
TLP 3 (4 & 5): 393–424, 2003. c© 2003 Cambridge University Press

DOI: 10.1017/S1471068403001832 Printed in the United Kingdom

393

Answer sets for consistent query answering
in inconsistent databases

MARCELO ARENAS*

Pontificia Universidad Catolica de Chile, Departamento de Ciencia de Computacion, Santiago, Chile

(e-mail: marenas@ing.puc.cl)

LEOPOLDO BERTOSSI

School of Computer Science, Carleton University, Ottawa, Canada

(e-mail: bertossi@scs.carleton.ca)

JAN CHOMICKI

Department of Computer Science and Engineering, State University of New York at Buffalo,

Buffalo, NY, USA

(e-mail: chomicki@cse.buffalo.edu)

Abstract

A relational database is inconsistent if it does not satisfy a given set of integrity constraints.

Nevertheless, it is likely that most of the data in it is consistent with the constraints. In

this paper we apply logic programming based on answer sets to the problem of retrieving

consistent information from a possibly inconsistent database. Since consistent information

persists from the original database to every of its minimal repairs, the approach is based

on a specification of database repairs using disjunctive logic programs with exceptions, whose

answer set semantics can be represented and computed by systems that implement stable

model semantics. These programs allow us to declare persistence by default of data from

the original instance to the repairs; and changes to restore consistency, by exceptions. We

concentrate mainly on logic programs for binary integrity constraints, among which we find

most of the integrity constraints found in practice.

KEYWORDS: databases, answer set programming, integrity constraints, consistency

1 Introduction

Integrity Constraints (IC) capture an important normative aspect of every database

application, whose aim is to guarantee the consistency of its data. However, it is very

difficult, if not impossible, to always have a consistent database instance. Databases

may become inconsistent with respect to a given set of integrity constraints. This

may happen due, among others, to the following factors: (1) Certain ICs cannot

* Current address: University of Toronto, Department of Computer Science, Toronto, Canada.
E-mail: marenas@cs.toronto.edu.

394 M. Arenas and others

be expressed/maintained by existing DBMSs; (2) transient inconsistencies caused

by the inherent non-atomicity of database transactions, (3) delayed updates of a

datawarehouse, (4) integration of heterogeneous databases, in particular with dupli-

cated information; (5) inconsistency with respect to soft integrity constraints, where

transactions in violation of their conditions are not prevented from executing; (6) leg-

acy data on which one wants to impose semantic constraints; (7) the consistency

of the database will be restored by executing further transactions; and (8) user

constraints than cannot be checked or maintained.

Independently of the cause of inconsistency, the inconsistent database may be the

only source of data available, and we may still want or need to use it for a number

of reasons. Restoring the consistency of the database may not be an option since

that may require permissions we don’t have, lead to the loss of useful information,

or be a complex and non-deterministic process. Under such circumstances, one faces

the natural problem of characterizing and retrieving the consistent information from

the database. Most likely, most of the information in the database is still consistent,

and the database can still provide us with correct answers to certain queries, making

the problem of determining what kinds of queries and query answers are consistent

with the integrity constraints a worthwhile effort.

The problem of defining and retrieving consistent information from an inconsistent

relational database has been studied in the context of relational databases. The basic

approach is based on the intuition that the information that is consistent, despite

the inconsistency of the database as a whole, is the one that is invariant under all

sensible ways in which the consistency of the database is restored. More precisely, an

answer to a query is consistent if it is obtained as an answer every time the query is

posed to a minimally repaired version of the original database (Arenas et al., 1999).

Example 1

Assume we have the following database instance Salary:

Salary Name Amount

V .Smith 5000

V .Smith 8000

P .Jones 3000

M .Stone 7000

and FD is the functional dependency Name → Amount , meaning that Name

functionally determines Amount , that is violated by the table Salary . Actually the

tuples participating in this violation are those with the value V .Smith in attribute

Name.

When we ask about the tuples that are consistent wrt the FD, we should retrieve

only (P .Jones , 3000) and (M .Stone, 7000), because those tuples should stay in any

reasonable way in which we restore consistency.

If we want to consider only repaired versions of the original instance that

minimally differ from the original instance, in the sense that the set of inserted or

deleted tuples (to restore inconsistency) is minimal under set inclusion, the possible

repairs of the inconsistent database are

Answer sets for consistent query answers 395

Salary1 Name Amount Salary2 Name Amount

V .Smith 5000 V .Smith 8000

P .Jones 3000 P .Jones 3000

M .Stone 7000 M .Stone 7000

We can see that only tuples (P .Jones , 3000) and (M .Stone, 7000) can be found in

both repairs. �

In this paper, we address the problem of retrieving consistent information when

general first order queries are posed to an inconsistent relational database. Since the

consistent information in the database is the one that persists across all repairs, we

solve this problem by using logic programs with answer sets semantics to specify in

a compact manner the class of repairs of the inconsistent instance.

Although the consistent answers are defined in terms of minimally repaired

version of the database, we are not interested in restoring consistency, in particular,

in computing the repairs of the database: Repairs are used as an auxiliary notion

in order to give a model-theoretic characterization of the consistent answers to

queries. Actually, it is easy to find situations where exponentially many repairs of

an inconsistent database exist (Arenas et al., 2001).

A possible computational mechanism for retrieving consistent answers, first

introduced in Arenas et al. (1999) and Celle and Bertossi (2000), is as follows:

Given a first-order query Q and an inconsistent database instance r, instead of

explicitly computing all the repairs of r and querying all of them, a new query T (Q)

is computed and posed to r, the only available database. The answers to the new

query are expected to be the consistent answers to Q. Such an iterative operator

for query transformation was introduced and analyzed with respect to soundness,

completeness and termination in Arenas et al. (1999) and Celle and Bertossi (2000).

Nevertheless, the query rewriting approach has some limitations. The iterative

operator introduced in Arenas et al. (1999) and Celle and Bertossi (2000) works

for some particular classes of queries and constraints, e.g. for queries that are

conjunctions of literals and universal integrity constraints, but completeness is lost

when it is applied to disjunctive or existential queries. The methodology for obtaining

consistent answers that we present in this paper can applied to any first-order query

instead.

Furthermore, the notion of consistent answer introduced in Arenas et al. (1999)

is a model theoretic notion, that is complemented by a computational mechanism.

Nevertheless, that approach is not based on or accompanied by a logical specification

of the class of all the repairs of a given database instance relative to a fixed set of

ICs. Such a specification is another contribution of this paper, namely a specification

expressed as a disjunctive logic program with answer set semantics. The database

repairs correspond to the intended models or answer sets of the program.

In this paper, we are motivated mainly by the possibility of retrieving consistent

answers to general first-order queries, extending the possibilities we developed

in Arenas et al. (1999). However, the logical specification could be also used to

(1) Reason about all database repairs, in particular about consistent query answers,

396 M. Arenas and others

(2) derive specialized algorithms for consistent query answering, (3) analyze com-

plexity issues related to consistent query answering, and (4) obtain the intended

models of the specification, i.e. the database repairs, allowing us to analyze different

ways to restore the consistency of the database. That is, a mechanism for computing

database repairs could be used for conflict resolution.

Notice that consistent answers are non-monotonic in the sense that adding

information to the original database, may cause loosing previous consistent answers.

In consequence, a non-monotonic semantics for the specification (or its consequences)

should be expected.

A preliminary version of this paper appeared in Arenas et al. (2000a), where

extended disjunctive logic programs with exceptions where introduced and applied

to the specification of database repairs and to retrieve consistent answers to general

first-order queries. This paper extends Arenas et al. (2000a), addressing several new

issues, among which we find (1) a detailed analysis of the correspondence between

e-answer sets and database repairs for binary integrity constraints, (2) application

of the DLV system (Eiter et al., 1998) to obtain database repairs and consistent

answers, (3) extensions of the methodology to more general universal constraints

and to referential integrity constraints, (4) an analysis of the applicability of the

disjunctive well-founded semantics to consistent query answering, and (5) the use of

weak constraints to capture database repairs based on minimal number of changes.

This paper is structured as follows. In section 2 we introduce the notions of

database repair and consistent answer to a query, and the query language. Section 3

introduces extended disjunctive logic programs with exceptions. In section 4, the

main section of the paper, we present the repair programs for binary integrity

constraints, and show how to consistently evaluate queries. In section 5 we show

some examples using the DLV system to obtain database repairs and consistent

answers. In section 6 we illustrate how to handle referential integrity constraints. In

section 7 we analyze the well-founded interpretation as an approximation to the set

of consistent answers, and we identify cases where it provides the exact solution. In

section 8 we show how database repairs based on minimal number of changes can

be specified by introducing weak constraints in the repair programs. In section 9, we

draw conclusions, we sketch some extensions, e.g. to the case of general universal

ICs, we also mention open issues, and discuss related work.

2 Consistent query answers

A database schema can be represented by a typed languageL of first-order predicate

logic, that contains a finite set of predicates and a fixed infinite set of constants D.

A relational database instance r can be seen as an interpretation or a first order

structure for L, whose domain is also D (the interpretation of each constant is the

constant itself), and the predicates have finite extensions. In what follows, a database

instance r will be represented, in a natural way, as a finite set of ground atoms (the

atoms true in r).

The active domain of a database instance r is the set of those elements of D that

explicitly appear in r. The active domain is always finite and we denote it by Act(r).

Answer sets for consistent query answers 397

We may also have a set of built-in (or evaluable) predicates, like equality, order

relations, arithmetical relations, etc. In this case, we have the language L possibly

extended with those predicates. In all database instances, for a given schema, each of

these predicates has a fixed and possibly infinite extension. Since we defined database

instances as finite sets of ground atoms, we are not considering those built-in atoms

as members of database instances.

In addition to the database schema and instances, we may also have a set of

integrity constraints IC expressed in language L. These are first-order formulas

which the database instances are expected to satisfy. If a database instance r satisfies

IC in the standard model-theoretic sense, what is denoted by r |= IC , we say that

it is consistent (wrt IC), otherwise we say it is inconsistent. In any case, we will

assume from now on that IC is logically consistent set of first-order sentences.

The original motivation in Arenas et al. (1999) was to consistently answer first-

order queries. We shall call them basic queries and define them by the grammar

B ::= Atom | B ∧ B | ¬B | ∃x B.

One way of explicitly asking at the object level about the consistent answers to a

first-order query consists in introducing a new logical operator K, in such a way

thatKϕ(x̄), where ϕ(x̄) is a basic query, asks for the values of x̄ that are consistent

answers to ϕ(x̄) (or whether ϕ is consistently true, i.e. true in all repairs, when ϕ is

a sentence). The K-queries are similarly defined:

A ::= KB | A ∧ A | ¬A | ∃x. A.

In this paper, we concentrate mostly on answering basic K-queries of the form

KB, where B is a basic query.

