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ABSTRACT
In this paper, we consider hybrid peer-to-peer systems where
users form an unstructured peer-to-peer network with the
purpose of assisting a server in the distribution of data. We
present a mathematical model that we use to analyze the
scalability of hybrid peer-to-peer systems under two query
propagation mechanisms: the random walk and the expand-
ing ring. In particular, we characterize how the query load
at the server, the load at peers as well as the query response
time scale as the number of users in the peer-to-peer network
increases. We show that, under a properly designed random
walk propagation mechanism, hybrid peer-to-peer systems
can support an unbounded number of users while requiring
only bounded resources both at the server and at individual
peers. This important result shows that hybrid peer-to-peer
systems have excellent scalability properties. To the best
of our knowledge, this is the first time that a theoretical
study characterizing the scalability of such hybrid peer-to-
peer systems has been presented. We illustrate our results
through numerical studies.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Network
Architecture and Design; C.4 [Performance of Systems]:
Modeling techniques

General Terms
Design, Performance

Keywords
peer-to-peer, scalability

1. INTRODUCTION
Peer-to-peer systems have been very successful at scaling

without the need for high infrastructure investments, by uti-
lizing the bandwidth available to end-hosts. In this paper,
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we investigate the behavior of particular peer-to-peer sys-
tem architecture, called hybrid peer-to-peer systems, which
allows to reduce the traffic at a central server by delegating
a fraction of it to the server’s clients. Applications such as
Bit-Torrent and Skype are using this architecture to success-
fully to scale to a large number of users with little bandwidth
requirements on the server side. BitTorrent, an application
for peer-to-peer content distribution, allows simple Internet
users with limited bandwidth capacity to upload bandwidth-
intensive content to thousands of other users. It has also
been used by traditional content distribution companies to
relay part of their web traffic to their own clients. Skype,
a company offering VoIP telephony, also utilizes end-host
bandwidth to reduce its served traffic and therefore also its
infrastructure costs. For example, Skype users form a peer-
to-peer network that implements a decentralized directory
mapping user IDs to their IP addresses. Whenever a user
connects to the network, it propagates a query in the peer-
to-peer system to locate the IP addresses of the users that
appear in its “buddy list”. Skype [13] claims that decentral-
izing this “resource-hungry infrastructure” and “leveraging
all of the available resources in (the) network” has allowed
the company to focus its own resources elsewhere.

The success of systems like BitTorrent and Skype suggests
that hybrid peer-to-peer architectures can be very effective
in reducing the server traffic, to an extent that a large user
population can be supported while requiring only limited
resources at the server side. However, there is currently no
formal analysis that quantifies precisely how the server traf-
fic behaves. In particular, there are currently no answers to
very basic questions such as: (1) How fast does the band-
width available at the server has to grow as the number of
users increases, (2) how does the traffic load imposed on in-
dividual users grow as a function of the user population, and
(3) to what extend can we establish a tradeoff between the
traffic load at the server and the traffic load at individual
users.

In this paper, we address these questions by considering a
hybrid peer-to-peer system consisting of a central server and
clients (users) that download data maintained by the server.
There are many applications that are captured by this ar-
chitecture, such as a search engine, an online encyclopedia,
a general content distribution system or a decentralized Bit-
Torrent tracker. The users of this system form an unstruc-
tured peer-to-peer network with the purpose of alleviating
the traffic load at the server. This is achieved through the
following mechanism: A user wishing to retrieve a particular
data item first propagates a query over the peer-to-peer net-



work. If a user that has already downloaded this data item is
reached then the data is retrieved (downloaded) without the
intervention of the server. If, on the other hand, the query
fails to locate such a user, the data is retrieved directly from
the server.

