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Abstract— We study the influence of transmission costs on the
behavior of selfish nodes in wireless local area networks. Intu-
itively, it seems that transmission costs should have a stabilizing
effect as (rational) nodes will defer packet transmissions when
congestion develops and the cost for (successfully) transmitting
a packet becomes high. In this paper we investigate whether this
intuition is true. We use slotted Aloha to model the communi-
cation channel where we model the interaction among nodes as
a non-cooperative game. For this game, we study the existence
and properties of a (symmetric) Nash equilibrium. We show that
the existence of a transmission cost is not always sufficient to
guarantee stability. In particular, a stable equilibrium strategy
will not exist if the transmission cost is too small. We then propose
and analyze a price-based mechanism to guarantee stability and
to optimize system performance in terms of throughput and delay.

I. INTRODUCTION

An important feature of wireless networks is that packet
transmissions incur a cost in terms of battery energy. Intu-
itively, it seems that transmission costs should have a stabi-
lizing effect as nodes will defer packet transmissions when
congestion occurs and the cost for (successfully) transmitting a
packet becomes high. In this paper we investigate this intuition
and its implication for the design of protocols.

For our analysis, we consider the situation where wireless
nodes communicate over a random access channel. That is,
whenever a node has a new packet to send, it will do so
immediately. If the packet collides (interferes) with a packet
sent by another node at the same time, then it is lost and has
to retransmitted at a later time. Here, we assume that nodes
are selfish and make the decision of (a) when to accept a
new packet and (b) when to retransmit a backlogged packet
in order to maximize their net benefit. To characterize the
net benefit, we assume that (a) nodes obtain a reward for
successfully transmitting a packet (where different packets
can have different rewards) and (b) each transmission attempt
incurs a cost (which is the same for all packets).

Note that under the above model, nodes will try to avoid
to transmit/retransmit packets during periods when collisions
are likely to occur, as this would decrease the likelihood of
a successful transmission and increase the expect cost for
successfully transmitting a packet. This observation suggests
that transmission costs have a stabilizing effect in the sense
that during time of congestion (i.e. when collisions occur
frequently) nodes will back-off and hence prevent that the
channel becomes clogged. In order to investigate whether this
intuition is indeed true, we model the interaction among nodes
as a non-cooperative game, and study the existence and prop-
erties of a (symmetric) Nash equilibrium. In particular, we are

interested in the question whether there exists an equilibrium
which leads to a stable operation of the network (i.e. the
expected number of backlogged packets stays bounded).

The motivation for studying the above situation is to obtain a
better understanding of protocol design for wireless networks.
In particular, we are interested in the following questions: (a) is
the existence of a transmission cost sufficient to guarantee sta-
bility, (b) if this is not the case, which additional mechanisms
are necessary, and (c) how can these mechanisms be used to
optimize system performance. The hope is that studying these
questions contributes toward the design of simple and robust
protocols.

For our analysis, we assume that nodes are indistinguishable
and focus on the situation where all nodes use the same
strategy. In addition, we require that nodes make a “proper”
effort transmit packet once it has been accepted; i.e nodes are
not allowed to delay re-transmission attempts indefinitely. For
this situation, we show that the existence of a transmission cost
is not always sufficient to guarantee stability. In particular, a
stable equilibrium strategy will not exist if the transmission
cost is small. This result suggests that an additional mech-
anism is required to guarantee stability. We consider such a
mechanism where nodes are charged a price (cost) for each
successfully transmitted packet. In the case of a wireless LAN,
this cost could be charged at the base-station. We show that
such pricing mechanism can be used to guarantee system
stability. In addition, it can be used to optimize the system
performance in terms of throughput and delay.

For our analysis, we use the standard slotted Aloha model
with an infinite set of nodes [1]. Slotted Aloha and its unslotted
version (pure Aloha) has been central to the understanding of
random access networks. These two protocols have over the
years evolved into a rich family of medium access control
schemes, most notably CSMA/CD, the Ethernet standard, and
CSMA/CA which is the basis of the IEEE 802.11 protocol. All
results presented in this paper are easily extended to CSMA,
and CSMA/CD.

The rest of the paper is organized as follows. In Section II,
we define the non-cooperative game that we consider. In
Section III we consider a particular set of strategies that
we use in Section IV to study the existence of a stable
equilibrium strategy. In particular, in Section IV we show that
there does not exist a stable equilibrium strategy if the cost for
transmitting a packet is too small. In Section V, we discuss
the implication of this result on protocol design and consider a
pricing mechanism to guarantee stability and optimize system
performance. We discuss related work in Section VI.



II. PROBLEM FORMULATION

Consider a random access network where each slot has the
duration of one time unit, which is equal to the time it takes
to transmit a packet (all packets have the same length) [1]. At
the beginning of slot

�
,
�����

, active nodes (i.e. nodes which
received a new packet in slot

�����
or have a backlogged

packet at the beginning of slot
�

) learn the number of nodes
that currently have a backlogged packet. Nodes which received
a new packet in slot

�	�
�
can decide whether to accept

or drop the packet. If a new packet is accepted, then it is
immediately transmitted in the next slot

�
. Nodes with a

backlogged packet can decide whether or not to retransmit it
in slot

�
. A packet is successfully transmitted if it is the only

packet being transmitted during a slot; if two or more packets
are transmitted during the same slot then these packets collide
and are not successfully transmitted. Packets that experienced
a collision become backlogged. We assume that each packet
transmission incurs a cost �
� �

(which is the same for
all nodes and packets). When a new packet is accepted, the
node will stay active until it has successfully transmitted the
packet; when the packet has been successfully transmitted,
then the node receives a reward (where different packets can
have different rewards) and leaves the system. Let � denote
that value (reward) of a packet where different packets can
have different values. A node which received a new packet and
decided to drop it, immediately leaves the system. We assume
an infinite set of nodes and an active node does not receive
any additional packets (i.e. each active nodes has exactly one
packet) [1].

The number of nodes that become active during a time
slot is given by a independent Poisson random variable with
parameter ��� . Recall that different packets can have different
values. Here we assume that value of a packet can be modeled
by a random variable, where ������� is the probability that a
packet has a value equal to or greater than � . Accordingly, let

��������������������� � � ��� �
be the rate at which packets with value equal to or higher than� are generated.

Assumption 1: We assume that the function ������� , � ��
, is bounded, continuous and non-increasing, and we have!#"%$'&)(+* �,�����-� �/.

A. Node Strategies

Having defined the channel, we next describe more precisely
the possible node strategies, i.e. the decisions that each node
can make.

For our analysis, we assume that at the beginning of a time
slot, each active node knows the current number of backlogged
packets. Using this information, nodes that received a new
packet can then decide whether or not to accept the packet,
and nodes with a backlogged packet can decide whether or not
to retransmit the packet. More precisely, knowing number of
backlogged packets, each active nodes can decide on (a) the
minimal value a new packet must have in order to be accepted
and (b) the probability for retransmitting a backlogged packet.

Note that a rational node will only accept a new packet if the
(expected) cost for successfully transmitting the packet is less
than or equal to the value of the packet.

A node strategy 0 is then given by the vector pair01�2�����435� where �6�7���8� � �9���8� � �9� .#.%.#. ���8��:,�;� .%.#.%. � and 3<���3=� � �;�43=�?> �9� .#.%.#. �43=��:,�9� .#.%.#. � . Given the current state : , �8��:,� indi-
cates the minimal value a new packet must have in order to be
accepted and 3=��:,� indicates the probability for retransmitting
a backlogged packet. Naturally we have ����:,� �@�

and 3=��:,�BAC � � �ED . Note that we allow nodes to retransmit backlogged
packets with probability 1 or 0. To simplify notation, we will
also identify a strategy 0 by 0��F�?�,�435� where �,��:,�-�<�����HG�� ,: �@�

.

