Random Access Networks: Transmission Costs, Selfish Nodes, and Protocol Design

Joint work with Clement Yuen and Ran Pang

Random Access Networks:

- Collisions Stability
- Transmission Cost
- Rate Control?

Rate Control in Random Access Networks

Questions

- Is transmission cost sufficient to guarantee stability?
- If not, what additional mechanisms are needed?

Answers

- Transmission cost does not guarantee stability
- Pricing mechanism: stability and system performance

- Non-Cooperative Game Idealized Situation
 - (Symmetric) Nash Equilibrium
 - Pricing Mechanism
- Distributed Algorithm
- Model: Slotted Aloha (CSMA/CD)

- Poisson Arrivals
- Collision Retransmission
- Probabilistic Retransmissions
- Transmission Cost γ
- Infinite set of hosts

- Poisson Arrivals with (Aggregated) Rate $\lambda(u)$, $u \ge 0$
 - Packets have different values
 - $\lim_{u \to \infty} \lambda(u) = 0$
- State *n*: number of backlogged packets
 - whether to accept a new packet
 - retransmission probability for backlogged packet
- Strategy $\pi = (u,q)$
 - u = (u(0), u(1), u(2),)
 - q = (q(1), q(2),)
- Strategy $\pi = (\lambda, q)$
 - $\lambda(n) = \lambda(u(n)), \qquad n = 0, 1, 2, ...$

- Nodes are indistinguishable (symmetric strategies)
- Strategy π : Markov chain $\{n_k; k \ge 0\}$
- Successful transmission of a backlogged packet for given node:

$$e^{-\lambda(n)}(1-q(n))^{n-1} \approx e^{-\lambda(n)-(n-1)q(n)}$$

- Offered load: $G(n) = \lambda(n) + nq(n)$
- Instantaneous throughput

 $G(n)e^{-G(n)}$

- Cost for successfully transmitting a packet
 - new packet: $R(\pi, n)$
 - backlogged packet: $Q(\pi, n)$
- Retransmission Probabilities \hat{q}
 - new packet: $R(\pi, n, \hat{q})$
 - backlogged packet: $Q(\pi, n, \hat{q})$

- Admissible retransmission vector \hat{q}
 - $T_n(\pi, \hat{q})$ is a random variable, $n \ge 0$
 - set of all admissible retransmission vectors: $Q(\pi)$
- Admissible strategy π
 - $\lambda(0) > 0$
 - $q \in \mathcal{Q}(\pi)$
- Equilibrium strategy
 - $q = \arg\min_{\hat{q} \in \mathcal{Q}(\pi)} Q(\pi, n, \hat{q}), \qquad n \ge 0$
 - $u(n) = R(\pi, n)$
- Symmetric Nash equilibrium

- Stable strategy
 - "Expected number of backlogged nodes stays bounded"
- Stable equilibrium strategy
 - Single positive recurrent class, and possibly some transient states

- Questions
 - Does a stable equilibrium strategy exist?
 - Does a unique stable equilibrium strategy exist?
 - What is the performance at a stable equilibrium strategy?

• Set \mathcal{F}_{κ} of admissible strategies

- class
$$\mathcal{N}_c = \{n; n \ge N_0\}$$

$$- \lambda(n) + (n-1)q(n) = \kappa, \qquad n \in \mathcal{N}_c$$

• Transmitting backlogged packet

$$- e^{-\lambda(n) - (n-1)q(n)} = e^{-\kappa}, \qquad n \in \mathcal{N}_c$$

• Cost $Q(\pi, n)$

$$- Q(\pi, n) = \gamma e^{\kappa}, \qquad n \in \mathcal{N}_c$$

Proposition 1 There exists a stable equilibrium strategy $\pi \in \mathcal{F}_{\kappa}$ if and only if the following conditions hold

- (a) $\max_{r\geq 0} (f_{\infty}(r) r) \geq 0$,
- (b) $\lambda(r_{\infty}) < \kappa e^{-\kappa}$, and
- (c) $\lambda(r_0) \geq \kappa$.

Idea: The transmission cost γ needs to be large enough in order to have a equilibrium strategy $\pi \in \mathcal{F}_{\kappa}$.

Proposition 2 If π is a stable equilibrium strategy then there exists a $\kappa > 0$ such that $\pi \in \mathcal{F}_{\kappa}$.

Interpretation

- If transmission cost γ is too small then there does not exist a stable equilibrium allocation
- If there exists a stable equilibrium allocation, then there is typically a continuum of stable equilibria (in κ).
- Different values of κ lead to different throughput and delay.

- Need additional mechanism to guarantee stability
- Would like mechanism for choosing κ
- **Idea:** cost *c* for successfully transmitted packets
- Can choose c and κ to
 - set throughput/delay (trade-off)
- MAC protocol: choosing κ
 - Pick κ in advance ($\kappa = 1$)
 - Choose c for throughput/delay
 - Determine q(n) (probability of successful retransmission is the same at all states)
 - No node has incentive to deviate (no cheating)
 - MAC standard

- Assumption
 - Know $\lambda(u)$
 - Can observe state *n*

- Rate Control
 - Collision: Increase Price
 - Idle: Decrease Price
- Questions
 - Stable?
 - Operating Point?