Definition 1

(a) (Arenas et al., 1999) Given a database instance r and a set of integrity constraints,

IC , a repair of r wrt IC is a database instance r′, over the same schema, that satisfies

IC and such that r∆r′ = (r\r′)∪(r′\r), the symmetric difference of r and r′, is minimal

under set inclusion.

(b) (Arenas et al., 1999) A tuple t̄ is a consistent answer to a first-order query Q(x̄),

or equivalently, an answer to the query KQ(x̄), in a database instance r iff t̄ is an

answer to query Q(x̄) in every repair r′ of r wrt IC . In symbols:

r |= KQ[t̄] ⇐⇒ r′ |= Q[t̄] for every repair r′ of r.

(c) If Q is a general K-query, then r |= Q is defined inductively as usual, (b) being

the base case.

Example 2

(Example 1 continued.) For the inconsistent database and the given FD, t̄3 =

(P . Jones , 3000) is a consistent answer to the query Salary(x̄), i.e. r |= KSalary(x,

y)[(P . Jones , 3000)], but r 	|=KSalary(x, y)[(V .Smith , 8000)]. It also holds r |=
K(Salary(V . Smith , 5000)∨ Salary(V . Smith , 8000)), and r |=K∃X(Salary(V . Smith ,

X) ∧X > 4000).

398 M. Arenas and others

Computing consistent answer through generation of all possible repairs is not a

natural and feasible alternative (Arenas et al. 2001). Instead, an approach based on

querying the available, although inconsistent, database is much more natural. This

rewriting approach introduced in Arenas et al. (1999) is not complete for disjunctive

or existential queries, like ∃Y Salary(V . Smith , Y) in Example 2. We would like to be

able to obtain consistent answers to basic K-queries at least.

Notice that the definition of consistent query answer depends on our definition

of repair. In section 8.1 we will consider an alternative definition of repair based on

minimal number of changes instead of minimal set of changes.

3 Logic programs with exceptions

Logic Programs with Exceptions (LPEs) (Kowalski and Sadri 1991) have default

rules whose consequences can be overridden by the consequences of exception rules.

They turn out to be the right formalism for specifying the database repairs: by

default everything persists from the original database instance to any of its repairs,

except for the changes that are necessary to restore the consistency.

LPEs as introduced in Kowalski and Sadri (1991) consist of definite clauses,

whose head and body contain literals of the form A,¬A, where A is an atom and ¬
is classical negation. In the bodies, literals may be affected by weak negation, not

(negation as failure). In a LPE there are default rules, which are clauses with positive

heads, and exception rules, which are clauses with negative heads. To capture the

intuition that exceptions have priority over defaults, in Kowalski and Sadri (1991) a

new semantics was introduced based on e-answer sets. It is defined as follows.

First, instantiate the program Π in the database domain, making it ground. Now,

let S be a set of ground literals S = {L, . . .}. This S is a candidate to be a model, a

guess to be verified, and accepted if properly justified.

Next, generate a new set of ground rules SΠ according to the following steps:

(1) Delete every rule in Π containing notL in the body, with L ∈ S .

(2) Delete from the clauses every condition notL in the body, when L /∈ S .

(3) Delete every default rule having a positive conclusion A with ¬A ∈ S .

The result is a ground extended logic program without not . Now, S is an e-answer

set of the original program if S is the smallest set of ground literals, such that: (a) For

any clause L0 ←− L1, . . . , Lm in SΠ, if L1, . . . , Lm ∈ S , then L0 ∈ S; (b) if S con-

tains two complementary literals, then S is the set of all literals.

The e-answer sets are the intended models of the original program. Above, (1),

(2) are as in the answer sets semantics for extended logic programs (Gelfond and

Lifschitz 1991), but now (3) gives an account of exceptions.

To specify database repairs, we need to extend the LPEs and their semantics as

presented in Kowalski and Sadri (1991), considering Disjunctive Logic Programs with

Exceptions (DLPEs), that contain also negative defaults, i.e. defaults with negative

conclusions that can be overridden by positive exceptions, and extended disjunctive

exceptions, i.e. rules of the form

L1 ∨ · · · ∨ Lk ←− Lk+1, . . . , Lr, notLr+1, . . . , notLm,

Answer sets for consistent query answers 399

where the Lis are literals.1 The e-answer semantics is extended as follows. The

ground program is pruned according to a modified rule (3) above:

(3’) Delete every (positive) default having a positive conclusion A, with ¬A ∈ S;

and every (negative) default having a negative conclusion ¬A, with A ∈ S .

Applying (1), (2) and (3’) to the ground program, we are left with a ground

disjunctive logic program without not . If the candidate set of literals S belongs to

α(SΠ), the set of minimal models of program SΠ, then we say that S is an e-answer

set.

This semantics does not capture priorities between defaults, and, in principle, there

could be conflicting defaults. In this case, the semantics seems to allow that defaults

override other defaults, without preferences for any of them. For example, the

program containing only the defaults p ← notq and ¬p ← notr (without exception

rules), has two e-answer sets, namely {p} and {¬p}. In any case, in our applications

of logic programs with exceptions, due to the kind of defaults we will use (see

Definition 6), such a situation will never appear, because the potentially conflicting

defaults apply to mutually exclusive cases.

Finally, we take advantage of the existence of a one to one correspondence

between the e-answer sets of a DLPE and the answer sets of an extended disjunctive

logic program (Gelfond and Lifschitz 1991 (see section 4.1, Remark 1).

4 Logic programs for CQA

We shall use DLPEs for specifying database repairs and answering basicK-queries.

Given a set of ICs and an inconsistent database instance r, the first step consists of

writing a repair program, Π(r), having as the e-answer sets the repairs of the original

database instance. Π(r) captures the fact that when a database instance r is repaired

most of the data persists, except for some tuples. In consequence, default rules are

introduced: everything persists from the instance r to the repairs. It is also necessary

to introduce exception rules: everything persists, as stated by the defaults, unless the

ICs are violated and have to be satisfied.

Next, if a first-order query is posed with the intention of retrieving all and only its

consistent answers, then a query program, that expresses the query, is run together

with the repair program.

In this section we introduce the DLPEs for specifying database repairs, and

give a careful analysis of those programs for consistent query answering wrt Binary

Integrity Constraints (BICs), i.e. they are universally quantified sentences of the form

∀(L1∨L2∨ϕ), where ∀ denotes the universal closure, L1, L2 are literals associated to

the database schema; ϕ is a first-order formula containing only built-in predicates2

and free variables appearing in L1, L2.

1 In our application scenario we will need disjunctive exceptions rules, but not disjunctive defaults.
2 Built-in predicates have a fixed extension in every database, in particular, in every repair; so they are

not subject to changes.

400 M. Arenas and others

We have three possibilities for BICs in terms of the sign of literals in them, namely

the universal closures of:

p1(x̄1) ∨ p2(x̄2) ∨ ϕ; p1(x̄1) ∨ ¬q1(ȳ1) ∨ ϕ; ¬q1(ȳ1) ∨ ¬q2(ȳ2) ∨ ϕ, (1)

where the pi(x̄i), qj(ȳj) are database atoms. BICs with one database literal plus

possibly a formula containing built-ins are called unary ICs.

Several interesting classes of ICs (Abiteboul et al., 1995) used in database praxis

can be represented by BICs: (a) Range constraints, e.g. P (x, y) → x > 5; (b) Full

inclusion dependencies; (b) functional dependencies (see Example 1), etc. Neverthe-

less, for referential ICs, like in P (x, y)→ ∃zQ(x, z), we need existential quantifiers or

Skolem functions (Fitting, 1996). They are considered in section 6.

4.1 Finite domain databases

In this section we will momentarily depart from our assumption that databases

have an infinite domain D (see section 1), and will analyze the case of finite domain

databases. The reason is that in the general case, we will be interested in domain

independent BICs, for which only the active domain is relevant (and finite).

4.1.1 The change program

To introduce the repair programs Π(r) and analyze their behavior, we will concen-

trate first on the sub-program that does not contain defaults rules. This program,

denoted by Π∆(r), is responsible for the changes (but not for persistence).

Splitting the program in this way makes the analysis easier. Furthermore, keeping

Π∆(r), but using different form of defaults, we can capture different kinds of repairs.

In section 4.1.2, we will introduce defaults leading to our notion of repair based on

minimal set of changes (Definition 1). In section 8.1, we will use other defaults that

lead to repairs based on minimal number of changes.

Definition 2

Given a set of BICs IC and an instance r, the change program, Π∆(r), contains the

following rules:

1. Facts: (a) For every ground database atom p(ā) ∈ r, the fact p(ā).

(b) For every a in D, the fact dom(a).

2. For each IC of the forms in (1), respectively, the triggering rule

p′1(X̄1) ∨ p′2(X̄2) ←− dom(X̄1, X̄2), not p1(X̄1), not p2(X̄2), ϕ

p′1(X̄1) ∨ ¬q′1(Ȳ1) ←− dom(X̄1), not p1(X̄1), q1(Ȳ1), ϕ

¬q′1(Ȳ1) ∨ ¬q′2(Ȳ2) ←− q1(Ȳ1), q2(Ȳ2), ϕ

3. For an IC of the first form in (1), the pair of stabilizing rules

p′1(X̄1) ←− dom(X̄1),¬p′2(X̄2), ϕ

p′2(X̄2) ←− dom(X̄2),¬p′1(X̄1), ϕ

Answer sets for consistent query answers 401

For an IC of the second form in (1), the pair of stabilizing rules

p′1(X̄1) ←− dom(x̄1), q
′
1(Ȳ1), ϕ

¬q′1(Ȳ1) ←− dom(Ȳ1),¬p′1(X̄1), ϕ

For an IC of the third form in (1), the pair of stabilizing rules

¬q′1(Ȳ1) ←− dom(Ȳ1), q
′
2(Ȳ2), ϕ

¬q′2(Ȳ2) ←− dom(Ȳ2), q
′
1(Ȳ1), ϕ.

The primed versions (p′, . . .) of the original database predicates (p, . . .) stand for the

database predicates in the repairs. In these rules, dom(., .) is an abbreviation for

the conjunction of memberships to dom of all the individual variables; and ϕ, an

abbreviation for a representation of the negation of ϕ. Depending on its syntax, it

may be necessary to unfold the formula ϕ into additional program rules, but ϕ will

usually be a conjunction of literals. �

Example 3

Consider the inclusion dependencies IC : {∀xy (P (x, y) → Q(x, y)), ∀xy (Q(x, y) →
R(x, y))} and the inconsistent database instance r = {P (a, b), Q(a, b)}. The program

Π∆(r) contains the following clauses:

1. Facts: P (a, b), Q(a, b).

2. Triggering exceptions: ¬P ′(X,Y) ∨ Q′(X,Y) ← P (X,Y), not Q(X,Y).

¬Q′(X,Y) ∨ R′(X,Y) ← Q(X,Y), not R(X,Y).