The main contributions of this paper are as follows. First,
we propose a mathematical model for the above hybrid peer-
to-peer system. Second, we use this model to characterize
the traffic load at the server, the traffic load at users and
the tradeoff between them for two well-known query prop-
agation mechanisms: the random walk [7, 10] and the ex-
panding ring [10]. Our results formally show that hybrid
peer-to-peer systems scale extremely well. For the random
walk query propagation mechanism with a time-to-live that
is proportional to the user population, we show that the traf-
fic load at the server and individual peers can stay bounded
as the user population grows. This result is surprising and
has important implications: it shows that it is possible to
construct hybrid peer-to-peer systems that can handle query
traffic generated by a large (unbounded) number of users
even when the bandwidth capacities of both the server and
the users are limited. We also characterize the average re-
sponse time for the two query propagation mechanisms. As
expected, the expanding ring mechanism leads to a much
shorter query response time compared with the random walk
mechanism. We validate our modeling assumptions, and il-
lustrate our analytical results, through numerical case stud-
ies. To the best of our knowledge, our work is the first to
formally characterise the performance and scalability of such
hybrid peer-to-peer systems.

While in this paper focuses on the design issues in hybrid
peer-to-peer networks, the model and analysis also have the
potential to address issues beyond what we discuss in this
paper. In Section 6, we provide a summary of such possible
extensions.

The remainder of this paper is organized as follows. In
the next section we present the related work in this area. In
Section 3 we give an overview of our model and in Section 4
we present our analysis. We validate our results through a
numerical study on Section 5 and we present our conclusions
in Section 6.

2. RELATED WORK
The random walk and the expanding ring query propaga-

tion mechanisms have been studied in the context of unstruc-
tured peer-to-peer networks. Gkantsidis et al. [7], compare
flooding, random walks and uniform sampling search strate-
gies for various overlay network topologies with respect to
their hit-rate, i.e., the number of copies of a file a search
strategy can retrieve. In their work, Gkantsidis et al. also
provide evidence that the overlay graphs of unstructured
peer-to-peer networks tend to be expanders. This is an im-
portant result, as discussed in Section 3.5. Our analysis
builds on this work, however our focus is on query traffic as
opposed to hit-rates.

The random walk and the expanding ring have also been
studied with respect to optimal replication strategies. Lv
et al. [10] and Cohen and Shenker [4] investigated replica-
tion in unstructured file-sharing peer-to-peer systems. As-
suming bounded storage capacity, the above papers show
that to minimize the average search cost of the random walk
search strategy a file should be replicated at a rate that is
proportional to square root of the rate at which it is re-

quested. Tewari and Kleinrock [16, 17], corroborate this re-
sult through simulations and extend it by showing that the
optimal replication rate for the expanding ring is propor-
tional to the request rate of a file. In our work, replication
is determined by user demand and is therefore not treated
as a design parameter of the system.

The scalability of peer-to-peer systems has been exten-
sively studied in the context of structured systems (see for
example [12,14]). For example, the search cost in Chord [14]
is known to be O (log n) w.h.p., and maintenance costs are
known to be O

`
log2 n

´
w.h.p. Structured peer-to-peer net-

works were proposed as an alternative to unstructured peer-
to-peer systems, as it was widely believed that the search
cost in unstructured systems does not scale. Our analysis
suggests that unstructured approach can be used to build a
scalable hybrid system, if the query propagation mechanism
is properly designed.

BitTorrent-like systems [11] as well as hybrid peer-to-peer
systems for Video-on-Demand and live streaming [2,15] have
been analysed in terms of the download times and playback
rates achievable, respectively. The main challenge in such
systems is in designing strategies for pushing or pulling par-
tial content (or chunks) of the file or the stream to optimize
the above metrics. Our approach is orthogonal, as our fo-
cus is on the traffic generated by query propagation; as such,
our system can thus be used e.g. to decentralize a BitTorrent
tracker or to index offered streams.

3. MODEL

3.1 Peer-to-Peer Network
Consider a hybrid peer-to-peer system where users issue

queries for data stored at the server. Query packets are
first propagated over the peer-to-peer network. If a user
that stores the data requested is reached by the query then
the query is considered successful and the data is retrieved
(downloaded) from this user. If the query in the peer-to-
peer network fails then the query is redirected to the server.
After obtaining the data, the user stores it locally and shares
it with other users.