- Price Signal *u*
- Aggregated Transmission Rate $\lambda(u)$
- Collision: Increase Price
- Idle Slot: Decrease Price
- Price Adaptation: $\alpha < 0, \gamma > 0$

$$u_{t+1} = \left[u_t + \alpha I[Z_t = 0] + \beta I[Z_t = 1] + \gamma I[Z_t \ge 2] \right]^+$$

• Retransmission Probability: q

Assumption 1 There exist positive constants λ_{max} and u_{max} such that $\lambda : \mathbb{R}_+ \to [0, \lambda_{max}]$ is strictly decreasing, with $\lambda(u) = 0$ when $u \ge u_{max}$.

Stability: Is the Markov chain positive recurrent?

• Mean Drift of Backlog *n*

$$d_n(n,u) \triangleq \mathbf{E} \big(n_{t+1} - n_t \mid n_t = n, u_t = u \big)$$

• Mean Drift of Price *u*

$$d_u(n,u) \triangleq \mathbf{E} \big(u_{t+1} - u_t \mid n_t = n, u_t = u \big)$$

• Operating Point (n^*, u^*)

$$d_n(n^*, u^*) = d_u(n^*, u^*) = 0$$

- Questions
 - Does operating point exist?
 - Is there a unique operating point?

- System is stable.
- (Under suitable conditions) There exists a unique operating point (n^*, u^*)
- $G^* = \lambda^* + n^*q$
- We can set G^* by choosing α, β, γ .
 - Throughput $\lambda^* = G^* e^{-G^*}$
 - Backlog n^*
 - Average Delay $D^* = n^*/\lambda^*$
 - $-\beta = \frac{\gamma}{G^*} \left(G^* + 1 e^{G^*} \right) \frac{\alpha}{G^*}$

- $G^* = 1$ and $S^* = e^{-1} = 0.368$, $D^* = 171.82$
- $\alpha = -1$, $\gamma = 1$, and $\beta = 0.2817$

•
$$\lambda(u) = \left[4(1-u/150)^3\right]^+$$

•
$$q = 0.01$$

• S = 0.367 and D = 170.28

- Price-Based Rate Control
- Stability
- Performance
- Do not need to know
 - State *n*
 - Rate function $\lambda(u)$
 - Retransmission probability \boldsymbol{q}
- Model

Delay Differentiation and Dynamic Retransmission Probabilities

- Delay Differentiation: q_c , c = 1, ..., C
- Dynamic Retransmission Probabilities: q(u)

$$- \lim_{u \to \infty} \lambda(u) = 0$$

$$-q(u) = e^{-bu}, b > 0$$

-
$$q(u) = (1 + bu)^{-r}, r > 1$$
 and $b > 0$.

• Delay Differentiation and Dynamic Retransmission Probabilities Aggregated Arrival Rate $\lambda(u)$

$$\lambda(u) = \frac{40}{(1+u)^{1.5}}$$

Retransmission Probability q(u)

$$q(u) = \frac{1}{(1+u)^{1.1}}$$

Throughput S = 0.368

• Finite Number of Nodes

$$\lambda(u) = \sum_{m=1}^{M} \lambda_m(u).$$

- Nodes can have several backlogged packets
- Backlog-Dependant Retransmission Probabilities

$$q_m(n_m) = \begin{cases} n_m q_m, & n_m q_m \le 1 - \epsilon, \\ 1 - \epsilon, & \text{otherwise,} \end{cases}$$

• Backlog-Independent Retransmission Probabilities, q_m .

Assumption: "Price tends to increase when all nodes are saturated and retransmit with probability $1 - \epsilon$."

Case Study

Node	Bandwidth	Delay	
1	tolerant	tolerant	
2	tolerant	intolerant	
3	intolerant	tolerant	
4	intolerant	intolerant	

Node <i>m</i>	S_m	D_m
1	0.021	186.7
2	0.021	19.9
3	0.206	116.5
4	0.210	11.8

Assumption: "Price tends to increase when each nodes has at least one backlogged packet"

- Integration with Price-Based Rate Control for Point-to-Point Networks
 - Marking Scheme by by Athuraliya and Low.

- Random Access Networks with Transmission Costs
- Selfish Nodes
- Price-Based Rate Control
 - Operating Point
 - Delay and Throughput Differentiation
 - End-to-End Rate Control

- Selfish Users Retransmission Probabilities
 - MacKenzie and Wicker
- Selfish Users Experimental
 - Altman, El Azouzi, Jimenez
- Cheating
 - Raja, Hubaux, Aad

- Price-Based Rate Control
 - Frank Kelly, Steven Low,.....
- Rate Control and Slotted Aloha
 - Kleinrock and Lam
 - Mittal and Venetsanopoulos
- TCP over 802.11
 - Cali *et al*.
- Price-Based Rate Control for Random Access Networks
 - Jin and Kesidis
 - Battiti et al.