Each of these rules represent the two possible ways to repair the corresponding

IC, separately: The first rule says that in order to “locally” repair the first IC,

either eliminate (X,Y) from P or insert (X,Y) into Q. The semantics of these

DLPEs gives the disjunction an exclusive interpretation. In this example, due

to the form of the ICs, we do not need domain predicates.

3. Stabilizing exceptions: Q′(X,Y) ← P ′(X,Y); ¬P ′(X,Y)← ¬Q′(X,Y).

R′(X,Y) ← Q′(X,Y); ¬Q′(X,Y)← ¬R′(X,Y).

These rules state that eventually the ICs have to be satisfied in the repairs.

They are necessary if, like in this example, there are interacting ICs and local

repairs alone are not sufficient. Propagation of changes are required beyond

the first triggering step. Since the ICs can be repaired by either deleting or

inserting a tuple, the contrapositive versions of the ICs are needed.

Notice that for BICs, the stabilizing rules in Π∆(r) do not contain disjunctions in

the heads.

Definition 3

A model of a DLPE, Π, is a set of ground literals, S , that does not contain comple-

mentary literals and satisfies Π in the usual logical sense, but with weak negation

interpreted as not being an element of S .

402 M. Arenas and others

Definition 4

Given a model S of Π∆(r), we define the database instance corresponding to S by

I(S) = {p(ā) | p′(ā) ∈ S} ∪ {p(ā) | p(ā) ∈ S and ¬p′(ā) /∈ S)}.

Notice that, for a given model S of the change program, I(S) merges in one

new instance all the positive primed tuples with all the old, non primed tuples that

persisted, i.e. that their negative primed version do not belong to the model. Since

there are no persistence defaults in Π∆(r), persistence is captured explicitly in I(S).

Proposition 1

Given a database instance r and a set of BICs IC , if S is a model of Π∆(r), then

I(S) satisfies IC .

Definition 5

Given database instances r and r′ over the same schema and domain, we define

S(r, r′) = {p(ā) | r |= p(ā)} ∪ {p′(ā) | r′ |= p(ā)} ∪ {¬p′(ā) | r′ 	|= p(ā)}
∪ {dom(a) | a ∈ D}. �

S(r, r′) collects the maximal consistent set of literals that can be obtained from two

database instances, e.g. the original instance and a repair. The atoms corresponding

to the second argument are primed. Negative literals corresponding to the first

argument are not considered, because weak negation will be applied.

Proposition 2

Given a database instance r and a set of BICs IC , if r′ satisfies IC , then S(r, r′) is

a model of Π∆(r).

This result tells us that subsets of S(r, r′) could be potential models of the change

program. S(r, r′) can be a large model, in the sense that the difference between r and

r′ may not be minimal.

Proposition 3

For BICs, the change program Π∆(r) has an answer set; and all the answer sets are

consistent, i.e. they do not contain complementary literals.3

4.1.2 The repair program

Program Π∆(r) gives an account of changes only. The fact that repairs contain data

that persists from the original instance is captured with persistence defaults.

Definition 6

The repair program Π(r) consists of the rules in program Π∆(r) (Definition 2) plus

the following two rules for each predicate p in the original database:

4. Persistence defaults:

p′(X̄)←− p(X̄); ¬p′(X̄)←− dom(X̄), not p(X̄). �

3 In Π∆(r) there are no defaults. In consequence, we can talk about answer sets as in Gelfond and
Lifschitz (1991) instead of e-answer sets (Kowalski and Sadri, 1991).

Answer sets for consistent query answers 403

Example 4

(example 3 continued) We have the following persistence defaults:

4. P ′(X,Y) ← P (X,Y); ¬P ′(X,Y) ← dom(X,Y), not P (X,Y)

Q′(X,Y) ← Q(X,Y); ¬Q′(X,Y) ← dom(X,Y), not Q(X,Y).

R′(X,Y) ← R(X,Y); ¬R′(X,Y) ← dom(X,Y), not R(X,Y).

This means that, by default, everything from r is put into a repair r′ and

nothing else.

In this program rules 2 and 3 have priority over rule 4. It is possible to verify that the

e-answer sets of the program are the expected database repairs: {P ′(a, b), Q′(a, b),
R′(a, b), P (a, b), Q(a, b), . . .}, {¬P ′(a, b), ¬Q′(a, b), P (a, b), Q(a, b), . . .}. The underlined

literals represent the insertion of R(a, b) in one repair and the deletion of of both

P (a, b) and Q(a, b), in the other one, respectively. The original atoms remain, because

there are no rules that can change them. The literals not shown explicitly in these

e-answer sets are the negative literals, e.g. ¬P ′(a, a),¬Q′(b, a), inherited from the

original instance with the negative defaults.

Remark 1

As shown in Kowalski and Sadri (1991), the program Π(r), which has an e-answer

semantics, can be transformed into a disjunctive extended logic program with answer

set semantics, by transforming the persistence defaults in Definition 6, respectively,

into

4’. Persistence rules:

p′(X̄)←− p(X̄), not ¬p′(X̄); ¬p′(X̄)←− dom(X̄), not p(X̄), not p′(X̄).

As shown in Gelfond and Lifschitz (1991), the resulting program can be further

transformed into a disjunctive normal program with a stable model semantics. For

the one to one correspondence between answer sets and stable models, we can

interchangeably talk about (e-)answer sets and stable models.

Proposition 4

Given a database instance r over a finite domain, and a set of BICs IC , if SM is an

answer set of Π∆(r), then S = SM ∪ {p′(ā) | p(ā) ∈ SM and ¬p′(ā) 	∈ SM} ∪ {¬p′(ā) |
p(ā) 	∈ SM and p′(ā) 	∈ SM} is an answer set of Π(r).

The following lemma says that whenever we build an answer set S with literals

taken from S(r, r′), and r′ satisfies the ICs and is already as close as possible to r,

then in S we recover r′ only. The condition that S is contained in S(r, r′) makes sure

that its literals are taken from the right, maximal set of literals.

Lemma 1

Let r and r′ be database instances over the same schema and domain, and IC , a

set of BICs. Assume that r′ |= IC and the symmetric difference ∆(r, r′) is a minimal

element under set inclusion in the set {∆(r, r∗) | r∗ |= IC}. Then, for every answer

set S of Π∆(r) contained in S(r, r′), it holds r′ = I(S).

404 M. Arenas and others

Theorem 1

If Π(r) is the program Π∆(r) plus rules 4’., for a finite domain database instance r

and a est of BICs IC , it holds:

1. For every repair r′ of r wrt IC , there exists an answer set S of Π(r) such that

r′ = {p(a) | p′(a) ∈ S}.
2. For every answer set S of Π(r), there exists a repair r′ of r wrt IC such that

r′ = {p(a) | p′(a) ∈ S}.

In the case of finite domain databases, the domain can be and has been declared.

In this situation, we can handle any set of binary ICs, without caring about their

safeness or domain independence (Ullman, 1988).

Example 5

Consider D= {a, b, c}, IC = {∀xp(x)} and the inconsistent instance r=, {p(a)}. Π(r)

contains the default rules p′(X) ←− p(X), not¬p′(X);¬p′(X) ←− dom(X), notp(X),

notp′(X); the triggering exception p′(X)←− dom(X), notp(X), the stabilizing excep-

tion p′(X) ←− dom(X); and the facts dom(a), dom(b), dom(c), p(a). The only answer

set is {dom(a), dom(b), dom(c), p(a), p′(a), p′(b), p′(c)}, that corresponds to the only

repair r′ = {p(a), p(b), p(c)}.
The IC requires that every element in the finite domain D belongs to table p; and

this can be achieved. However, with an infinite domain D, we could not obtain a

finite program nor an instance with a table p containing finitely many tuples.

4.2 Infinite domain databases

Now we consider ICs that are domain independent, for which checking their satisfac-

tion in an instance r can be done considering the elements of the finite active domain

Act(r) only (Ullman, 1988). The IC in Example 5 is not domain independent.

For domain independent BICs all previous lemmas and theorems still hold if

we have an infinite domain D. To obtain them, all we need to do is to use a predicate

act r(x), standing for the active domain Act(r) of instance r, instead of predicate

dom(x). This is because, for domain independent BICs, the database domain can

be considered to be Act(r). Furthermore, in this case we can omit the dom facts and

goals from Π(r). In consequence, we have the following theorem.

Theorem 2

For a set of domain independent binary integrity constraints and a database instance

r, there is a one to one correspondence between the answers sets of the repair program

Π(r) and the repairs of r.

4.3 Evaluating basic K-queries

The specification of database repairs we have obtained provides the underpinning

of a general method of evaluating a basicK-query of the form β ≡Kα, where α is

a basic query.

First, from α, that is expressed in terms of the database predicates in L, we

obtain a stratified logic program Π(α) (this is a standard construction (Lloyd, 1987;

Answer sets for consistent query answers 405

Abiteboul et al., 1995)) in terms of the new, primed predicates introduced in Π(r).

One of the predicate symbols, Answerα, of Π(α) is designated as the query answer

predicate. Second, determine all the answers sets S1, . . . , Sk of the logic program

Π = Π(α) ∪Π(r). Third, compute the intersection rβ =
⋂

1�i�k Si/Answerα, where

Si/Answerα is the extension of Answerα in Si. The set of tuples rβ is the set of answers

to β, or equivalently, the set of consistent answers to α, in r.

Example 6

(example 4 continued) Consider the query for the consistent answers to α1(x) :

(P (x, a) ∨ Q(a, x)), in the database instance. This query can be transformed into

the query program Π(α1) containing the rules Answerα1
(X) ←− P ′(X, a), and

Answerα1
(X)←− Q′(a,X).

To obtain consistent answers it is necessary to evaluate the query goal Answerα1
(X)

wrt the program obtained by combining Π(r), already obtained in Examples 3 and 4,

and program Π(α1). Each of the answer sets of the combined program will contain

a set of ground Answerα1
-atoms. The arguments of the Answerα1

-atoms that are

present simultaneously in all the answer sets will be the consistent answers to the

original query.

As a second example, consider the query α2(y) : ∃xQ(x, y). In order to obtain the

consistent answers, we keep Π(r) as before, but we run it in combination with the

new query program Π(α2) : Answerα2
(Y)←− Q′(X,Y).

Notice that consistent answers to a query are those that can be obtained from the

repair program plus the query program under the cautious or skeptical answer set

semantics for the combined logic program: what is true of the program is what is

true of all its answer sets. In section 5 we give computational examples.

