference on Concurrent Systems and Parallel Computations, pages
119–128, 1970. (June 1970) ACM. New Jersey.

[Pud87] P. Pudlák. The hierarchy of boolean circuits. Computers and artificial intel-
ligence, 6(5):449–468, 1987.

[Raz91] A. Razborov. Lower bounds for deterministic and nondeterministic branching
programs. In 8th Internat. Symp. on Fundamentals of Computation Theory,
pages 47–60, 1991.

[Sud78] H. Sudborough. On the tape complexity of deterministic context-free lan-
guages. J. ACM, 25(3):405–414, 1978.

[Tai05] M.A. Taitslin. An example of a problem from PTIME and not in NLogSpace.
In Proceedings of Tver State University, volume 6(12) of Applied Mathemat-
ics, issue 2, Tver State University, Tver, pages 5–22, 2005.

[Weg00] I. Wegener. Branching Programs and Binary Decision Diagrams. SIAM
Monographs on Discrete Mathematics and Applications. Soc. for Industrial
and Applied Mathematics, Philadelphia, 2000.

12