B. Markov Chain Formulation

For our analysis, we assume that nodes are indistinguishable
and focus on the situation where all nodes use the same
strategy. In this case, a strategy 0 defines a Markov chain��:,I=J �F�K� � on the state space L �NMO: �
�/P

, where :�I
indicates the number of nodes that have a backlogged packet
at the beginning of a slot

�
. The transition probabilities of the

Markov chain under a given strategy 0 are given by

Q GSR G5T���0,�-�

UVVVVVVVVVVVVVVW VVVVVVVVVVVVVVX

Y Z�[]\ G]^ :H3=��:,�5_ �`� 3=��:,�4a G ZHb � :Hc���: �d� �Y Z�[]\ G]^=e �,��:,� _ �`� 3=��:,� a Ggf .%.#.fih �`� :H3=��:,� _ �`� 3=��:,� a G ZHbkjkl �m:Hc���:n�����:,� Y]Z�[]\ G5^/e �`� _ �`� 3=��:,� a G l �o:Hc���: f � �Y Z�[]\ G]^ �,��:,� I��p � :Hc���: f � ���� >=�� � otherwise.

Assuming that 3=��:,� is small, we can use the (Poisson) approx-
imation (see [1] for a derivation)� �q� 3=��:,��� G'r Y Z G]s \ G5^
to obtain the following expressions for the transition probabil-
ities,

Q GSR G5Tt��0,�-�

UVVVVVVVVVVVVW VVVVVVVVVVVVX

:H3=��:,� Y Z�[]\ G5^ Z,\ G ZHb ^?s \ G5^ � :Hcu�<: �@� �� ����:,� Y]Z�[]\ G5^ Z G]s \ G]^ f Y Z�[]\ G5^ �d.#.%.
:H3=��:,� Y Z�[]\ G5^ Z,\ G ZHb ^?s \ G5^ � :Hcu�<:n�����:,� Y]Z�[]\ G5^ h �`� Y Z G]s \ G]^ j � :v��: f � �Y Z�[]\ G]^ �,��:,� I��p � : c �<: f � ���� >/�� � otherwise.

Let w ��:,���x�,��:,� f :H3=��:,�9� :yA'Lz�
be the offered load at state : [1]. It is well-known that the
probability that an active node leaves the system at state : (by
successful transmitting either a new packet or a backlogged
packet) is given by (see [1] for a detailed derivation)w ��:,� Y Z|{n\ G5^ .



Furthermore, note the following. Given that a node transmits
a backlogged packet at state : , the probability that this packet
is successfully transmitted is equal toY Z�[]\ G]^ Z,\ G Z�b ^�s \ G]^ �
i.e. a retransmission attempt of a backlogged packet by a given
node is successful if no other nodes makes a transmission
attempt (of either a new packet or a backlogged packet).

C. Expected Total Transmission Costs

An important part of our analysis is to determine the
expected cost for successfully transmitting a packet, as this
will affect whether or not a node will accept a new packet
with a given value � . To do this, we will first characterize
the expected cost for successfully transmitting a packet that
is currently backlogged, and the expected cost for a newly
accepted packet. In addition, we will also distinguish the case
where each node uses the same strategy 0 , and the case where
a given node retransmits packets with probability �3=��:,� , : �x�

,
and all other nodes use a given strategy 0 . This will allow us
to study the optimal choice of �3=��:,� for a given strategy 0 .

We start out by characterizing the expected cost for success-
fully transmitting a backlogged packet at a given node when
the node uses retransmission probabilities �3=��:,� , : � �

, and
all other nodes use a given strategy 0 . To do this, we consider
the following Markov reward process. Suppose that a given
node has a backlogged packet. Furthermore, suppose that the
given node retransmits packets with probability �3=��:,� , : � �

,
and all other nodes use a given strategy 0 for accepting new
packets and retransmitting backlogged packets. To compute the
expected cost

� ��:n��0n���35� for the node to successfully transmit
the backlogged packet starting from state : when all other
nodes use strategy 0 , we introduce a termination state � and
consider the Markov chain with transition probabilities

Q��GSR G]T ��0n���35�-�

UVVVVVVVVVVVVVVVVVVVVW VVVVVVVVVVVVVVVVVVVVX

��: �d� ��3=��:,� Y]Z�[]\ G5^ Z�\ G Z�� ^�s \ G5^ Z	�s \ G5^ �:Hcu�<: �@� �����:,� Y]Z�[]\ G5^ Z�\ G Z�b ^�s \ G5^ Z	�s \ G]^ f Y Z�[]\ G5^ �d.#.%.� ��: �d� ��3=��:,� Y Z�[5\ G5^ Z,\ G Z���
9\ G5^ Z��s \ G5^ �d.#.%.� �3=��:,� Y Z�[]\ G5^ Z,\ G ZHb ^?s \ G5^ � : c �<:n�����:,� Y]Z�[]\ G5^/e �`� Y]\ G Z�b ^�s \ G5^ Z��s \ G5^ l �: c �<: f � �Y Z�[]\ G]^ �,��:,� I��p � :Hcu��: f � ���� >=�� � otherwise.

and Q��GSR � �
�3=��:,� Y Z�[5\ G5^ Z,\ G Z�b ^�s \ G5^ .
Note that

Q �GSR � is equal to the probability that the node
which uses the retransmission vector �3 is able to successfully
retransmit the backlogged packet. Let

Q �� R � � �
. Furthermore,

we associate with each state a cost as follows. For :yA L , let
the cost �5��:,� be given by�5��:,�������3=��:,� .

Note that �5��:,� is the expected transmission cost at state : . For� , the cost �5��� � is equal to 0. Note that the above definitions
imply that � is a cost-free termination state.

Let ���)ISJ � � � � be the Markov chain with transition
probabilities given by

Q � ��0n���3 � . We then have� ��:n��0n���35�-��� � � *�
I�� � �5���)I5����� � �<:�� �

where the expectation � � is taken with respect to the transition
probabilities

Q � ��0n���3]� .
The expect transmission cost � ��:n�40n���35� for a packet that is

accepted at state : by a node which uses the retransmission
vector �3 when all other nodes use strategy 0 is then given by� ��:n��0n���35���

� f �,��:,� Y []\ G5^�`� Y Z�[]\ G5^! �`� Y Z G]s \ G5^#" � ��: f � ��0n���35� f .%.%.
f *�
I$� �

[]\ G5^&%I(' Y)[]\ G]^�`� Y Z�[]\ G5^ � ��: f � �40n���35� .
To see this, note that ����:,� Y [5\ G5^�`� Y Z�[]\ G5^
is equal to the conditional probability that only one node
received a new packet given that at least one node received a
new packet, and

�,��:,� Y []\ G5^�`� Y Z�[]\ G5^! �`� Y Z G]s \ G5^)"
is equal to the probability that the transmission attempt of a
newly received packet is successful, i.e. does not collide with
a transmission attempt of another newly arrived packet or a
retransmission attempt of a backlogged packet.

If all nodes use strategy 0��F�?�,�435� then we denote expected
cost for successfully transmitting a backlogged packet starting
at state : by � ��:n�40,�-� � ��:n��0n� 35�9�
and the expected cost for successfully transmitting a newly
received packet at state : by� ��:n�40,�-��� ��:n�40n�435� .
D. Symmetric Nash Equilibrium and Stable Strategies

Having characterized the expected transmission costs, we
are now in the position to address the question how a node
should make decision on when to accept a new packet, and
when to retransmit backlogged packets, in order to maxi-
mize its net benefit. For our analysis, we require that nodes
make a “proper” effort transmit packet once it has been
accepted; i.e nodes are not allowed to delay re-transmission
attempts indefinitely and we require that the time between
retransmission attempts of a given backlogged packet is finite
(with probability 1). We will refer to such a strategy as an
admissible strategy. Below, we will first define more precisely



an admissible strategy, and then define the notion of an
equilibrium strategy.