The program Π = Π(α) ∪ Π(r), where α is a first order query, is naturally split

into Π(α) and Π(r), but also split in the precise sense introduced in Lifschitz and

Turner (1994) as follows: the set U of literals consisting of all the primed database

literals, (¬)p′(t̄) plus and all the non primed database literals, (¬)p(t̄) appearing in

Π(r), form a splitting set for Π, because whenever a literal in U appears in a head

of a rule in Π, all the literals in the body of that rule also appear in U. U splits Π

precisely into the two expected parts, Π(r) and Π(Q), because the literals in U do

not appear in heads of rules of Π(α) (for Π(α) the literals in U act as extensional

literals).

As a consequence of this splitting, we know from Lifschitz and Turner (1994),

that every answer set of Π can be represented as the union of an answer set of Π(r)

and an answer set of Π(α), where each answer set for Π(r) acts as an extensional

database for the computation of the answer sets of Π(α). Since program Π(α) is

stratified, for each answer set of Π(r), there will only one answer set for Π(α).

5 Computational examples

In this section we will assume that, according to Remark 1, the repair programs

are given as extended disjunctive logic programs with answer set semantics. In

consequence, we can use any implementation for that semantics. In particular, we

406 M. Arenas and others

will give examples of the application of the DLV system (Eiter et al., 1998) to the

computation of database repairs and consistent query answers.

5.1 Computing database repairs with DLV

Example 7

Consider the schema Emp(Name, SSN), and the functional dependencies Name →
SSN , SSN → Name, stating that each person should have just one SSN and different

persons should have different SSNs. The following is an inconsistent instance:

Emp Name SSN

Irwin Koper 677-223-112

Irwin Koper 952-223-564

Mike Baneman 334-454-991

The following DLV program corresponds to the repair program. In it, the repaired,

primed version of table Emp is now denoted by emp p:

% domains of the database

dom_name("Irwin Koper"). dom_name("Mike Baneman"). dom_number("677-223-112").

dom_number("952-223-564"). dom_number("334-454-991").

% initial database

emp("Irwin Koper","677-223-112"). emp("Irwin Koper","952-223-564").

emp("Mike Baneman","334-454-991").

% default rules

emp_p(X,Y) :- emp(X,Y), not -emp_p(X,Y).

-emp_p(X,Y) :- dom_name(X), dom_number(Y), not emp(X,Y), not emp_p(X,Y).

% triggering rules

-emp_p(X,Y) v -emp_p(X,Z) :- emp(X,Y), emp(X,Z), Y!=Z.

-emp_p(Y,X) v -emp_p(Z,X) :- emp(Y,X), emp(Z,X), Y!=Z.

% stabilizing rules.

-emp_p(X,Y) :- emp_p(X,Z), dom_number(Y), Y!=Z.

-emp_p(Y,X) :- emp_p(Z,X), dom_name(Y), Y!=Z.

If DLV is asked to compute the answer sets, we obtain two of them, corresponding

to the two possible repairs:

Emp Name SSN

Irwin Koper 952-223-564

Mike Baneman 334-454-991

Emp Name SSN

Irwin Koper 677-223-112

Mike Baneman 334-454-991

Answer sets for consistent query answers 407

To pose the query Emp(X,Y)?, asking for the consistent tuples in table Employee,

we add a new query rule to the program: answer(X,Y) :- emp_p(X,Y).

Now, the two answer sets contain answer-literals, namely

{..,answer("Irwin Koper","952-223-564"),answer("Mike Baneman","334-454-991")}

{..,answer("Irwin Koper","677-223-112"),answer("Mike Baneman","334-454-991")}

There is only one ground answer-atom in the intersection of the answer sets of

the new program. Then, the only consistent answer is the tuple: X="Mike Baneman",

Y="334-454-991".

6 Referential integrity constraints

In this section, we show how to extend the specifications of repairs given for binary

integrity constraints to Referential Integrity Constraints (RICs). This can be done

via an appropriate representation of existential quantifiers as program rules.

Consider the RIC: ∀x̄ (P (x̄)→ ∃ȳ R(x̄, ȳ)), and the inconsistent database instance

r = {P (ā), P (b̄), R(b̄, ā)}. We assume that there is an underlying database domain D.

The repair program has the persistence default rules

P ′(X̄)← P (X̄); ¬P ′(X̄)← dom(X̄), not P (X̄);

R′(X̄, Ȳ)← R(X̄, Ȳ); ¬R′(X̄, Ȳ)← dom(X̄, Ȳ), not R(X̄ , Ȳ).

In addition, it has the triggering exception rule

¬P ′(X̄) ∨ R′(X̄, null)← P (X̄), not aux (X̄), (2)

with aux (X̄) ← R(X̄, Ȳ); null /∈ D; and the stabilizing exception rules

¬P ′(X̄) ← ¬R′(X̄, null), not aux ′(X̄), (3)

R′(X̄, null) ← P ′(X̄), not aux ′(X̄); (4)

with aux ′(X̄) ← R′(X̄, Ȳ).

The variables in this program range over D, that is, they do not take the value

null . This is the reason for the first literal in clause (3). The last literal in clause (4)

is necessary to insert a null value only when it is needed; this clause relies on the

fact that variables range over D only. Instantiating variables on D only,4 the only

two answer sets are the expected ones, namely delete P (ā) or insert R(ā, null).

It would be natural to include here the functional dependency X̄ → Ȳ on R,

expressing that X̄ is a primary key in R and a foreign key in P . This can be done

without problems, actually the two constraints would not interact, that is, repairing

one of them will not cause violations of the other one.

Finally, if only elimination of tuples were considered admissible changes, but

not introduction of null values, then the triggering exception (2) would have to be

changed into ¬P ′(X̄)← P (X̄), not aux (X̄).

4 A simple way to enforce this at the object level is to introduce the predicate D in the clauses, to
force variables to take values in D only, excluding the null value. Alternatively, conditions of the form
X 	=null can be placed in the bodies.

408 M. Arenas and others

6.1 Referential ICs and strong constraints

It is possible to use DLV to impose preferences on repairs via an appropriate

representation of constraints. For RICs, for example, preference for introduction of

null values or for a cascade policy can be captured.

Example 8

(Example 7 continued.) Consider the same schema and FDs as before, but now we

have the following instance:

Emp Name SSN

Irwin oper 677-223-112

Irwin Koper 952-223-564

Mike Baneman 952-223-564

The DLV repair program is as in Example 7, but with the facts:

dom_number("677-223-112"). dom_number("952-223-564").

emp("Irwin Koper","677-223-112"). emp("Irwin Koper","952-223-564").

emp("Mike Baneman","952-223-564").

If DLV is run with this program as input, we obtain two answer sets:

{..,emp_p("Irwin Koper","677-223-112"),-emp_p("Irwin Koper","952-223-564"),

emp_p("Mike Baneman","952-223-564"),-emp_p("Mike Baneman","677-223-112")}

{..,-emp_p("Irwin Koper","677-223-112"),emp_p("Irwin Koper","952-223-564"),

-emp_p("Mike Baneman","952-223-564"),-emp_p("Mike Baneman","677-223-112")}

corresponding to the database repairs:

Emp Name SSN

Irwin Koper 677-223-112

Mike Baneman 952-223-564

Emp Name SSN

Irwin Koper 952-223-564

Adding the query rule answer(X):- emp_p(X,Y)., we can ask for those persons

who have a SSN. Two answer sets are obtained:

{..,answer("Irwin Koper"),answer("Mike Baneman")}, {..,answer("Irwin Koper")}

From them, we can -consistently- say that only Irwin Koper has a SSN.

Let us now extend the schema with a unary table Person(Name), whose contents,

together with the original contents of table Emp, is

Person Name

Irwin Koper

Mike Baneman

Answer sets for consistent query answers 409

If we want every person to have a SSN, we may impose the RIC ∀ x(Person(x)→
∃ yEmp(x, y)), stating that every person must have a SSN, that we saw how to repair

at the beginning of this section, either by introducing null values or by cascading

deletions.

We may not want any of these two options (we do not want null values in the key

SSN) or we do not want to delete any employees (in this case, M. Baneman from

Person). An alternative is to use DLV’s possibility of specifying strong constraints,

that have the effect of pruning those answer sets that do not satisfy them. This can

be done in DLV by introducing the denial :- dom_name(X), not has_ssn(X).,

with has_ssn(X) :- emp_p(X,Y).. The answer sets of the original program that

do not satisfy the ICs are filtered out; and now, only one repair is obtained:

{..,emp_p("Irwin Koper","677-223-112"),-emp_p("Irwin Koper","952-223-564"),

emp_p("Mike Baneman","952-223-564"),-emp_p("Mike Baneman","677-223-112"),

has_ssn("Irwin Koper"), has_ssn("Mike Baneman"), answer("Irwin Koper"),

answer("Mike Baneman")}

In it, every person has a SSN (according to the has ssa predicate). As expected,

the answers to the original query are X="Irwin Koper" and X="Mike Baneman".

Notice that strong constraints differ from the database integrity constraints in that

they are not used in the generation of repairs, but only at a final step where some

repairs are discarded. Furthermore, strong constraints are constraints on the answer

sets, but not directly on the semantics of the database.

7 Well-founded consistent answers

The intersection of all answer sets of a extended disjunctive logic program contains

the well-founded interpretation for such programs (Leone et al., 1997), which can be

computed in polynomial time in the size of the ground program. This interpretation

may be partial and not necessarily a model of the program. Actually, it is a total

interpretation if and only if it is the only answer set.

In Leone et al. (1997) it is shown how to compute the answer sets of a program

starting from the well-founded interpretation. This is what DLV basically does,

but instead of starting from the well-founded interpretation, it starts from the also

efficiently computable set of deterministic consequences of the program, that is still

contained in the intersection of all answer sets, and in its turn, contains the well-

founded interpretation (Calimieri et al., 2002). Actually, DLV can be explicitly asked

to return the set of deterministic consequences of the program,5 and it can be also

used as an approximation from below to the intersection of all answer sets.

On the other side, in the general case, computing the stable model semantics for

disjunctive programs is ΠP
2 -complete in the size of the ground program.6

The well-founded interpretation, WΠ(r) = 〈W+,W−,Wu〉, of program Π(r), where

W+,W−,Wu are the sets of true positive, true negative, and unknown literals, resp.,

5 By means of its option -det.
6 See Dantsin et al. (2001) for a review of complexity results in logic programming.

410 M. Arenas and others

is given by the least fixpointWω
Π(r)(∅) of operatorWΠ(r), that maps interpretations to

interpretations (Leone et al., 1997). More precisely, assuming that we have the ground

instantiation of the repair program Π(r), WΠ(r)(I) is defined on interpretations

I that are sets of ground literals (without pairs of complementary literals) by:

WΠ(r)(I) := TΠ(r)(I) ∪ ¬.GUS Π(r)(I).

