Random Access Networks: Transmission Costs, Selfish Nodes, and Protocol Design

Peter Marbach and Ran Pang Department of Computer Science University of Toronto

• Transmission cost

Questions

- Is transmission cost sufficient to guarantee stability?
- If not, what additional mechanisms are needed?

Answers

- Transmission cost does not guarantee stability
- Pricing mechanism: stability and system performance

Model

- Non-Cooperative Game
- Slotted Aloha (CSMA/CD)

- Poisson Arrivals
- Collision Retransmission
- Probabilistic Retransmissions
- Transmission Cost γ
- Infinite set of hosts

- Poisson Arrivals with (Aggregated) Rate $\lambda(u)$, $u \ge 0$
 - Packets have different values
 - $\lim_{u \to \infty} \lambda(u) = 0$
- State *n*: number of backlogged packets
 - whether to accept a new packet
 - retransmission probability for backlogged packet
- Strategy $\pi = (u,q)$
 - u = (u(0), u(1), u(2),)
 - q = (q(1), q(2),)
- Strategy $\pi = (\lambda, q)$
 - $\lambda(n) = \lambda(u(n)), \qquad n = 0, 1, 2, ...$

- Nodes are indistinguishable (symmetric strategies)
- Strategy π : Markov chain $\{n_k; k \ge 0\}$
- Successful transmission of a backlogged packet for given node:

$$e^{-\lambda(n)}(1-q(n))^{n-1} \approx e^{-\lambda(n)-(n-1)q(n)}$$

- Offered load: $G(n) = \lambda(n) + nq(n)$
- Instantaneous throughput

 $G(n)e^{-G(n)}$

- Cost for successfully transmitting a packet
 - new packet: $R(\pi, n)$
 - backlogged packet: $Q(\pi, n)$
- Retransmission Probabilities \hat{q}
 - new packet: $R(\pi, n, \hat{q})$
 - backlogged packet: $Q(\pi, n, \hat{q})$

- Admissible retransmission vector \hat{q}
 - $T_n(\pi, \hat{q})$ is a random variable, $n \ge 0$
 - set of all admissible retransmission vectors: $Q(\pi)$
- Admissible strategy π
 - $\lambda(0) > 0$
 - $q \in \mathcal{Q}(\pi)$
- Equilibrium strategy
 - $q = \arg\min_{\hat{q} \in \mathcal{Q}(\pi)} Q(\pi, n, \hat{q}), \qquad n \ge 0$
 - $u(n) = R(\pi, n)$
- Symmetric Nash equilibrium

- Stable strategy
 - "Expected number of backlogged nodes stays bounded"
- Stable equilibrium strategy
 - Single positive recurrent class, and possibly some transient states

- Questions
 - Does a stable equilibrium strategy exist?
 - Does a unique stable equilibrium strategy exist?
 - What is the performance at a stable equilibrium strategy?

• Set \mathcal{F}_{κ} of admissible strategies

- class
$$\mathcal{N}_c = \{n; n \ge N_0\}$$

 $- \lambda(n) + (n-1)q(n) = \kappa, \qquad n \in \mathcal{N}_c$

Transmitting backlogged packet

$$- e^{-\lambda(n) - (n-1)q(n)} = e^{-\kappa}, \qquad n \in \mathcal{N}_c$$

• Cost $Q(\pi, n)$

$$- Q(\pi, n) = \gamma e^{\kappa}, \qquad n \in \mathcal{N}_c$$

Proposition 1 There exists a stable equilibrium strategy $\pi \in \mathcal{F}_{\kappa}$ if and only if the following conditions hold

- (a) $\max_{r\geq 0} (f_{\infty}(r) r) \geq 0$,
- (b) $\lambda(r_{\infty}) < \kappa e^{-\kappa}$, and
- (c) $\lambda(r_0) \geq \kappa$.

Idea: The transmission cost γ needs to be large enough in order to have a equilibrium strategy $\pi \in \mathcal{F}_{\kappa}$.

Proposition 2 If π is a stable equilibrium strategy then there exists a $\kappa > 0$ such that $\pi \in \mathcal{F}_{\kappa}$.

Interpretation

- If transmission cost γ is too small then there does not exist a stable equilibrium allocation
- If there exists a stable equilibrium allocation, then there is typically a continuum of stable equilibria (in κ).
- Different values of κ lead to different throughput and delay.

- Need additional mechanism to guarantee stability
- Would like mechanism for choosing κ
- **Idea:** cost *c* for successfully transmitted packets
- Can choose c and κ to
 - set throughput/delay (trade-off)
- MAC protocol: choosing κ
 - Pick κ in advance ($\kappa = 1$)
 - Choose c for throughput/delay
 - Determine q(n) (probability of successful retransmission is the same at all states)
 - No node has incentive to deviate (no cheating)
 - MAC standard

- Random Access Networks with Transmission Costs
- Insight into Protocol Design
- Price-Based Rate Control
 - C. Yuen and P. Marbach, "Price-Based Rate Control in Random Access Networks," to appear in IEEE/ACM Transactions on Networking

- Selfish Users Retransmission Probabilities
 - MacKenzie and Wicker
- Selfish Users Experimental
 - Altman, El Azouzi, Jimenez
- Cheating in WiFi Hotspots
 - Raja, Hubaux, Aad