Consider the situation where a given node has a backlogged
packet and uses the retransmission vector �3 to retransmit the
backlogged packet (where �3=��:,� is the probability that the
given node will make a retransmission attempt at state : ), and
suppose that all other nodes use a given strategy 0 . Starting
at the state : , let � G ��0n���3]� be the first time that the given
node (which uses the retransmission vector �3 ) will make a
retransmission attempt of the backlogged packet.

Definition 1: Given a strategy 0 , we call a retransmission
vector �3 admissible with respect to 0 if for all states : � �
we have that � G ��0n���3]� is a random variable.
The above definition implies that under an admissible re-
transmission vector, a node with a backlogged packet will
eventually make a retransmission attempt, i.e. with probability
1 the node will make a retransmission attempt within a finite
time interval.

Given a strategy 0 , let �+��0,� be the set of all admissible
retransmission probability vectors �3 with respect to 0 .

Definition 2: We call a strategy 0 admissible if �,� � �+� �
and 3 A�� ��0,� .
Using the above notation, we define an equilibrium strategy
as follows.

Definition 3: We call a admissible strategy 0 an equilibrium
strategy if for all : �d�

we have 3 ������� $ "	� �s�

� \	� ^ � ��:n��0n���35�
and ����:,�-� �,��� ��:n��0,�4� .
The above definition states that an equilibrium strategy 0 min-
imizes the expected total retransmission cost for an accepted
packet, and only accepts a new packet if its value is equal
to or larger than the expected total transmission cost, i.e.� G ��� ��:n�40,� or equivalently ����:,�-�x�,��� ��:n��0,�4� .

Note that an equilibrium strategy 0 defines a symmetric
Nash equilibrium: if all nodes adopt strategy 0 then no node
has an incentive to deviate from 0 as the strategy 0 maximizes
at each state :zA L the net benefit given by reward minus
(expected) cost.

Besides admissible strategies, we are also interested in
strategies which guarantee that the expected number of back-
logged packets in the system stays bounded. We use the
following criteria.

Definition 4: We call a strategy 0 stable if there exists �q� �
and a integer � � such that

�,��:,� � w ��:,� Y Z|{�\ G5^�� � �O� : � � � .
The following lemma states that an equilibrium strategy

leads to a well-behaved system.
Proposition 1: If 0 is a stable equilibrium strategy, then the

corresponding Markov chain has a single positive recurrent
class and possibly some transient states.
We provide a proof for the above result in Appendix B

In the following, we are interested in the existence of a
stable equilibrium strategy.

III. A PARTICULAR SET OF STRATEGIES

To study the existence of a stable equilibrium strategy we
consider a particular set of strategies. Before we define this set,

we briefly recall some definitions to classify states a Markov
chain M����kJ�� �
�=P

with state space L [2]. Given two states:n��:Hc8A L , we say that : and :,c communicate if there there
exist integer � b and � � such thatQ �������`� : c ��� � ��:,�`� �
and Q �������q� : ��� � ��: c � � �/.
A class of states is then given by a non-empty set L � such
that all states in L!� communicate with each other and no state
in the set L � communicates with any state outside the set L � .

Using the notion of a class of states as given above, we
define then the sets of strategies that we are interested in as
follows.

Definition 5: For " � �
, let #%$ be the set of all admissible

strategies 0v� �?�,�435� with property that there exists a class of
states L � ��0,� of the form L � ��0,� �zMO: � � � P such that

����:,� f ��: �d� ��3=��:,���&"H�
for all states :yA'L � ��0,� with 3=��:,�B� �

.
The above definition implies that for a policy 0dA�# $ , there
exists a integer �+� such that all states :n��:,c , : � �g� and:Hc � �g� , communicate with each other, but not with any
other state :Hc c � � � .

In the next section, we will show that the collection # $ , � ��
, is sufficient to characterize a stable equilibrium strategy. In

addition, we derive necessary and sufficient conditions for the
existence of a stable equilibrium strategy 0�A!# $ . Before we
proceed, we introduce additional notation that we will use to
characterize a stable equilibrium strategy 0	A'# $ .

Let
� $ ��:n��0,� be the expected cost for successfully a back-

logged packet starting at state : under a strategy 0 A(# $ , and
let � $ ��:n��0,� be the expected cost for successfully transmitting
a new packet accepted at state : . Note that for a states: AKL!�O��0,� with 3=��:,�F� �

the probability that a given
retransmission attempt of a backlogged packet is successful is
equal to Y Z $ . As by definition a strategy 0	A!#%$ is admissible,
we have � $/��:n��0,�-� � Y $ � :	A L � ��0,� .
For a given strategy 0 A)# $ , the cost for successfully
transmitting a packet that was accepted at a state :�A L � ��0,�
is then given by

�*$u��:n�40,�-�d� f,+ �`� �,��:,��`� Y Z�[]\ G5^ Y Z�[]\ G5^ Z G]s \ G5^.- � Y $ .
Using the fact that ����:,� f ��: �x� �t3=��:,� �/" , we obtain for:	A L!�O��0,� that

�0$���:n��0,��� � f + �`� ����:,��`� Y Z�[]\ G5^ Y Z�[]\ G]^ Z211�3 � \ $ Z�[5\ G5^�^4- � Y $ .
For 5 �@�

, consider the function6 $5R G��75 � �d� f + �`� �,�755��`� Y Z�[5\98 ^ Y Z�[]\	8 ^ Z:11�3 � \ $ Z�[]\	8 ^�^4- � Y $ .



If 0 is an equilibrium strategy, then we have

����:,� �<���&� ��:n�40,���9�
and � ��:n�40,� is a solution to the equation

5 � 6 $]R G ��55� .
Next consider the function6 $]R * ��55� � !#"%$G (g* 6 $]R G|�755�-��� f + �`� �,�755��`� Y Z�[]\	8 ^ Y Z $ - � Y $ .
In Appendix C, we show that the equation

5g� 6 $5R * �755�
has a solution 5 ���

if and only if$ ���8�� � � 6 $]R * �75 � � 55� �d�/.
If the above equation has at least one solution 5 �d�

, then we
define 5�$]R * � $ ���|M 5 �@� J 6 $]R * ��55� � 5 P .
It can be shown that when there exists a 5 �K�

such that5 � 6 $]R * �75 � , then 5 $]R * is well defined. In Appendix C, we
show that if the equation 5<� 6 $5R * �755� has a solution and�,�75 $]R * � � " , then there exists a solution 5 $5R G � �

to the
equation 5g� 6 $]R G ��55�;� : � > .
Furthermore, it can be shown that if

$ ��� 8�� � � 6 $]R * ��55� � 55� � �
then there does not exists an equilibrium strategy 0	A(#0$ . This
implies that the existence of a solution to 5v� 6 $5R * �75 � and�,�75�$]R * � � " are a necessary conditions for the existence of
an equilibrium strategy 0yA'#%$ .

Finally, we define the function

6 $]R � �755�-��� f + �`� ����55��`� Y Z�[]\	8 ^ Y Z�[5\98 ^ - � Y $ � 5 ���/.
In Appendix C, we show that the equation

5 � 6 $]R � ��55�
always has a unique solution 5 �d� �d�

; let 5�$]R � be the solution
to the above equation. The value 5 $]R � has the following
interpretation. Let :H� be given by

: � � $ "9� M :yA'L � ��0,� P .
In Appendix C we show that 3=��:H�)�-� �

and

� $ ��:�� �40,����� f + �`� ����: � ��`� Y Z�[5\ G���^ Y Z�[]\ G��4^ - � Y $ .
This implies that when 0 is an equilibrium strategy then we
have �,��:��)���x����5 $]R � � .

IV. EXISTENCE OF A STABLE EQUILIBRIUM ALLOCATION

Using the above definition, we obtain the following nec-
essary and sufficient conditions for the existence of a stable
strategy 0	A'# $ as follows.