Intuitively, TΠ(r) is the immediate consequence operator that declares a literal true

whenever there is ground rule containing it in the head, the body is true in I and

the other literals in the (disjunctive) head are false in I . ¬.GUS Π(r)(I) denotes the

set of complements of the literals in GUS Π(r)(I), being the latter the largest set of

unfounded literals, those that definitely cannot be derived from the program and

the set I of assumptions; in consequence their complements are declared true.

The intersection of all answer sets of Π(r) is

Core(Π(r)) :=
⋂
{S | S is an answer set of Π(r)}.

Interpretation WΠ(r), being a subset of Core(Π(r)), can be used as an approximation

from below to the core, but can be computed more efficiently than all database

repairs, or their intersection, in the general case. However, it is possible to identify

classes of ICs for which WΠ(r) coincides with Core(Π(r)).

Proposition 5
For a database instance r, and a set of ICs containing functional dependencies and

unary ICs only, the Core(Π(r)) of program Π(r) coincides with the set of true ground

literals in WΠ(r), the well-founded interpretation of program Π(r).

Results like the previous one can be established using the repair programs

introduced in section 4.1, for finite database domains D. Then, the results are

known to still hold for infinite domain databases, but domain independent integrity

constraints, like the ones in Proposition 5.

As corollary of Proposition 5, we obtain that, for FDs and unary constraints,

Core(Π(r)) can be computed in polynomial time in the size of the ground instanti-

ation of Π(r), a result first established in Arenas et al. (2001) for FDs. The core alone

can be used to consistently answer non-existential conjunctive queries. Furthermore,

in Arenas et al. (2001), for the case of functional dependencies, conditions on queries

are identified under which one can take advantage of computations on the core to

answer aggregate queries more efficiently.

As the following example shows, for other BICs, the core of the repair program

may not coincide with the well-founded interpretation.

Example 9
Consider the BICs IC = {q ∨ r, s ∨ ¬q, s ∨ ¬r} and the empty database instance.

The program Π(r) contains

Triggering rules: q′∨r′ ←− not q, not r; s′∨¬q′ ←− q, not s; s′∨¬r′ ←− r, not s.

Stabilizing rules: q′ ←− ¬r′; r′ ←− ¬q′; s′ ←− q′; ¬q′ ←− ¬s;
s′ ←− r′; ¬r′ ←− ¬s′.

Persistence rules: q′ ←− q, not ¬q′; s′ ←− s, not¬s′; r′ ←− r, not ¬r′;
¬q′ ←− not q, not q′; ¬s′ ←− not s, not s′; ¬r′ ←− not r, not r′.

Answer sets for consistent query answers 411

The answer sets are: {q′, s′,¬r′} and {¬q′, s′, r′}. Then Core(Π(r)) = {s′}, but for

WΠ(r), one has W+ ∪W− = ∅.

The results obtained so far in this section apply to the repair program Π(r).

Nevertheless, when we add an arbitrary query program Π(α) to Π(r), then it is

possible that the new core properly extends the well-founded interpretation of the

extended program, even for FDs.

Example 10

Consider r = {P (a, b), P (a, c)}, with the FD, P (X,Y) : X → Y , and the query

α(x): ∃y P (x, y). The combined Π program is:

dom(a). dom(b). dom(c). P (a, b). P (a, c).

Answer(X)← P ′(X,Y)

P ′(X,Y)← P (X,Y), not ¬P ′(X,Y).

¬P ′(X,Y)← dom(X), dom(Y), not P (X,Y), not P ′(X,Y).

¬P ′(X,Y) ∨ ¬P ′(X,Z)← P (X,Y), P (X,Z), Y 	= Z.

¬P ′(X,Y)← dom(Y), P ′(X,Z), Y 	= Z.

The answer sets are S1 = {Answer(a),P ′(a , b),P (a , b),P (a , c), . . .} and S2 =

{Answer(a),P ′(a , c),P (a , b),P (a , c), . . .}. The well-founded interpretation is WΠ =

〈W+,W−,Wu〉, with W+ = {P (a, b), P (a, c), dom(a), . . .}, W− = {¬P ′(a, a), . . .},
and Wu = {P ′(a, b), P ′(a, c), Answer(a)}. In particular, Answer(a) ∈ Core(Π), but

Answer(a) /∈W+.

We know, by complexity results presented in Arenas et al. (2001) for functional

dependencies that, unless P = NP , consistent answers to first-order queries cannot

be computed in polynomial time. In consequence, we cannot expect to compute

Core(Π) of the program that includes the query program by means of the well-

founded interpretation of Π alone.

8 An alternative semantics

As discussed in Arenas et al. (1999), our database repairs can be obtained as the

revision models corresponding to the “possible model approach” introduced in

Winslett (1988) and Chou and Winslett (1994) in the context of belief update. When

the database instance (a model) is updated by the set of ICs, a new set of models is

generated, the database repairs. Winslett’s revision models, as our repairs, are based

on minimal set of changes wrt the original model.

8.1 Cardinality-based repairs and weak constraints

In Dalal (1988), again in the context of belief revision/update, an alternative notion

of revision model based on minimal number of changes is introduced.

Definition 7

Given a database instance r, an instance r′ is a Dalal repair of r wrt IC iff r′ |= IC

and |∆(r, r′)| is a minimal element of {|∆(r, r∗)| | r∗ |= IC}. �

412 M. Arenas and others

We could give a definition of Dalal consistent answer exactly in the terms of

Definition 1, but replacing “repair” by “Dalal repair”. We can also specify Dalal

repairs using the same repair programs we had in section 4, but with the persistence

defaults replaced by weak constraints (Buccafurri et al., 2000). The latter will

not be imposed on the original database, but rather on the answer sets of the

change program, Π∆(r), that is responsible for the changes, and was introduced in

section 4.1.1.

Weak constraints are of the form⇐ L1, . . . , Lk, not Lk+1, . . . , not Ln, where the Li’s

are literals. These constraints are added to an extended disjunctive program, with

the effect that only those answer sets that minimize the number of violated ground

instantiations of the weak constraints are kept.

In order to capture Dalal repairs, we need very simple weak constraint. The

program ΠD(r) that specifies the Dalal repairs of a database instance r wrt a set of

BICs consists of program Π∆(r) of section 4.1.1 (rules 1–3) plus

4”. For every database predicate p, the weak constraints

⇐ p′(X̄), not p(X̄),
(5)

⇐ ¬p′(X̄), p(X̄).

These constraints say that the original database and a repair are expected to

coincide. Since they are weak constraints, they allow violations, but only a minimum

number of tuples that belong to the repair and not to the original instance, or the

other way around, are be accepted.

The results for the change program Π∆(r) still hold here. In consequence, the

program ΠD(r) will have answers sets that correspond to repairs that are minimal

both under set inclusion and number of changes, i.e. only answer sets corresponding

to Dalal repairs.

Example 11

Let D = {a}, r = {p(a)} and IC = {¬p(x) ∨ q(x),¬q(x) ∨ r(x)}. ΠD(r) contains

Facts: dom(a). p(a).

Triggering exceptions: ¬p′(X) ∨ q′(X) ←− p(X), not q(X)

¬q′(X) ∨ r′(X) ←− q(X), not r(X)

Stabilizing exceptions: q′(X) ←− p′(X); ¬p′(X) ←− ¬q′(X)

r′(X) ←− q′(X); ¬q′(X) ←− ¬r′(X)

Weak constraints: ⇐ p′(X), not p(X); ⇐ q′(X), not q(X); ⇐ r′(X), not r(X);

⇐ ¬p′(X), p(X); ⇐ ¬q′(X), q(X); ⇐ ¬r′(X), r(X).

Weak constraints are implemented in DLV,7 that run on this program returns the

answer set {dom(a), p(a), ¬p′(a)}, corresponding to the empty database repair, but

not the other Winslett’s repair {dom(a), p(a), q′(a), r′(a)}, whose set of changes wrt r

has two elements, whereas the first repair differs from r by one change only.

7 They are specified by :∼ Conj ., where Conj is a conjunction of (possibly negated) literals. See DLV’s
user manual in http://www.dbai.tuwien.ac.at/proj/dlv/man.

Answer sets for consistent query answers 413

Notice that in Example 11, from the change program Π∆(r), without the weak

constraints, we obtain the eventually discarded answer set {dom(a), p(a), q′(a), r′(a)},
that only implicitly contains p′(a). The reason is that now we do not have the

persistence rules that cause p(a) to persist in the database as p′(a). In consequence,

we have to interpret these answer sets to establish the correspondence between them

and the repairs. This is done in Theorem 3 via the interpretation I of Definition 4.

In consequence, for BICs and finite domain databases we have

Theorem 3

Given a (finite domain) database instance r and a set of BICs IC :

1. For every Dalal repair r′ of r wrt IC , there exists an answer set S of ΠD(r)

such that I(S) = r′.

2. For every answer set S of ΠD(r), there exists a Dalal repair r′ of r wrt IC such

that I(S) = r′.

As with Winslett’s repairs, the theorem still holds for infinite domain databases

when the BICs are domain independent.

Instead of interpreting the answer sets due to the only implicit presence of primed

literals caused by the lack of persistence defaults, when we pose queries expecting

consistent answers, we may transform the original query according to the following

table:

original query query in the program

p(x̄) queryp(X̄) ← p′(X̄).

queryp(X̄) ← p(X̄), not ¬p′(X̄).
¬p(x̄) query¬p(X̄) ← ¬p′(X̄).

query¬p(X̄) ← dom(X̄), not p(X̄), not p′(X̄).

That is, everywhere in the original query, we replace p and ¬p by queryp, and

query¬p, respectively, and we add the rules on the right-hand side of the table.

Finally, as an alternative, we could avoid interpreting answer sets or transforming

queries, and explicitly obtain the Dalal repairs, by imposing the weak constraints on

the repair program Π(r), that contains the default rules.

9 Conclusions

We have presented a general methodology to consistently answer first order queries

posed to relational databases that violate given ICs. We have restricted ourselves

mainly to the case of binary integrity contraints, i.e. universal ICs containing at

most two database literals. However the methodology can be extended to universal

ICs with a larger number of database literals. Facts, persistence and triggering

exceptions rules are as before, but the number of stabilizing rules grows according

to the number of subsets of database literals in each IC. We sketch the solution by

means of an example.

414 M. Arenas and others

Example 12

Consider r = {P (a), Q(a), R(a)} and the ternary integrity constraints IC = {¬P (x)∨
¬Q(x) ∨ R(x),¬P (x) ∨ ¬Q(x) ∨ ¬R(x),¬P (x) ∨Q(x) ∨ ¬R(x), P (x) ∨ ¬Q(x) ∨ ¬R(x),

¬P (x)∨Q(x)∨R(x), P (x)∨¬Q(x)∨R(x), P (x)∨Q(x)∨¬R(x)}. The repair program

Π(r) contains the usual persistence defaults for P ,Q, R, and triggering exception

rules, e.g. for the first IC in IC:

¬P ′(x) ∨ ¬Q′(x) ∨ R′(x) ← P (x), Q(x), not R(x).

