Cooperation in Wireless Ad Hoc Networks: A Market-Based Approach

Joint work with Ying Qiu

- Economics and Computer Networks
- Ad-Hoc Networks

Utility function $U_r(x_r)$.

- Network charges price *u* per unit transmission rate.
- Total Utility: $U_r(x_r) ux_r$

$$D_{r}(u) = \arg \max_{x \ge 0} \{U_{r}(x) - ux\}, \qquad u \ge 0$$
$$D_{r}(u)$$

- Internet Congestion Control
- Wireless Local Area Networks
- Cellular Wireless Networks
- ...

Nodes are

- rewarded for forwarding packets (providing resources)
- charged for sending packets (using resources)

Nodes decide on

- how many packets to send (transmission rate)
- how many packets to forward
- how much to charge for forwarding packets

Issues

Issues

- Routing
- Protocol
- Security
- Network Performance

- Peer-to-Peer Computing
- Content Delivery Networks
- Application Service Providers
- and other Peer-to-Peer Applications

- Routes are Fixed
- C_r : Capacity of Node r
- $U_r(x_r)$: Utility Function of Node r

Optimization Problem:

$$\max \sum_{r} U_{r}(x_{r})$$

subject to
$$x_{r} + \sum_{r} x_{r'} \leq C_{r}, \qquad r = 1, ..., R.$$
$$x_{r} \geq 0, \qquad r = 1, ..., R.$$

Maximizes **social welfare**.

- x_r : Transmission Rate of Node r
- y_r : Traffic forwarded by Node r
- μ_r : Price Node *r* charges for forwarding Packets
- λ_r : Price Node *r* has to pay for sending Packets
- $D_r(p)$: Demand Function of Node r

$$D_r(p) = \arg \max_{x_r \ge 0} \Big\{ U_r(x_r) - x_r p \Big\}, \qquad p \ge 0.$$

• $I_r(\mu_r, \mu_{-r})$: Incoming Traffic at Node *r* under Price μ_r

- $U_r(x_r)$: Utility of Node r
- $y_r \mu_r$: Revenue for forwarding Packets
- $-x_r \lambda_r$: Cost of Sending Packets

Given $\lambda_r, \underline{\mu}_{-r}$ $\max_{x_r, y_r, \mu_r \ge 0} \left\{ U_r(x_r) - x_r \lambda_r + y_r \mu_r \right\},$ subject to $r_r + \mu_r \le C$

$$x_r + y_r \ge \mathbb{O}_r$$
 $y_r \le I_r(\mu_r, \mu_{-r})$

Step 1: Given
$$\lambda_r^{(k)}$$
, $i_r^{(k)}$, and $\mu_r^{(k)}$, choose $x_r^{(k+1)}$ and $y_r^{(k+1)}$

Case 1:
$$x_r^{(k+1)} = \arg \max_{x_r \ge 0} \left\{ U_r(x_r) + (C_r - x_r)\mu_r^{(k)} - x_r\lambda_r^{(k)} \right\}$$

Case 2:
$$x_r^{(k+1)} = \arg \max_{x_r \ge 0} \left\{ U_r(x_r) + i_r^{(k)} \mu_r^{(k)} - x_r \lambda_r^{(k)} \right\}$$

Case 3: ...

Step 2: Choose $\lambda_r^{(k+1)}$

$$\mu_r^{(k+1)} = \left[\mu_r^{(k)} + \alpha \left(D_r \left(\lambda^{(k)} + \mu_r^{(k)}\right) + i_r^{(k)} - C_r\right)\right]^+$$

If demand is very elastic, *i.e.* if

$$\left. \frac{D_r(p)}{D'_r(p)} \right| \approx 0,$$

then, in equilibrium, the bandwidth allocation maximizes the social welfare,

$$\max\sum_{r} U_r(x_r)$$

subject to the capacity constraints

$$x_r + y_r \le C_r, \qquad r = 1, \dots, R$$

This implies that

- bandwidth allocation $(x_1^*, ..., x_R^*)$ is unique
- price vector $(\mu_1^*, ..., \mu_R^*)$ is not necessarily unique

Optimization Problem:

$$\max \sum_{r} \left(U_r(x_r) - x_r \sum_{r'} \kappa_{r'} \right)$$

subject to $x_r + \sum_{r'} x_{r'} \leq C_r, \quad r = 1, ..., R.$
 $x_r \geq 0, \quad r = 1, ..., R.$

- Resource Allocation in Peer-to-Peer Systems
- Maximizes Social Welfare
- Battery Power

$$\max\Big\{U_r(x_r) + y_r\mu_r - x_r\lambda_r - p_r(x_r + y_r)\Big\},\$$

• Interference