Proposition 2: There exists a stable equilibrium strategy0	A'# $ if and only if the following conditions hold
(a)

$ ��� 8�� � � 6 $]R * ��55� � 55� �d�
,

(b) ����5 $]R * � � " Y Z $ , and
(c) ����5 $]R �)� � " .

We provide a proof in Appendix D. Let us briefly comment
on the above conditions. As discussed above, condition (a)
is a necessary condition for the existence of an equilibrium
strategy. Condition (b) is a necessary condition for the exis-
tence of a stable equilibrium strategy. Condition (c) has the
following interpretation. As noted above, one can show that
if 0 A!# $ is an equilibrium strategy then we have 3=��: � �-� �
and �,��: � ��� �,�75�$]R � � . IfY Z�[5\ G � ^ � Y Z�[5\98	��
 � ^ � Y Z $
then the probability that no node attempts to transmit a packet
is larger at state : � than at all other states :�A L � ��0,� and
it is more economical for a node to retransmit a backlogged
packet at stage : � than at any other state :dA L � ��0,� ; hence
strategy 0 with 3=��: � ��� �

is not an equilibrium strategy.
The next result states that is is sufficient to consider the the

collection of sets #%$ , " � �
, to characterize stable equilibrium

strategies.
Proposition 3: If 0 is a stable equilibrium strategy then

there exists a " � �
such that 0	A'# $ .

We provide a proof for the above proposition in Appendix E.
Combining Proposition 2 and 3, it follows that there does

not always exist a stable equilibrium strategy. In particular, we
have the following result.

Corollary 1: If �
��� $�� � M�" Y Z $ � ��� � Y $ � P�� �
, then there

does not exist a stable equilibrium strategy.
Furthermore, one can show that if there exists a stable

equilibrium strategy, then there typically exists a continuum
of stable equilibrium strategies. These results suggest that
a transmission cost is not sufficient to guarantee stability
(existence of a stable equilibrium strategy) and to able to
predict the system performance (existence of a unique stable
equilibrium strategy).

V. PROTOCOL DESIGN

In this section, we discuss the implications of the above
results.

A. Stability

Corollary 1 implies that transmission costs are not always
sufficient to guarantee stability. In particular, a stable equi-
librium strategy will not exist if the transmission cost � is
too small. This result suggest that an additional mechanism
is required to achieve stability. Here, we consider such a
mechanism where nodes are charged a price (cost) � � �

for
each successfully transmitted packet. In the case of a wireless
LAN, this cost could be charged at the base-station. Note that



nodes are only charged for successfully transmitted packets,
but not for each transmission attempt. For a strategy 0yA!#*$ ,
the cost for successfully transmitting a packet accepted at a
state :yA'L � ��0,� is then given by

� �$ ��:n�40,�-� � f � f + �`� ����:,��`� Y Z�[]\ G5^ Y Z�[5\ G5^ Z G s \ G5^ - � Y $ .
Using the notation of Section III, we define the function6 �$]R * ��55� by

6 �$5R * �75 � � � f � f + �`� ����55��`� Y Z�[]\	8 ^ Y Z $ - � Y $
� � f 6 $]R * ��55� .

If there exists a 5 � �
such that 5g� 6 �$5R * �75 � , let

5 �$]R * � $ ���|M 5 �@� J�5 � 6 �$]R * �75 � P .
Furthermore, we define the function

6 �$5R � ��55� by

6 �$]R � �75 � � � f � f + �`� ����55��`� Y Z�[]\	8 ^ Y Z�[]\	8 ^ - � Y $ .
We have the following result for the function

6 �$]R � �75 � .
Lemma 1: There exists a unique 5 �$]R � �@�

such that 5 �$]R � �6 �$]R � ��55� .
The above lemma can be proved using the same argument
as given in the proof for Lemma 21 in Appendix C. For the
function

6 �[ ��55� we have the following result.
Proposition 4: For every "v� �

, there exists a price � � �
such that

(a)
$ ��� 8�� �]� 6 �$]R * ��55� � 55�B� �

, and
(b) �,�75 �$]R * � � " Y]Z $ .

The above result states that we can always satisfy the first
two condition of Proposition 2 by choosing the cost � hight
enough.

Proof: Note that for 5g� �
, we have6 �$]R * � � ��� � f � f + �`� ��� � ��`� Y Z�[]\ � ^ Y Z $ - � Y $ �

and for � � � � f + �`� ��� � ��`� Y Z�[]\ � ^ Y Z $ - � Y $
we have that 6 �$5R * � � � � � � � � � � .
This shows that property (a) of Proposition 4 can always be
achieved by setting the price � high enough.

Let 5 $ be such that

�,�75 $ ���&" Y Z $ .
We have6 �$]R * ��5 $ �-��� f � f + �`� ����"|��`� Y Z�[]\	8 � ^ Y Z $ - � Y $ �
and for � $ ��� f + �`� ����"|��`� Y Z�[]\	8 � ^ Y Z $ - � Y $

we have 6 �$]R * ��5 $ � � 5 $ � � � � $ .
This shows that (b) of Proposition 4 can always be achieved
by setting the price � high enough.

Proposition 4 then follows by choosing � � $ ���|M � � � � $ P .
Using Lemma 1 and Proposition 4, we can construct an

equilibrium strategy as follows. Choose the cost � � �
such

that condition (a) and (b) in Proposition 4 are satisfied. If this
is the case, using the same argument as given in Appendix C
it can be shown that for : � > there exists a 5 �$]R G � �

such
that 5 �$]R G � 6 �$]R G �75 G �-� � f 6 $]R G ��5 G �
and ����5 �$5R G � � " . Using this value 5 �$]R G , : � > , consider the
following strategy 0<�K�?�,�435� A #%$ as follows. Let �,��:,�+�����5 �$]R G � and ��� � �-�<��� � �-�<����5 �$]R � � ; and let 3=� � ��� �

and

3=��:,�-� " � �,��:,�: �d� � : � > .
If �,�75 �$]R � � � " , then using the same argument as given in
Appendix D to prove Proposition 2, one can show that this
strategy 0 is indeed a stable equilibrium strategy. If ����5 �$]R � � �" , then (by the same argument as given in Section IV) it is
more economical for a node to retransmit a backlogged packet
at stage : � �

than at any other state : � > , and 0 with3=� � �v� �
is not an equilibrium strategy. To overcome this

problem, we can use the following approach.
In order to make state :6� �

“unattractive” for retrans-
mitting a backlogged packet (and make 3=� � � � �

indeed the
optimal probability for retransmitting a backlogged packet at
state :1� �

), the base station could jam the channel with
some (small) probability 3�� . More precisely, we want to jam
the channel at state : � �

such that the probability of a
successfully retransmission attempt of the backlogged packet
is less than Y Z,\ $�����^ for a small

� � �
. Below we describe

how this can be achieved.
We use the following notation. For

� � �
, let the function6 �

� ��55� be given by6 �
� �75 � � � f � f + �`� ����55��`� Y Z�[]\	8 ^ Y Z $ Z � - � Y $ � 5 ���/.

Note that for
� � �

we have6 �
� ��55� � 6 �$]R * ��55�9� 5 �@��.

Therefore, if conditions (a) and (b) of Proposition 4 are
stratified, then there exists a 5 �� � 5 �$]R * such that 5 �� � 6 �� ��5 �� �
and we have �,�75 �� � � " . Suppose that the base station jams
the channel (by sending a fictitious packet) at state :v� �

with
probability 3 � such that

� �`� 3 � �-� Y Z�\ $���� Z�[5\98	�
 ^�^ .
Consider then the function6 �
� R � �755� ��� f � f + �`� �,�75 ��`� Y Z�[5\98 ^ Y Z�[]\	8 ^ Y Z,\ $���� Z�[]\	8��
 ^�^ - � Y $ .



and note that 5 �� � 6 �� R � �75 �� � .
The function

6 �
� R � ��55� captures the expected cost for success-

fully transmitting a packet that arrived at state :v� �
given that

(a) the channel at state :�� �
gets jammed with probability3 � as given above, (b) the backlogged packets does not make

a retransmission attempt, and (c) the probability of a success-
fully retransmission attempt of backlogged packet is equal toY Z $ for all states : � > . Under �,�75 �� � the probability that a
transmission attempt of a backlogged packet is successful at
state :�� �

is equal toY Z�[]\	8	�
 ^ � �`� 3������ Y Z,\ $ Z $ ^ � Y Z $
and the probability for successfully retransmitting a back-
logged packet at state :@� �

is less than for any other state: � > . Using this result, it follows that the strategy 0 that we
constructed above is indeed a stable equilibrium strategy.