We also need the stabilizing rules, e.g. for the first IC

¬P ′(x) ∨ ¬Q′(x) ← ¬R′(x),
¬P ′(x) ∨ R′(x) ← Q′(x), (6)

¬Q′(x) ∨ R′(x) ← P ′(x);

but also for the first IC:

¬P ′(x) ← Q′(x),¬R′(x),
R′(x) ← P ′(x), Q′(x), (7)

¬Q′(x) ← P ′(x),¬R′(x).

In this case we obtain as answer set the only repair, namely the empty instance,

represented by {P (a), Q(a), R(a),¬P ′(a),¬Q′(a),¬R′(a)}. Using rules (7) as the only

stabilizing rules, without using the disjunctive stabilizing rules (6), the empty repair

cannot be obtained.

Extending the current methodology to relational databases with view definitions

should be straightforward.

9.1 Ongoing and future work

There are several open issues that deserve further investigation, among them:

(a) Analyze conditions under which simpler and optimized programs can be

obtained; (b) a more detailed treatment of referential ICs (and other existential ICs);

(c) identification of other classes of ICs for which the well-founded interpretation

and the intersection of all database repairs coincide; and (d) representation of

preferences for certain kinds of repair actions. In principle, the preferences could be

captured by choosing the right disjuncts in the triggering rules.

The approach to CQA is based on the specification of all repairs, where each of

them completely restores the consistency of the database, independently from the

query that is posed and from the fact that it might have nothing to do with some

of the violated ICs. This approach work well if the repairs are stored and different

queries are posed after that. However, it would be useful to specify and compute

“repairs” that partially restore the consistency of the database, only wrt the ICs that

are relevant to the query. Possibly appropriate grounding techniques could be used

in this case.

The repair programs we presented materialize the closed-world assumption by

explicitly producing the negative primed literals. This is due to the persistence default

Answer sets for consistent query answers 415

rules. In practical applications this should and could be avoided by restoring, via

the program, the implicit closed world assumption applied to the repairs.

We have not addressed the problem of obtaining query answers to general K-

queries. The method we presented for basic K-queries needs to be combined with

some method of evaluating first-order queries. For example, safe-range first-order

queries (Abiteboul et al., 1995) can be translated to relational algebra. The same

approach can be used forK queries with the subqueries of the formKα replaced by

new relation symbols. Then when the resulting relational algebra query is evaluated

and the need arises to materialize one of the new relations, the above method can

be used to accomplish that goal.

There are several interesting open issues related to computational implementation

of the methodology we have presented.

The existing implementations of stable models semantics are based on grounding

the rules, what, in database applications, may lead to huge ground programs. Some

“intelligent” grounding techniques have been implemented in DLV. Furthermore,

those implementations are geared to computing stable models, possibly only one

or some of them, whereas consistent query answering requires, at least implicitly,

having all stable models, or the “relevant parts” of all of them. In particular, this

opens the interesting issue of having the construction of (the relevant parts of) the

stable models guided by the query, because query answering is our primary goal, but

not the computation of repairs. Current query evaluation methodologies under the

stable model semantics, specially for disjunctive programs, are completely insensitive

to the query at hand. The goal is to avoid irrelevant computations.

In database applications, posing and answering open queries (with variables)

is more natural and common that answering ground queries. However, existing

implementations of stable model semantics are better designed to do the latter.

It would be useful to implement a consistent query answering system based on the

interaction of our repairs logic programs with relational DBMS. For this purpose,

some functionalities and front-ends included in DLV’s architecture (Eiter et al., 2000)

could be used. Trying to push most of the computation to the DBMS seems to be

the right way to proceed.

9.2 Related work

Work on inconsistency handling has been done for long time and by different

communities, e.g. philosophical and non-classical logic, knowledge representation,

logic programming, databases, software specification, etc. We mention only some

related work that has, or may have, some relation to our notions of repair and

consistent answer, or are based on some form of logic programming.

There are several similarities between our approach to consistency handling and

those followed by the belief revision/update community. As already mentioned in

section 8, database repairs coincide with the revised models defined in Winslett

(1988). The treatment there is mainly propositional, but a preliminary extension to

first order knowledge bases can be found in Chou and Winslett (1994). Those papers

concentrate on the computation of the models of the revised theory, i.e. the repairs

416 M. Arenas and others

in our case, but not on query answering. The revision of a database instance by the

ICs produces new database instances, the repairs of the original database.

Nevertheless, our motivation and starting point are quite different from those

of belief revision. We are not interested in computing the repairs per se, but in

answering queries, hopefully using the original database as much as possible. If this

is not possible, we look for methodologies, as our logic programming approach,

for representing and querying simultaneously and implicitly all the repairs of the

database.

Bry (1997) was, to our knowledge, the first author to consider the notion of

consistent query answer in inconsistent databases. He defined consistent query

answers using provability in minimal logic. The proposed inference method is

nonmonotonic but fails to capture minimal change (thus Bry’s notion of consistent

query answer is weaker than ours). Moreover, Bry’s approach is entirely proof-

theoretic and does not provide a computational mechanism to obtain consistent

answers to first-order queries.

Several papers studied the problem of making inferences from a possibly in-

consistent, propositional or first-order, knowledge base. The basic idea is to infer

the classical consequences of all maximal consistent subsets of the knowledge base

(Lozinskii, 1994; Baral et al., 1991), or all most consistent models of the knowledge

base (Kifer and Lozinskii, 1992; Arieli and avron, 1999) (where the order on models

is defined on the base of atom annotations drawing values from a lattice or a

bi-lattice). This provides a non-monotonic consequence relation but the special role

of the integrity constraints (whose truth cannot be given up) is not captured. Also,

the issue of processing general first-order queries is not considered.

Now we briefly review specification and logic programming based approaches to

consistency handling in databases. In this direction, the closest approach to ours

was presented, independently, in Greco et al. (2001) (see also Greco and Zumpano,

2000, 2001). There, disjunctive programs are used to specify the minimal sets of

changes, under set inclusion, that lead to database repairs in the sense of Arenas

et al., (1999). The authors present a compact schema for generating repair programs

for general universal integrity constraints. The application of such a schema leads

to programs that involve essentially all possible disjunctions of database literals in

the heads, ending up with programs like the one in Example 12. They concentrate

mainly on producing the set of changes, rather than the repaired databases explicitly.

In particular, they do no have persistence rules in the program. In consequence, the

program cannot be used directly to obtain consistent answers. An interpretation of

the results, possibly like the one introduced in section 8 would be necessary. They

also introduce “repair constraints” to specify preferences for certain kinds of repairs.

The annotated predicate logic introduced in Kiffer and Lozinskii (1992) was

applied in Arenas et al. (2000) to the task of computing consistent query answers

via a specification of the database repairs. The specification was used to derive

algorithms for consistently answering some restricted forms of first order queries

and to obtain some complexity results. As expected, the database repairs correspond

to certain minimal models of the specification. This approach is based on a non-

classical logic, and computing consistent answers from it is not straightforward. The

Answer sets for consistent query answers 417

specification methodology was extended from universal ICs to referential ICs in

Barcelo and Bertossi (2002).

There are several proposals for language constructs extending stratified Datalog

programs with the purpose of specifying nondeterministic queries. Essentially, the

idea is to construct a maximal subset of a given relation that satisfies a given

set of functional dependencies. Since there is usually more than one such subset,

the approach yields nondeterministic queries in a natural way. Clearly, maximal

consistent subsets, choice models in Giannotti et al. (1997), correspond to our

repairs in the case of functional dependencies. Stratified Datalog with choice

(Giannotti et al., 1997) combines enforcing functional dependencies with inference

using stratified Datalog programs. Answering queries in all choice models (∀G-

queries (Greco et al., 1995)) corresponds to our notion of computation of consistent

query answers for first-order queries.

The revision programs (Marek and Truszczynski, 1998) are logic programs for

updating databases, and could be used to restore consistency, and then to compute

database repairs. The rules in those programs allow explicitly declaring how to

enforce the satisfaction of an integrity constraint, rather than explicitly stating the

ICs, e.g. in(a) ← in(a1), . . . , in(ak), out(b1), . . . , out(bm) has the intended procedural

meaning of inserting the database atom a whenever a1, . . . , ak are in the database,

but not b1, . . . , bm. They also give a declarative, stable model semantics to revision

programs. Preferences for certain kinds of repair actions can be captured by declaring

the corresponding rules in program and omitting rules that could lead to other forms

of repairs. Revision programs could be used, as the programs in Greco et al. (2001),

to obtain consistent answers, but not directly, because they give an account of

changes only.

Blair and Subrahmanian (1989) introduced paraconsistent logic programs. They

have a non-classical semantics, inspired by paraconsistent first-order semantics. In

Kifer and Subrahmanian (1992), general annotated logic programs are presented.

Their lattice-based semantics is also non-classical. Atoms in clauses have annotations,

as in Kifer and Lozinskii (1992), but now annotations may also contain variables and

functions, providing a stronger representation formalism. Implementation of annot-

ated logic programs and query answering mechanisms are discussed in Leach and

Lu (1996). In Subrahmanian (1994), annotated programs are further generalized,

in order to be used for amalgamating databases, resolving potential conflicts

between integrated data. For this purpose the product of the lattices underlying each

database is constructed as the semantic basis for the integrated database. Conflict

resolutions and preferences are captured by means of function-based annotations.

Other approaches to paraconsistent logic programming are discussed in Damasio

and Moniz-Pereira (1998).

In Barcelo and Bertossi (2002, 2003), starting from the lattice and specification

introduced in Arenas et al. (2000b), logic programs containing annotations as

arguments (as opposed to annotated programs that contain annotated atoms) were

used to specify database repairs and compute consistent answers to queries. The

approach works for general universal ICs and referential ICs. The logic programs

have stable model semantics. The cost of using annotations as extra arguments in

418 M. Arenas and others

the program is balanced by the fact that the program contains only a linear number

of rules, what is not the case if the number of literals per IC grows beyond two (see

Example 12). In consequence, for ICs that are non binary, the approach in Barcelo

and Bertossi (2003) should be more convenient.

Acknowledgments

Work supported by FONDECYT Grant 1000593, NSF Grant INT-9901877/

CONICYT Grant 1998-02-083, NSF Grant IIS-0119186, Carleton University Start-

Up Grant 9364-01, NSERC Grant 250279-02. L. Bertossi holds a Faculty Fellowship

of the Center for Advanced Studies, IBM Toronto Lab. We are grateful to Francisco

Orchard for informative paper presentations, discussions, and experiments with DLV.

We are grateful to Nicola Leone for kindly answering all our questions about DLV.