The user population is dynamic and users may enter and
exit the system. However, we assume that both the size of
the user population and the overlay graph topology remain
fixed as time progresses. In particular, users stay in the sys-
tem for i.i.d. random times, exponentially distributed with
parameter µ. To keep the size of the population fixed, we as-
sume that a departing user is immediately replaced by a new
one. Furthermore, we assume that the new user occupies the
vertex of the overlay graph that was vacated by the depart-
ing user, and thus the topology of the overlay graph remains
unchanged. We denote with n the size of the system, i.e.,
the number of users in the system, and with Gn the (undi-
rected) overlay graph for a system of size n. Finally, we also
assume that each overlay graph Gn is connected, and that
the degrees of vertices of the graphs Gn are no more than
constant d > 2. The latter assumption is motivated by the
fact that unstructured peer-to-peer networks typically set a
limit on the maximum number of connections per user, to
keep maintenance traffic low.

The systems that we capture with the assumption of a
fixed size n are systems of relatively slow growth, in which
the increase of the user population happens at a different
time scale (e.g., months) compared to the time scale in



which normal system operations take place (e.g., minutes
or hours). When seen over middle-ranged periods of time
(e.g., a day or a week), the size of such systems should os-
cillate around an operating point, which is reflected in our
model by the size parameter n. Our model therefore charac-
terizes the behavior around such an operating size, and the
dependence of this behavior in n describes the long-term
scalability of the system. We note that we validate our re-
sults in Section 5 for a system with a size that is not fixed
but varies around an operating point.

The assumption that the topology of the overlay graph
does not change is quite strong. In a real system, the over-
lay graph is dynamic and its topology is affected by user ar-
rivals and departures. As we will see in Section 5 however,
the results derived by our static model give a correct charac-
terization, both qualitative and quantitative, of the behavior
of a fully dynamic system. This is not a coincidence, as our
analysis does not depend explicitly on the time-invariance
of the overlay graph but rather the invariance of a single
property, namely its relaxation time. As discussed in Sec-
tion 3.5, this is bounded w.h.p. in unstructured peer-to-peer
networks.

3.2 The Data Request Process
We assume that the server stores a finite number of M

data items. Furthermore, we assume that a new user will
issue a query for a given item j, independently with a prob-
ability pj = pj(n), j = 1, . . . , M . We call pj the request
probability of item j. Note that pj(n) serves as a charac-
terization of the popularity of item j and can be estimated
empirically, e.g., by observing the number of users that re-
quest a data item when the operating size of the system is n.
To interpret the qualitative meaning of the dependence of
this probability on n, observe that the expected number of
users in the system that are interested in retrieving the item
j is equal to npj(n). Therefore, if e.g. pj(n) = 0.5, item
j retains its relative popularity as the system size increases
and the expected number of users that request the item j
is linear in n. If on the other hand pj(n) = 1/n, while the
user population increases only a constant number of users,
in expectation, maintain an interest for the data item. This
could be true if, for example, the item is popular only within
a user minority or a special interest group that, at any point
of the evolution of the system, is represented by a fixed num-
ber of active users. Similarly, a probability smaller than 1/n
would indicate that the interest in the data item wanes to
an extent that fewer users request it, in expectation, as the
system grows.

Without loss of generality, we will focus in our analysis
on a single item. In particular, we will be characterizing the
query traffic loads (at the server and at peers) generated by
queries for a single item j. The total traffic load generated by
all M types of queries can be obtained by summing the indi-
vidual loads generated per data item. We therefore omit the
index in our analysis and denote with p(n) the probability
that a given query takes place. Furthermore, we will assume
for simplicity that all data items are requested by a user im-
mediately when it enters the system. Our analysis and our
results can be easily extended to the case where users issue a
query for a data item at an epoch uniformly distributed over
a user’s lifetime. Such a system is also Markovian and the
bounds we derive hold within a constant factor. However
the derivations become more complicated; for this reason,

we simply validate that our results also hold for this case in
the numerical study of Section 5.