It might seem that jamming the channel is too drastic a
counter-measure for the case where ����5 �$]R � � � " , and will
hurt the system performance; however this is not necessarily
the case. Note that when

�
is very small, then the price 5 �� is

very close to 5 �$5R * , and the arrival rate ����5 �� � at state : � �
is close to the arrival rate ����:,� , : � > . Hence, the overall
system performance in terms of throughput is not significantly
reduced.

Note that in order to construct a stable equilibrium strategy
as outlined above, it is necessary to have exact knowledge of
the rate function � in order to pick the price � and the jamming
probability 3 � . Of course, in practice this is not the case. We
revisit this issue in Section VII, where we discuss whether it
is possible to set the price � in order to stabilize the system,
and achieve a desired system performance, without knowing
the arrival rate � .

B. System Performance

In the previous section, we discussed how pricing can be
used to stabilize the system. Next, we study whether the
above pricing mechanism can also be used to optimize system
performance. By Lemma 13 in Appendix C, for a strategy0yA!# $ we have !#"%$G (g* w ��:,� Y {n\ G5^ ��" Y Z $ �
and " Y Z $ can be used to characterize the maximal sustainable
throughput of the system under a stable equilibrium strategy0xA # $ . It is well known that the sustainable throughput is
maximized for " � �

and is equal to YSZ $ . Therefore, in order
to maximize throughput, " should be set equal to

�
. Having

decided on " , the next step is to choose the price � . We have
the following result.

Proposition 5: For every " � �
and every rate � � ��,�75 � � � $ "9� M�" Y Z $ � ����5 $]R * � P , there exists a price � � �

such
that 5 � � 6 �$]R * ��5 � � .

Proof: Note that if ����5 � � � � $* , then by Assumption 1
we have

6 $* ��5 ��� � 5 � . As we have6 �$5R * �75 ����� � f 6 $* �75 ���;�

Therefore, for �q� 5 � 6 $* �75 ��� we have6 �$5R * �75 � ��� � f 6 $* �75 � �-� 5 �
and the result follows.
The above result states that the price � can be used to set
the (asymptotic) throughput � � of the system. In particular,
if the original system is not stable and �,�75 $]R * � � " Y Z $ for
all "<� �

, then the price � can be used to achieve obtain a
stable policy with throughput � � for any � � less then " Y Z $ . In
particular, by setting "i� �

, in this case any throughput less
then Y ZHb can be achieved.

Note that choosing � introduces a trade-off between through-
put and delay. In order to maximize the throughput we should
choose � � close to " Y $ ; however, in order to minimize the
delay we should choose � � to be small. We note that this
throughput/delay trade-off is well-known.

Once " and the price � have been chosen as outlined
above, then a stable equilibrium policy can be constructed by
choosing the retransmission probabilities 3=��:,� , : � �

, and if
necessary a jamming probability 3 � for state :�� �

as given
in the previous subsection.

It is important to note that the above results can also be used
to design rate control algorithms, and MAC-layer protocols,
which achieve a desired performance (in terms and throughput
and delay) in the case where nodes cooperate and are not
selfish. In this case, the “cost” � has the interpretation of a
congestion control signal.

C. Standardization of the MAC-Layer Protocol

As noted in Section IV, if there exists a stable equilibrium
strategy then there typically exist a continuum of stable
equilibrium strategies which might lead to very different sys-
tems performances in terms throughput and delay. Therefore,
the choice of a particular equilibrium strategy is important.
However, nodes can not unilaterally influence the choice of a
particular equilibrium strategy, and nodes would have to agree
a priori on a equilibrium strategy in order to achieve a desired
system performance; clearly this is not practical. Alternatively,
nodes could relay on an “institution” to choose the parameter "
associated with an equilibrium strategy (see previous section)
and standardize the MAC layer protocol accordingly (note
that " can be set by suitably defining the retransmission
probabilities 3=��:,� ). Standardizing the MAC protocol (either
through an institution or some other mechanism) is necessary
(to guarantee stability) and desirable (to obtain good system
performance), and is in the interest of rational nodes (to obtain
good system performance). Furthermore, one can show that
a MAC-layer protocol chosen as outlined in Section V-A
will implement a unique stable equilibrium strategy. This has
the following important implications. As 0 is an equilibrium
strategy, no node has an incentive to deviate from it; hence
the protocol is robust toward “cheating”. Furthermore, as the
equilibrium strategy is unique, one can predict (and therefore
optimize) the system performance as outlined in Section V-B.



VI. RELATED WORK

There is considerable interest in studying the behavior of
selfish nodes in wireless networks. Below we highlight some
of this literature.

Closely related to the analysis presented here is the work
by MacKenzie and Wicker in [3] which uses the same channel
model as used above. However, the work in [3] assumes that
the arrival rate of new nodes is fixed (i.e. nodes are not
allowed to drop packets when the total transmission costs are
high); here, the arrival rate is a function of the expected total
transmission cost.

Also related to the above work, is the work of Altman et
al. presented in [4], [5]. However, [4], [5] uses a different
channel model where the number of nodes is finite, and uses
numerical case studies to characterize the system performance.
An advantage of the model presented in this paper is that it
allows a formal analysis. In particular, the analysis presented
above confirms several of the experimental results obtained
in [4], [5]; for example, it confirms the observation made
in [4], [5] that introducing a cost � can be used to improve
system performance.

The issue of selfish nodes in wireless random access net-
works (IEEE 802.11 hotspots), and the role of MAC-layer
standards, is also considered in [6], [7] where a mechanism
for dealing with “cheaters” (i.e nodes which do not follow the
standard) is proposed and analyzed. Note that for the model
considered in this paper, the problem of “cheaters” does not
arise as the MAC-layer protocol of Section V-C implements
a Nash equilibrium. The difference in the results is explained
by the different models considered: (a) the work in [6], [7]
focuses on the retransmission of backlogged packets and does
not take rate control (in the transport layer) into account,
were in this paper considers both rate control and packet
retransmissions; and (b) the work presented here considers
only delay insensitive traffic (see also comments in the next
section) whereas the model in [6], [7] considers a more general
setting.

VII. CONCLUSIONS

We studied the behavior of selfish nodes in a wireless local
area networks assuming that (a) nodes obtain a reward for
successfully transmitting a packet (where different packets
can have different rewards) and (b) each transmission attempt
incurs a cost (which is the same for all packets). In particular,
for this situation we studied how nodes decide on (a) when to
accept a new packet and (b) when to retransmit a backlogged
packet. For our analysis, we modeled the interaction among
nodes as a non-cooperative game, and study the existence and
properties of a (symmetric) Nash equilibrium; in particular a
stable equilibrium.

In our main results, we show that the existence of a
transmission cost is not always sufficient to guarantee stability.
In particular, a stable equilibrium strategy will not exist if
the transmission cost is small. This result suggests that an
additional mechanism is required to guarantee stability. We
consider such a mechanism where nodes are charged a price

(cost) for each successfully transmitted packet. In the case
of a wireless LAN, this cost could be charged at the base-
station. We show that such pricing mechanism can be used
to guarantee system stability. In addition, it can be used to
optimize the system performance in terms of throughput and
delay.