We appreciate comments received from anonymous reviewers, that have helped us

to substantially improve the presentation.

Appendix: Proofs

Proof of Proposition 1

Consider an arbitrary element in IC . Assume that this element is of the form

p(x̄)∨¬q(ȳ)∨ϕ (the proof is analogous for binary constraints containing either two

positive literals or two negative literals). We have to prove that I(S) satisfies any

instantiation of this formula, say p(ā) ∨ ¬q(b̄) ∨ ϕ. We consider two cases.

(I) If r does not satisfy this ground constraint, then S satisfies the body of the

ground triggering rule: p′(ā)∨¬q′(b̄) ← dom(ā), not p(ā), q(b̄), ϕ. Thus, p′(ā) ∈
S or ¬q′(b̄) ∈ S . If p′(ā) ∈ S , then I(S) |= p(ā), and if ¬q′(b̄) ∈ S , then q′(b̄) 	∈ S
and, therefore, I(S) |= ¬q(b̄). In any case, I(S) |= p(ā) ∨ ¬q(b̄) ∨ ϕ.

(II) If r satisfies the ground constraint, then r satisfies ϕ, p(ā) or ¬q(b̄). In the

first case, I(S) |= ϕ and, therefore, I(S) |= p(ā)∨¬q(b̄)∨ϕ. Thus, assume that

r 	|= ϕ and r |= p(ā) or r |= ¬q(b̄).
By contradiction, assume that I(S) 	|= p(ā) ∨ ¬q(b̄). If r |= p(ā), then p(ā) ∈ S
and, therefore, ¬p′(ā) ∈ S , by definition of I(S). But in this case S satisfies

the body of the ground stabilizing rule: ¬q′(b̄) ← dom(b̄),¬p′(ā), ϕ. and,

therefore, ¬q′(b̄) ∈ S . We conclude that I(S) |= ¬q(b̄), a contradiction.

If r |= ¬q(b̄), then ¬q(b̄) 	∈ S and, therefore, q′(b̄) ∈ S , by definition of

I(S). But in this case S satisfies the body of the ground stabilizing rule:

p′(ā) ← dom(ā), q′(b̄), ϕ. and, hence, p′(ā) ∈ S . We conclude that I(S) |= p(ā),

again a contradiction.

Proof of Proposition 2

To prove that S(r, r′) satisfies Π∆(r), we need to consider only the four different

types of ground stabilizing rules (the satisfaction of the other rules follows from the

fact that r′ satisfies IC).

Answer sets for consistent query answers 419

If S(r, r′) satisfies the body of the rule q′(b̄) ← dom(b̄), p′(ā), ϕ, then r′ must

satisfy dom(b̄), p(ā) and ¬ϕ. But r′ |= q(b̄)∨¬p(ā)∨ϕ, since ∀x̄∀ȳ(q(x̄)∨¬p(ȳ)∨ϕ) ∈
IC , and, therefore, r′ |= q(b̄). Thus, q′(b̄) ∈ S(r, r′).

Analogously, it is possible to prove that S(r, r′) satisfies the remaining types of

ground stabilizing rules.

Proof of Proposition 3

From the previous proposition, we know that the change program has models; so it

is a consistent program. If the program has a consistent (i.e. non trivial) answer set,

they are all consistent (Lifschitz and Turner, 1994). Now we show how to obtain such

consistent answer sets. The program can be split into two subprograms (Lifschitz

and Turner, 1994). The first one contains the domain and database facts plus the

rules p�(X̄) ← not p(X̄). The second one containing the stabilizing rules and the

triggering rules modified by replacing the literals of the form not p in the bodies by

by p�.

The first program is stratified and has one (consistent) answer set. The second

subprogram does not contain weak negation, it is a positive program in that sense,

and its minimal models coincide with its answer sets. By a result in Lifschitz and

Turner (1994), the original program has as answer sets the unions of the answer sets

of the first program and the answer sets of the second one, where the atoms p� are

treated as extensional database predicates for the computation of the answer sets of

the second subprogram.

Proof of Proposition 4

Let S ′M be the set added to SM . It is easy to verify that SΠ(r) ⊇SM Π∆(r). Then, since

SM is an answer set of Π∆(r), to prove that S is an answer set of Π(r), it suffices to

prove (I) and (II) below.

(I) S ′M ⊆ ∩α(SΠ(r)). Let l(ā) be an element of S ′M . If l(ā) = p′(ā), then p(ā) ∈ SM
and ¬p′(ā) 	∈ SM , and, therefore, p(ā) and p′(ā) ← p(ā) are rules in SΠ(r).

Thus, p′(ā) is in ∩α(SΠ(r)). If l(ā) = ¬p′(ā), then p(ā) 	∈ SM and p′(ā) 	∈ SM ,

and, therefore, ¬p′(ā) ← dom(ā) is a reduced ground persistence rule in SΠ(r).

Thus, ¬p′(ā) is in ∩α(SΠ(r)).

(II) From S ′M is not possible to deduce an element that is not in S by using the

stabilizing rules.

Assume that q′(Ȳ) ← dom(Ȳ), p′(X̄), ϕ is a rule in Π∆(r), and q′(b̄) ← dom(b̄),

p′(ā) is a rule in SΠ(r). If p′(ā) ∈ S ′M , we need to show that q′(b̄) ∈ S . By

contradiction, suppose that q′(b̄) 	∈ S . Then q′(b̄) 	∈ SM and q′(b̄) 	∈ S ′M ,

and, therefore, q(b̄) 	∈ SM or ¬q′(b̄) ∈ SM , by definition of S ′M . If q(b̄) is

not in SM , then given that p′(ā) ∈ S ′M , SM satisfies the body of the rule:

q′(b̄) ∨ ¬p′(ā) ← dom(b̄), p(ā), not q(b̄), ϕ. But, this implies that q′(b̄) ∈ SM ,

a contradiction, or ¬p′(ā) ∈ SM , also a contradiction (since p′(ā) ∈ S ′M).

Otherwise, if ¬q′(b̄) ∈ SM , then by using the rule ¬p′(ā) ← dom(ā),¬q′(b̄),
we can conclude that ¬p′(ā) is in SM , a contradiction.

420 M. Arenas and others

Analogously, it is possible to prove the same property for any other type of

stabilizing rule.

Proof of Lemma 1

Let S be a answer set of Π∆(r) such that S is a subset of S(r, r′). First, we prove that

∆(r, I(S)) ⊆ ∆(r, r′). If p(ā) ∈ ∆(r, I(S)), then one of the following cases holds.

(I) r |= p(ā) and I(S) 	|= p(ā). In this case, p(ā) ∈ S and p′(ā) 	∈ S . Thus, by

definition of I(S) we conclude that ¬p′(ā) ∈ S and, therefore, ¬p′(ā) ∈ S(r, r′).

But this implies that r′ 	|= p(ā). Thus, p(ā) ∈ ∆(r, r′).

(II) r 	|= p(ā) and I(S) |= p(ā). In this case, p(ā) 	∈ S (S is a minimal model and

p(a) does not need to be in S if it was not in r). Thus, by definition of I(S)

we conclude that p′(ā) ∈ S and, therefore, p′(ā) ∈ S(r, r′). But this implies

that r′ |= p(ā). Thus, p(ā) ∈ ∆(r, r′).

Hence, ∆(r, I(S)) ⊆ ∆(r, r′). But, by Proposition 1, I(S) satisfies IC , and therefore,

∆(r, I(S)) must be equal to ∆(r, r′), since ∆(r, r′) is minimal under set inclusion in

{∆(r, r∗) | r∗ |= IC}. Then, we conclude that I(S) = r′.

Proof of Theorem 1

We shall prove the first part of this theorem. The second one can be proved

analogously.

Given a repair r′ of r, by Lemma 1, r′ = I(SM), where SM is an answer set of Π∆(r),

with SM ⊆ S(r, r′). Define S from SM as in Proposition 4. Then, S is an answer set of

Π(r). By construction of S , I(S) = I(SM). Furthermore, I(S) = {p(a) | p′(a) ∈ S}.

Proof of Proposition 5

Since it is always the case that WΠ(r) � Core(Π(r)) (Leone et al., 1997), we only

need to show that Core(Π(r)) � WΠ(r). In consequence, it is necessary to check that

whenever a literal (¬)p′(a) belongs to Core(Π(r)), where a is tuple of elements in the

domain D and p is a database predicate, (¬)p′(a) can be fetched into Wn
Π(r)(∅) for

some finite integer n.

For each literal L in the original database r, and its primed version L′ and

each answer set S , either L′ or its complement L′ ∈ S .8 We will do the proof by

cases, considering for a literal L′ : (¬)p′(a) contained in Core(Π(r)) all the possible

transitions from the original instance to the core: (a) negative to positive, i.e.

¬p(a) ∈ r, and p′(a) ∈ Core(Π(r)), (b) positive to positive. (c) negative to negative.

(d) positive to negative. We will prove only the first two cases, the other two are

similar. For each case, again several cases have to be verified according to the

different ground program rules that could have made p′(a) get into Core(Π(r)).

(a) Assume p′(a) ∈ Core(Π(r)), and p(a) /∈ r. To prove: p′(a) ∈WΠ(r).

Since FDs can only produce deletions p′(a) has to be true due to an unary con-

straint that was false for p(a): (p(a) ∨ ϕ(a)) ∈ ICD is false, with ϕ(a) is false, where

8 Actually only positive literals appear in r, but we are invoking the CWA. All the literals in the original
instance will belong to Core(Π(r)).

Answer sets for consistent query answers 421

ICD is the instantiation of the ICs in the domain D. In the ground program we

find the rule p′(a)←− dom(a),¬ϕ(a). The second subgoal becomes true of ∅. Since

dom(a) ∈ W1
Π(r)(∅), we obtain p′(a) ∈ W2

Π(r)(∅).

(b) Assume that p′(a) ∈ Core(Π(r)) and p(a) ∈ r.

This means that p(a) persisted from the original instance to every answer set.

1. There is (p(a) ∨ ϕ(a)) ∈ ICD with ϕ(a) false. Then the ground program has a

rule p′(a) ←− dom(a),¬ϕ(a). The body becomes true, dom(a) gets into WFS

after the first step, then, as in case (a), p′(a) ∈ W2
Π(r)(∅).

2. There is no ground constraint as in item 1, i.e. there is no (p(a) ∨ ϕ(a)) ∈ ICD
or the ϕ(a)’s are true. In this case, there is no applicable rule of the form

p′(a)←− dom(a),¬ϕ(a) in the ground program.