3.3 Query Propagation
We consider two query propagation mechanisms: the ran-

dom walk and the expanding ring. In our analysis of the
random walk mechanism, we will assume that the trans-
mission of a query packet is exponentially distributed with
mean δ time units. For the expanding ring mechanism, we
will assume that the transmission time of a query packet is
non-random and is exactly δ time units. This assumption is
only made for technical reasons: the random walk is easier to
analyse in the continuous realm, whereas the expanding ring
is easier to analyse when hops are discretized. In practice,
both transmission models yield exactly the same qualitative
and quantitative behavior.

In the random walk mechanism, the user issuing a query
chooses one of its neighbors in the overlay graph at random
and forwards a query packet to it. A user that receives a
query packet checks if it can resolve the query, i.e., whether
it stores the item requested locally. If it has the item, it
notifies the user who initiated the query. If not, it forwards
the packet to one of its neighbors, chosen again randomly.
No information is maintained about the users that receive
the query and a user may receive the same query packet
more than once. Furthermore, each query packet contains
an expiration time field that is initialized to a predefined
value Tmax(n) by the user issuing the query. A user does
not forward a packet that has been in the system for more
that Tmax(n) time. Note that Tmax(n) can be a function of
the user population n. As we will see, a user does not need
to know the precise value of n - an estimate that is linear
in n, no matter how far from the exact value (e.g., 0.01n
or 100n), suffices. Such an estimate can be determined by
crawling the overlay graph. As the systems that we consider
are systems of slow growth and inaccuracy can be tolerated,
such crawls can be scheduled infrequently (e.g., once a day).

The user that issues the query waits for a response for a
waiting period of Tmax(n) time units. If this period expires
and no response is received, the propagation is considered as
failed and the user issues a new query directly to the server.

The larger the value of Tmax(n) the more likely the query is
to be resolved within the peer-to-peer network. As a result,
a large value of Tmax(n) tends to reduce the query traffic
that reaches the server while also increasing the query traffic
imposed on users. We will consider the function Tmax(n) as a
design parameter and study how Tmax(n) should scale as the
user population grows in order to achieve a desired tradeoff
between the traffic load at the server and at individual users.

The second query propagation mechanism that we con-
sider is an expanding ring mechanism [10]. Essentially, this
is a sequence of simple flooding searches in which the time-
to-live (TTL) is incrementally increased at each iteration.
In simple flooding, a user sends a query packet to all its
neighbors. A user that receives a query packet forwards it
only if has not already received it in the past. A TTL field
is used, that is decremented every time a user forwards a
query packet. A user ceases to forward a packet when the
TTL field becomes zero. In the expanding ring mechanism
searching happens by flooding in several stages of increas-
ing TTLs. In particular, the user that issues the query first
searches by simple flooding with a TTL = 1. If the query
is not successful within some time threshold T = TTL · δ,



the user increments the TTL by one and repeats the search.
This process is repeated until either the query is resolved
or the time threshold exceeds a value Tmax(n). Like in the
random walk mechanism, Tmax(n) determines the tradeoff
between the server load and the load per peer. We will
again consider Tmax(n) as a design parameter and study how
Tmax(n) should scale in order to achieve a desired tradeoff
between the load at the server and at individual users.

Furthermore, we will make the following simplifying as-
sumption throughout our analysis: the total query response
time is negligible compared to the lifetime of a user. In
fact, we decouple the propagation of a query from the rest
of the dynamics of the system, assuming that queries are
instantaneous when viewed in the timescale determined by
user arrivals and departures. In effect, the system remains
static during a query propagation. This assumption seems
quite strong given that we allow the maximum waiting times
Tm(n) to be functions on the system size. In particular, for
systems with long response times we expect this assumption
will be violated and our model to be inapplicable. However,
as we show in our numerical study, the results obtained un-
der our model remain valid even if query response times are
large, as long as, after obtaining the requested data, the user
stays in the system and shares the data for a time that is
exponentially distributed with mean 1/µ.