The motivation for studying the above situation is to obtain
a better understanding of protocol design for wireless net-
works. In particular, the above results that a simple pricing
mechanism is enough to ensure a stable and predictable (in
terms of throughput and delay) operation of the network.
However, these results were obtained for a particular model
and under particular assumptions. Below we discuss some of
the limitations of the model that we used in our analysis.

The results of Section V-B states that it is possible to achieve
a desired system performance by suitably choosing � and " .
However, this requires a priori knowledge of the rate function� and the transmission cost � , which is unrealistic. In addition,
we assumed that nodes have perfect system information and
know the total number of currently backlogged packets. Again,
this is unrealistic. A natural question that arises then in this
context is whether there exists a mechanism that can be used to
achieve a desired system performance (in terms of throughput
and delay) without requiring (a) knowledge of the rate function� and transmission cost � , and (b) knowledge of the total
number of currently backlogged packets. Surprisingly, this
seems possible. In [8], [9], we discuss such an approach where
the system iteratively updates the cost � based on the ternary
channel feedback information (“idle”, “successful”,”collision”)
in order to obtain a desired system performance. However, the
mechanism proposed in [8], [9] has been derived assuming
that nodes cooperate; studying it within a game-theoretic
framework is future research.

Regarding future work, there are several assumptions that
we made in our analysis and it would be interesting to study
how relaxing this assumption would affect the above results.

One important feature of the model used in this paper is that
nodes have delay-insensitive traffic, i.e. when choosing the
retransmission probabilities nodes are only concerned about
transmission costs but not delay. The extension of the analysis
to delay-sensitive traffic seems possible, but poses additional
challenges that need to be carefully evaluated.

Another important assumption that we made in our analysis
is that is that a node is not allowed to drop a packet once it
has been accepted, i.e. we assumed that a node will always
try to successfully transmit a backlogged packet. Also, we
assumed that when a node decides to accept a new packet, then
it will transmit it immediately in the next time slot. It would
be interesting to consider more general strategies where nodes
are allowed to drop backlogged packets, and nodes can decide
when to first transmit an accepted packet. Again, extending the
analysis to more general set of strategies seems possible, but
poses additional challenges that need to be carefully studied.
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APPENDIX

A. Properties of Admissible Strategies and Equilibrium Strate-
gies

In this section we derive some basic properties of admissible
strategies and equilibrium strategies.

Lemma 2: If 0 is admissible, then we have

����:,� f 3=��:,� � � � : ���/.
Proof: We prove the lemma by contradiction. Suppose

that there exists a state : such that 3=��:,� � ����:,� � �
. Note

that in this case we have � G ��0n�435�-��� with probability 1 and0 is not admissible.
Lemma 3: If 0 is an equilibrium strategy then we have

_ �`� 3=��:,� a f ����:,�B� � � : � > .
Proof: Suppose that there exists a state : � such that�,��: � ��� �

and 3=��: � �-� �
. Note, this implies that

� ��: � ��0,�-�
� and � � � �40,�q��� (as by assumption we have ��� � � � �

).
As !%"%$&)(+* �,������� � �
it follows that ��� � � ��<� _ � � � �40,���;�
and 0 is not an equilibrium strategy.
The above lemma states that an equilibrium strategy is
deadlock-free.

B. Properties of Stable Strategies

In this section we derive properties of stable strategies that
we use to prove our main results.

Lemma 4: If 0 is a stable equilibrium strategy, then there
exists a integer � � such that 3=��:,�`� �

for all : � � � .

Proof: Note that for all : � �
with 3=��:,�B� �

, we havew ��:,� �<����:,� . Therefore it follows that for : such that 3=��:,����
, we have w ��:,� Y Z�{n\ G5^ �<����:,� Y Z�[]\ G5^ � �,��:,� .

If 0 is a stable strategy, then there exists a integer � � withw ��:,� Y Z|{n\ G5^ � �
. This implies that for all states : � �+� we

have 3=��:,� � �
.

Lemma 5: If strategy 0 is a stable equilibrium strategy, then
for every pair of states : and :,c , : � :Hc , we have that :Hc is
accessible from : .

Proof: Note that the lemma is true if we have that ����:,�B��
. Therefore, suppose that ����:,�-� �

and let

: c c � $ ���uM�� � :�� �������B� �/P .
Note that such a state :,c exists as the strategy 0 is an
equilibrium strategy and hence is admissible. Furthermore,
because the strategy 0 is admissible, we have

3=����� � � � : c c � � � : .
It then follows that that the state :�c c is accessible from : .
Furthermore, because �,��: c c � � �

we have that the state : c is
accessible from state :,c c . Combining these results, it follows
that state :Hc is accessible from : .

Lemma 6: If strategy 0 is a stable equilibrium strategy,
then the corresponding Markov chain has a single class and
possibly some transient states.

Proof: As 0 is a stable strategy, by Lemma 4 there exists
a integer � � such that 3=��:,� � �

for all : � � � . Combining
this result with Lemma 5, all states :n�4:,c � �g� communicate.
Also from Lemma 5, we have if : � :,c then state :Hc is
accessible from : ; hence all states : � � � are accessible
from all other states. The result then follows.

Proposition 1 of Section II-D, states that if 0 is a stable
equilibrium strategy then the has a single positive recurrent
class and possibly some transient states. Using Lemma 6, we
can use the following criteria to prove Proposition 1 [10].

Proposition 6: If strategy 0 is a stable equilibrium strategy,
then the corresponding Markov chain has a single positive-
recurrent class and possibly some transient states if and only
if there exist a non-negative function 	 ��:,� , :@A L , positive
constants

�
and 
 , and a finite set �L
�	L such that

(i) � _ 	 ��:,I � b � � 	 ��:,I]���):,I � : a �x� � � :��A��Lz�
(ii) �v_�	 ��: I � b � � 	 ��: I ���): I � :,a � 
)� :yA��Lz�

where the expectation is taken with respect to the Markov
chain with transition probabilities

Q ��0,� as given in Section II-
B.
Note that when 0 is a stable strategy, then for the function
	 ��:,��� : , : �d�

, we have� _ 	 ��:,I � b � � 	 ��:,I5���):,I ��: a � ����:,� � w ��:,� Y {�\ G5^ � : �d� �
where

w ��:,�v� �,��:,� f :H3=��:,� . Hence, the above criteria is
satisfied as 0 is a stable strategy and Proposition 1 is true.



Lemma 7: If 0 is a stable strategy, then we have!%"#$G (+* 3=��:,��� �/.
Proof: If 0 is a stable strategy, then there exists a integer�g� such that

w ��:,� Y Z|{�\ G5^ � ����:,�B� �q� �
. As!%"#${ (g* w Y Z|{ � � �

it follows that there exists a
w�� ��� � � such that for : � � �

we have
w ��:,� � w�� ��� . Using this result, we obtain that for: � � � , we have

3=��:,�-�
w ��:,� � �,��:,�: � w�� ���:

and !%"#$G (+* 3=��:,� � !%"%$G (g* w�� ���: � �/.
Lemma 8: If 0 is a stable strategy, then there exists

w�� � G ��
and a integer � � such thatw ��:,� � w � � G � : � �g� .

Proof: If 0 is a stable strategy, then there exists a integer�g� such thatw ��:,� Y Z�{n\ G]^ � �,��:,�B� �q� � � : � �+� .
This implies that for : � � � , we havew ��:,� Y Z|{�\ G5^ � �O� : � �g� .
As !%"#${ ( � w Y Z�{ � � �
the result follows.

Lemma 9: If 0 is a stable strategy, then there exists
	� � �

and a integer
	� � such that	w ��:,� Y Z�
{n\ G5^ � ����:,�B� 	�O� : � 	�+�]�

where 	w ��:,�-�<����:,� f ��: � >]��3=��:,�;� : � > .
Proof: If 0 is a stable strategy, then there exists �g� �

and a integer � � such thatw ��:,� Y Z|{n\ G5^ � ����:,�B� �O� : � �+� .
Choose a positive constant

� b and choose
w b such that

� w � � b � Y Z�{ ����� � �� � w � w b .
Note that such a

w b exists as!%"#${ (g* w Y Z|{ � ��.
Next consider the function � �]� w � given by

� �5� w �-��


w Y Z|{ � � w � � � Y Z|{ ��� 

 � w A C � � w b D .