Since rules associated to FDs delete tuples only, we must have obtained p′(a) via

a default rule p′(a)←− dom(a), p(a), not ¬p′(a) and the unfoundedness of ¬p′(a)
in the ground program. If theWΠ(r) operator declares ¬p′(a) unfounded, then

p′(a) will belong to WΠ(r). So, we have to concentrate on the unfoundedness of

¬p′(a).
(a) We can never get ¬p′(a) from rules of the form ¬p′(a)←− dom(a),¬ψ(a),

obtained from unary ICs. If this were the case, we would have ¬p′(a) ∈
Core(Π(r)), what is not possible, since p′(a) ∈ Core(Π(r)).

(b) ¬p′(a) cannot be obtained via the default rule

¬p′(a)←− dom(a), not p(a), not p′(a),

because it has the second subgoal false.

(c) ¬p′(a) cannot be obtained via a possible unfoundedness of p′(a), because

p′(a) belongs to answer sets.

(d) We are left with rules associated to FDs. Assume that

(¬p(a) ∨ ¬p(b) ∨ c = d) ∈ ICD. (8)

i If c = d, the associated triggering rule ¬p′(a)∨¬p′(b)←− p(a), p(b),
c 	= d. cannot be applied.

ii If c 	= d, then in principle the triggering rule could be applied, but

since p′(a) belongs to all answer sets, without being forced to by a

unary ICs, it must be case that p(b) is false (otherwise, some repairs

would get p′(a) and others p′(b), but not p′(a)).

For the same reason, there is no (p(b) ∨ χ(b)) ∈ ICD with χ(b) false,

because this would force p′(b) to be true via the corresponding

triggering rule; and this in its turn would force ¬p′(a) to be true (to

be in every answer set) due to the FD. This is not possible, because

p′(a) is already in Core(Π(r)).

In consequence, the rule

¬p′(a) ∨ ¬p′(b)←− p(a), p(b), c 	= d

cannot be applied.

422 M. Arenas and others

Now, we have to analyze the stabilizing rule ¬p′(a) ←− p′(b), c 	= d

associated to (8).

i If c = d, the rule does not apply.

ii If c 	= d, we have (as above) p(b) /∈ r. Then, ¬p(b) ∈ W1
Π(r)(∅).

Furthermore, p′(b) cannot be obtained from the default p′(b) ←−
dom(b), p(b), not¬p′(b), because p(b) is false. We already saw that

p′(b) cannot be obtained from a rule p′(b)←− dom(b),¬χ(b).
In consequence, p′(b) is unfounded, i.e. ¬p′(b) ∈ W2

Π(r)(∅), then, from the

stabilizing rule, ¬p′(a) turns out to be unfounded too: p′(a) ∈ W3
Π(r)(∅).

The two remaining cases that we will not prove are: (c) p(a) /∈ r and ¬p′(a) ∈
Core(Π(r)); (d) p(a) ∈ r and ¬p′(a) ∈ Core(Π(r)). It is possible to show that always

Core(Π(r)) ⊆W3
Π(r)(∅).

References

Abiteboul, S., Hull, R. and Vianu, V. 1995. Foundations of Databases. Addison-Wesley.

Arenas, M., Bertossi, L. and Chomicki, J. 1999. Consistent query answers in

inconsistent databases. Proceedings ACM Symposium on Principles of Database Systems

(ACM PODS’99), pp. 68–79. ACM Press.

Arenas, M., Bertossi, L. and Chomicki, J. 2000. Specifying and querying database repairs

using logic programs with exceptions. In: H. L. Larsen, J. Kacprzyk, S. Zadrozny and

H. Christiansen (Eds.), Flexible Query Answering Systems. Recent Developments, pp. 27–41.

Springer.

Arenas, M., Bertossi, L. and Kifer, M. 2000. Applications of annotated predicate calculus to

querying inconsistent databases. ‘Computational Logic – CL 2000’. Stream: 6th International

Conference on Rules and Objects in Databases (DOOD’2000): LNAI 1861, pp. 926–941.

Springer.

Arenas, M., Bertossi, L. and Chomicki, J. 2001. Scalar aggregation in FD-inconsistent

databases. Database Theory – ICDT 2001 (Proceedings International Conference on

Database Theory, ICDT’2001): LNCS 1973, pp. 39–53. Springer.

Arieli, O. and Avron, A. 1999. A model-theoretic approach for recovering consistent data

from inconsistent knowledge bases. Journal of Automated Reasoning 22, 2, 263–309.

Baral, C., Minker, J. and Kraus, S. 1991. Combining multiple knowledge bases. IEEE

Transactions on Knowledge and Data Engineering 3, 2, 208–221.

Barcelo, P. and Bertossi, L. 2002. Repairing databases with annotated predicate

logic. Proceedings Ninth International Workshop on Non-Monotonic Reasoning (NMR’2002),

pp. 160–170. Morgan Kaufmann.

Barcelo, P. and Bertossi, L. 2003. Logic programs for querying inconsistent databases.

Proceedings Fifth International Symposium on Practical Aspects of Declarative Languages

(PADL 2003): LNCS 2562, pp. 208–222. Springer.

Blair, H. A. and Subrahmanian, V. S. 1989. Paraconsistent logic programming. Theoretical

Computer Science 68, 135–154.

Bry, F. 1997. Query answering in information systems with integrity constraints. Proceedings

First IFIP TC11 Working Conference on Integrity and Internal Control in Information

Systems, pp. 113–130. Chapman & Hall.

Buccafurri, F., Leone, N. and Rullo, P. 2000. Enhancing disjunctive datalog by constraints.

IEEE Transactions on Knowledge and Data Engineering 12, 5, 845–860.

Answer sets for consistent query answers 423

Calimeri, F., Faber, W., Leone, N. and Pfeifer, G. 2002. Pruning operators for answer

set programming systems. In: S. Benferhat and E. Giunchiglia (Eds.), Proceedings Ninth

International Workshop on Non-Monotonic Reasoning (NMR’2002), pp. 200–209. Morgan

Kaufmann.

Celle, A. and Bertossi, L. 2000. Querying inconsistent databases: algorithms and

implementation. ‘Computational Logic – CL 2000’. Stream: 6th International Conference

on Rules and Objects in Databases (DOOD’2000): LNAI 1861, pp. 942–956. Springer.

Chou, T. and Winslett, M. 1994. A model-based belief revision system. Journal of Automated

Reasoning 12, 157–208.

Dalal, M. 1988. Investigations into a theory of knowledge base revision: preliminary report.

Proceedings Seventh National Conference on Artificial Intelligence (AAAI’88), pp. 475–479.

Damasio, C. V. and Moniz-Pereira, L. 1998. A survey on paraconsistent semantics for

extended logic programs. In: D. M. Gabbay and Ph. Smets (Eds.), Handbook of Defeasible

Reasoning and Uncertainty Management Systems, Vol. 2, pp. 241–320. Kluwer Academic.

Dantsin, E., Eiter, T., Gottlob, G. and Voronkov, A. 2001. Complexity and expressive

power of logic programming. ACM Computing Surveys 33, 3, 374–425.

Eiter, T., Leone, N., Mateis, C., Pfeifer, G. and Scarcello, F. 1998. The knowledge

representation system DLV: progress report, comparisons, and benchmarks. Proceedings

International Conference on Principles of Knowledge Representation and Reasoning (KR98),

Trento, Italy. Morgan Kaufman.

Eiter, T., Faber, W., Leone, N. and Pfeifer, G. 2000. Declarative problem-solving in DLV.

In: J. Minker (Ed.), Logic-Based Artificial Intelligence, pp. 79–103. Kluwer.

Fitting, M. 1996. First Order Logic and Automated Theorem Proving. 2nd ed. Texts and

Monographs in Computer Science, Springer.

Gelfond, M. and Lifschitz, V. 1988. The stable model semantics for logic programming.

In: R. A. Kowalski and K. A. Bowen (Eds.), Logic Programming, Proceedings of the Fifth

International Conference and Symposium, pp. 1070–1080. MIT Press.

Gelfond, M. and Lifschitz, V. 1991. Classical negation in logic programs and disjunctive

databases. New Generation Computing 9, 9, 365–385.

Giannotti, F., Greco, S., Sacca, D. and Zaniolo, C. 1997. Programming with non-

determinism in deductive databases. Annals of Mathematics and Artificial Intelligence 19, 3–4.

Greco, S., Sacca, D. and Zaniolo, C. 1995. Datalog queries with stratified negation and

choice: from P to DP . Proceedings International Conference on Database Theory, pp. 82–96.

Springer.

Greco, S. and Zumpano, E. 2000. Querying inconsistent databases. Proceedings 7th Inter-

national Conference on Logic for Programming and Automated Reasoning (LPAR’2000):

LNCS 1955, pp. 308–325.

Greco, S. and Zumpano, E. 2001. Computing repairs for inconsistent databases. Proceedings

Third International Symposium on Cooperative Database Systems for Advanced Applications

(CODAS01), Beijing, China.

Greco, G., Greco, S. and Zumpano, E. 2001. A logic programming approach to the

integration, repairing and querying of inconsistent databases. In: Ph. Codognet (Ed.),

Proceedings 17th International Conference on Logic Programming (ICLP’01): LNCS 2237,

pp. 348–364. Springer.

Kowalski, R. and Sadri, F. 1991. Logic programs with exceptions. New Generation Computing

9, 387–400.

Kifer, M. and Lozinskii, E. L. 1992. A logic for reasoning with inconsistency. Journal of

Automated Reasoning 9, 2, 179–215.

424 M. Arenas and others

Kifer, M. and Subrahmanian, V. S. 1992. Theory of generalized annotated logic programming

and its applications. Journal of Logic Programming 12, 4, 335–368.

Leach, S. M. and Lu, J. J. 1996. Query processing in annotated logic programming: theory

and implementation. Journal of Intelligent Information Systems 6, 33–58.

Leone, N., Rullo, P. and Scarcello, F. 1997. Disjunctive stable models: unfounded sets,

fixpoint semantics, and computation. Information and Computation 135, 2, 69–112.

Lifschitz, V. and Turner, H. 1994. Splitting a logic program. In: P. van Hentenryck (Ed.),

Proceedings Eleventh International Conference on Logic Programming, pp. 23–37. MIT Press.

Lloyd, J. W. 1987. Foundations of Logic Programming. Springer Verlag.

Lozinskii, E. L. 1994. Resolving contradictions: a plausible semantics for inconsistent systems.

Journal of Automated Reasoning 12, 1, 1–32.

Marek, V. W. and Truszczynski, M. 1998. Revision programming. Theoretical Computer

Science 190, 2, 241–277.

Subrahmanian V. S. 1994. Amalgamating knowledge bases. ACM Transactions on Database

Systems 19, 2, 291–331.

Ullman, J. 1988. Principles of Database and Knowledge-Base Systems, Vol. I. Computer

Science Press.

Winslett, M. 1988. Reasoning about action using a possible model approach. Proceedings

Seventh National Conference on Artificial Intelligence (AAAI’88), pp. 89–93.