Note that for every
�

the function � � has a maximum onC � � w b D ; let � � be given by

� �q� $ ���{ 
�� �4R { ��� � � � w � .

Furthermore, note that !%"#$
�
( � � �`� �/.

Therefore, there exists a
� � such that




w Y Z|{ � � w � � � � Y Z�{ ���.� 

 � �> � w A C � � � w b D .

As 0 is a stable strategy, by Lemma 8 there exists a
w�� � G � �

such that
w ��:,� � w�� � G for : � � � . Now set

� � �$ "	� M � b � � � � w � � G P . Combining these results, we obtain





w ��:,� Y Z�{n\ G]^ � � w ��:,� � � �O� Y Z|{ ��� � 


 � �> � : � �g� .

Note that w ��:,� � 	w ��:,� � 3=��:,�;� : � > .
By Lemma 7, we have !%"#$G (g* 3=��:,��� � �
and there exists a integer

	� � , such thatw ��:,� � 	w ��:,� � � � � : � 	�+� .
Using this result, we have for : � 	�+� that

	w ��:,� Y Z�
{n\ G]^ � �,��:,�� w ��:,� Y Z�{n\ G]^ � 



	w ��:,� Y Z�
{8\ G5^ � w ��:,� Y Z�{n\ G5^ 


 � ����:,�� �> �

and the result follows.
Lemma 10: If 0 is a stable strategy, then the Markov chain

with transition probabilities
Q � ��0n� 3 � � with 3 � ��:,�-� �

, : � �
,

is stable on L .
Proof: Note that when 3 � ��:,�1� �

, : � �
, thenQ �GSR �-��0n�43 � �v� �

, : � �
. Therefore, in order to show that

the Markov chain with transition probabilities
Q � ��0n�43 � � is

stable on L it suffices to show that there exists � � �
and a

integer �+� such that
	w ��:,� Y 
{�\ G5^ � ����:,�B� �O� : � �+� .

That this is indeed the case is the statement of Lemma 7 and
the result follows.

For a given stable equilibrium strategy, let L � ��0,� the the
single recurrent class, and let the state : � be defined by

: � � $ "9� MO:iA'L � ��0,� P .
Lemma 11: We have 3=��:H�)�-� �

.
Proof: If this is not true, then the state :�c��z:�� ���

is
accessible from :H� . By Lemma 5 we have that all states : AL!� ��0,� are accessible from :,c and hence :Hc belongs also to the
set L � ��0,� contradicting the fact that : � � $ "9� MO:�A L � ��0,� P .



C. Properties of Strategies in #%$
In this section, we derive some properties of strategies in

the set # $ , "�� �
, that we use to prove our main results.

Consider a strategy 0yA!#%$ , and let L � ��0,� be the recurrent
class; then there exists a integer � � such that :<AyL � ��0,� if: � � � . Note that for every state :�A L � ��0,� with 3=��:,�q� �

,
we have Y Z�[]\ G]^ Z,\ G Z�b ^�s \ G]^ � Y Z $ � : � � � .
We then have the following result.

Lemma 12: For every strategy 0yA'#%$ , we have!%"#$G (+* 3=��:,��� �/.
Proof: Note that

3=��:,��� " � �,��:,�: �d� .
As ����:,� � ��� � � � �<�
it follows that !#"%$G (g* 3=��:,� � !%"#$G (g* " � �,� � �: �@� � �/.

Lemma 13: We have!%"%$G (g* w ��:,� Y Z|{�\ G5^ � " Y Z $ .
Proof: Note that in order to prove the lemma, it suffices

to prove that !#"%$G (g* w ��:,�-� " .
Note that � w ��:,� � "u� � 3=��:,� . As by Lemma 12, we have that

��� � G (g* 3=��:,��� � �
the result follows.

Lemma 14: If 0yA!# I then we have� $ ��:n��0,��� � Y $ � :	A L!�O��0,� .
Proof: By definition, for all states :@A L � ��0,� we have�,��:,� f ��: ��� ��3=��:,��� " . This implies that the probability

that a transmission attempt of a backlogged packet at a state: A L � ��0,� is successful is equal to Y Z $ . As by definition
the strategy 0 is admissible, we have

� $���:n��0,� ��� Y $ for all
states :yA L � ��0,� .

For a state :<AyL � ��0,� , the expected cost for successfully
transmitting a packet is then given by� $ ��:n��0,� �d� f + �`� ����:,��B� Y Z�[]\ G]^ Y Z�[]\ G5^ Z G]s \ G]^ - � Y $ .
Using the fact that ����:,� f ��: �<� ��3=��:,� �2" , we obtain that
for :yA L � ��0,� that� $ ��:n�40,�-�d� f + �`� �,��:,��`� Y Z�[5\ G5^ Y Z�[]\ G5^ Z 11�3 � \ $ Z�[]\ G5^�^4- � Y $ .
Consider now the function6 $]R G���55� ��� f + �`� ����55��`� Y Z�[]\	8 ^ Y Z�[]\	8 ^ Z211�3 � \ $ Z�[]\	8 ^�^4- � Y $ .

If 0 is an equilibrium strategy, then we have�*$u��:n�40,�-� 6 $5R G����*$u��:n�40,���
and � $ ��:n�40,� is a solution to the equation

5g� 6 $]R G �755�9� 5 ���/.
In the following we investigate whether this equation has a
solution.

Lemma 15: There exist a 5�$]R G � �
such that 5�$]R G �6 $]R G���5�$5R Gu� if and only if$ ���8�� � � 6 $]R G���55� � 55� �d�/.

Proof: Clearly, if
$ ��� 8�� � � 6 $5R G��755� � 55� � �

then there
does not exists a 5 �z�

such that 5'� 6 $5R G��75 � . Suppose that$ ��� 8�� � � 6 $]R G���55� � 5 �`� �
. Then there exists a 5 ���

such that6 $]R G���55�`� 5 . As!%"#$8 (g* 6 $]R G���55� ��� f _ �`� Y Z:11�3 � $ a � Y $ � � .
and the function

6 $]R G �75 � is continuous, this implies that there
exists a 5 ���

such that 5 � 6 $]R G ��55� . The result then follows.

Lemma 16: Let :n�4:Hc � > be such that : � :Hc . If " � ����55� ��
, then we have

6 $5R G �75 �q� 6 $]R G5T ��55� .
Proof: Note that6 $]R G���55� � 6 $]R G5Tt�75 � �� � ����55� Y $ Y Z�[]\	8 ^�`� Y Z�[]\	8 ^  Y Z:11�3 � \ $ Z�[]\	8 ^�^ � Y Z:1 T1 T 3 � \ $ Z�[]\	8 ^�^ " .

Note that :: �d� � :Hc: c �d� � : � : c .
Combining this result with the fact that " � ����55�`� �

, it follows
that :: �@� � " � �,�755���`� :Hc: c �d� � " � ����55�4�9� : � : c �
and the result follows.

Lemma 17: Let :n�4:Hc � > be such that : � :,c . If 5�$5R G]T �@�
is such that 5�$]R G5Tg� 6 $]R G5Tt�75�$]R G5T?� and " � ����5OG5T ��� �

, then
there exist 5�$]R G � 5�$5R G]T such that 5�$]R G'� 6 $]R G���5�$]R G�� .

Proof: By Lemma 16, we have that6 $]R G �75 $]R G T �B� 6 $]R G T���5 $]R G T ��� 5 $]R G T .
As !%"#$8 (g* 6 $]R G ��55� ��� f _ � f Y Z 11�3 � $ a � Y $ � �<�
and

6 $]R G ��55� is continuous, it follows that there exists 5 $]R G �5 $]R G5T such that 5 $]R G � 6 $]R G ��5 $5R G � .
Next consider the function6 $5R * �755�-� !%"#$G (g* 6 $]R G ��55�-� � f + �`� ����55��`� Y Z�[]\	8 ^ Y Z $ - � Y $ .

The following result is obtained by the same argument as given
for Lemma 15; we omit a detailed proof.



Lemma 18: There exists 5 �6�
such that 5i� 6 $]R * ��55� if

and only if $ ���8�� � � 6 $]R * �75 � � 55� �d�/.
If the above equation has at least one solution 5 �d�

, then we
define 5�$]R * � $ ���|M 5 �@� J 6 $]R * ��55� � 5 P .

The next two lemmas can be obtained using the same
argument as given for Lemma 16 and Lemma 17; we omit
detailed proofs.

Lemma 19: If " � ����55��� �
, then we have for : �

that6 $]R G �755�`� 6 $5R * �755�
Lemma 20: If there exists 5 � �

is such that 5 � 6 $]R * �75 �
and " � ����55�g� �

, then for : � > there exist 5 $]R G ��5 such
that 5 $]R G � 6 $]R G ��5 $]R G � .

Finally, we define the function6 $]R � �755�-��� f + �`� ����55��`� Y Z�[]\	8 ^ Y Z�[5\98 ^ - � Y $ � 5 ���/.
Note that when 0 is an equilibrium strategy then we have�,��:��)���x�,�75 $]R � � , where :�� � $ "	� M :iA'L!�O��0,� P .

Lemma 21: There exists a unique 5�$]R � �d�
such that 5�$]R � �6 $]R � ��5�$5R � � , 5 ���

.
Proof: Note that

6 $]R � � � ��� � f + �`� ��� � � Y Z�[]\ � ^�B� Y Z�[]\ � ^ - � Y $ � �/.
Furthermore, as by Assumption

!%"#$ 8 (+* ����55� � �
, we have!%"%$8 (g* 6 $]R � �755�-��� � � .

As the function
6 $5R � ��55� is continuous, it follows that there

exists a 5�$5R � ���
such that 5�$]R � � 6 $]R � �75�$]R � � .

To show that there exists a unique 5�$]R � �d�
such that 5�$]R � �6 $]R � ��5�$5R � � , it suffices to show that the function
6 $5R � ��55� is non-

increasing. However, this is equivalent to showing that the
function �,�75 � Y Z�[]\	8 ^ �/� �8� Y Z�[5\98 ^ � is non-decreasing in 5 . This
is indeed the case, as the function � Y Z � �=� � � Y Z � � is non-
increasing in � . This can easily be verified by considering the
first derivative.

D. Proof of Proposition 2

First suppose that the conditions hold. Then we can con-
struct a stable equilibrium strategy 0KA #*$ as follows. If
condition (b) holds, then by Lemma 20 for : � > there exists5 $]R G � �

be such that 5 $5R G � 6 $]R G ��5 $]R G � and ����5 $]R G � �" Y Z $ .Set �,��:,� �K����5 $]R G � , : � > , and set �,� � � �
��� � ����,�75 $]R �)� . Then choose 3=��:,� , : � �
, as follows: set 3=� � � � �

and 3=��:,��� " � ����5 $]R G �: ��� � : � > .
Note that 0 is a stable strategy. As ��� � � � ����5 $]R �)� � �

and
the strategy is stable, it follows that 0 is admissible. For all: � > , the probability for a successfully transmission attempt
of a backlogged packet is equal to YSZ $ . For :
� �

, the

probability is equal to Y Z�[]\	8	��
 � ^ � Y Z $ . Combining these two
observations, it follows that

3 � � � � $ "	��s 

� \	� ^ � ��:n��0n���3 �;� : � � �
and 0 is an stable equilibrium strategy.

Next, we have to show if one of the conditions does not
hold, then there does not exists a stable equilibrium strategy0	A'# $ .

Suppose that condition (a) does not hold and that there exists
a stable equilibrium strategy 0 A # I . This implies that there
exists a integer �+� such that for all : � �+� there exists5 $]R G �d�

such that 5 $]R G � 6 $]R G ��5 $]R G � . However, as6 $]R * ��55� � !#"%$G (g* 6 $5R G��755�
and !#"%$8 (g* 6 $5R * �755� � 5g� � � �
it follows that there exists a bound � � � such that 5 $5R G � �
for : � �+� and the set M 5 $]R G J�: � �+� P has at least one limit
point. Let 5 $]R * be such a limit point. As the function

6 $]R * is
bounded, it the follows that!#"%$8 ( 8 ��
 �

6 $5R * �755�-� 6 $5R * �75 $]R * ��� 5 $]R * .
However, this contradicts our assumption that condition (a)
does not hold. Similarly, one can show that there does not
exist a stable equilibrium strategy if condition (b) does not
hold.

Next, suppose that the conditions do not hold. Clearly, if� * � " Y Z $ then there can not exists a stable strategy 0yA'#*$ .
Finally, suppose that condition (c) does not hold and there

exists a stable equilibrium strategy 0 A # $ . Now consider
the state :�� � $ "9� M :KA
L!� ��0,� P . Recall that 3=��:H�O��� �
(Lemma 11) and as 0 is an equilibrium strategy we have����: � �F� �,�75�$]R � � . If : � � �

, then the probability of a
successful transmission of a backlogged packet at state : �
is equal to Y Z�[]\	8
��
 � ^ and the probability of success in all
other states in #%$ is equal to Y Z $ . It follows that for �3 with�3=��: � �-� �

and �3=��:,��� �
, : �� : � , we have that� ��:n��0n���35����� Y []\	8 ��
 ��^ � � Y $ � � ��:n��0n� 35�9� :yA L � .

If :��'� �
, one can show that �,� � � � �,�75 $]R � � and using the

same argument as above it follows that 0 is not an equilibrium
strategy. Hence, if condition (c) does not hold then there does
not exist a stable equilibrium strategy 0 A'# $ .
E. Proof of Proposition 3

Proposition 3 is equivalent to the statement that if 0 is a
stable equilibrium strategy and L �O��0,� is its single recurrent
class, then there exists " � �

such that

����:,� f ��: �d� ��3=��:,���&"H� : � : � �
where : � � $ "	� M :iA'L � ��0,� P .

Suppose that the statement is not true, then there exist state:Hc?��:Hc c�A'L � ��0,� with 3=��:,�`� �
and 3=��:,c%�B� �

such that

�,��: c � f ��: c �d� ��3=��: c � ������: c c � f ��: c c �d� ��3=��: c c � .



Let " � G��+� "9���G 
��
� \	� ^ M)����:,� f ��: �@� �t3=��:,� P .

Note that ����: c � f ��: c �@� �t3=��: c �B� " � G�� .
Furthermore, note that� ��: c ��0,� � � Y Z�[5\ G T ^ Z�\ G T Z�b ^�s \ G T ^ f .#.%.f  �`� Y Z�[]\ G T ^ Z�\ G T ZHb ^?s \ G T ^ "  � f � Y $�� 1�� " .
As ����:Hc � f ��:Hc � � ��3=��:Hc � � " � G�� , there exists

� � �
such that

� Y Z�[]\ G T ^ Z�\ G T ZHb ^?s \ G T ^ f .%.%.f  �`� Y Z�[]\ G T ^ Z,\ G T ZHb ^�s \ G T ^)"  � f � Y $�� 1�� "
� � Y $�� 1�� ���

and � ��: c ��0,� �@� Y $�� 1	� ��� .
Consider the retransmission vector �3 given by�3=��:,�-� 
 � �
����:,� f ��: �d� �t3=��:,� � " � G�� f �� � otherwise

Note that � ��: c �40n���35� � � Y $�� 1	� ���
and � ��: c ��0,� �@� Y $�� 1�� ��� � � ��: c ��0n���35� .
This implies that 0 is not an equilibrium strategy.