3.4 Load Metrics and Query Response Time
We assume that each query packet that a user receives

has a cost of one unit, which accounts for the bandwidth
required to receive and forward the query packet. For the
random walk and the expanding ring mechanisms, we de-
fine the traffic load at a user as the expected cost (i.e., the
expected number of query packets) incurred at the user per
unit time. In our analysis, we will focus on the average load
per user ρ(n), which we define as the average traffic load, in
packets per second, over all users in the system. Similarly,
each query that is sent to the server incurs a cost of one unit,
and we define the server load ρ0(n) as the expected query
packet cost per unit time on the server.

Ideally, we would like the above loads to be bounded in n,
irrespective of the file popularity p(n). This would suggest
that the load delegated to users is such that a fixed amount
of resources (bandwidth) is sufficient both on users and the
server for the system to scale. Such a property indicates
that the hybrid system indeed serves its purpose of allevi-
ating the server load without overloading the users of the
system. In practice, cases in which either of the loads grow
slowly in n are also of interest. On the server side, a slowly
growing load indicates, e.g., that the company maintain-
ing it can invest in upgrading its infrastructure at a slow
pace. Furthermore, the bandwidth available to users may
also grow, albeit slowly, as faster connections become more
affordable in the long-term period of time within which the
system evolves. Even in the bounded resource scenario how-
ever, a slow load growth is of interest as it indicates that the
system can operate for a large region of values of n.

We will also be interested in the expected query response
time D(n), i.e., the expected time it takes to resolve a query.
For the random walk, D(n) is upper-bounded by Tmax(n),
whereas for the expanding ring D(n) it is upper-bounded by
Tmax(n)(Tmax(n) + δ)/2: this is the sum of the time thresh-
olds of each simple flooding stage.

3.5 Vertex Expansion, Relaxation Time and
Expander Graphs

In our analysis, we will be making no additional assump-
tion on the overlay graph Gn other than that it is connected
and of bounded degree. However, our results are of partic-
ular interest for a class of graphs called expanders. In this
section, we give a brief overview of expander graphs and
introduce two graph-theoretic properties that will play an
important role in our analysis, the vertex expansion and the
relaxation time of a graph.

Let G be a connected graph of n vertices and V , E the
set of vertices and edges of G respectively. Without loss of
generality, assume that V is the set {1, 2, . . . , n}. Let

N(S) = {i ∈ V | ∃ j ∈ S s.t. (i, j) ∈ E}

denote the neighborhood of a set S ⊂ V . Intuitively, if each
user located at a vertex in S has a query packet and forwards
it according to the simple flooding mechanism, N(S) is the
set of vertices that these packets will reach. The vertex
expansion ratio gG of the overlay graph is then defined as [3]

gG = min
S:|S|≤n/2

|N(S) \ S|/|S|.

Hence, gG indicates the smallest possible “growth per stage”
of an expanding ring propagation, and therefore is related
to how quickly the propagation “expands” over the graph.

We will also be interested in a quantity that relates to the
random walk on G. Let di be the degree of vertex i and
dmax = maxi∈V di the maximum degree over all vertices in
V .We define the transition probability matrix P = [Pij ] of
a random walk on G by

Pij =

(
1/di, if (i, j) ∈ E,

0, otherwise.

Observe that Pij is the probability that a query at vertex i
is passed on to vertex j under the random walk mechanism.

Recall that in random walk propagations we assume that
transmission time of a query packet are exponentially dis-
tributed. For such random walks (formally called continuized
random walks [1]) it is possible to show that if G is con-
nected, the steady state probabilities that the walk is at a
vertex i always exist and are equal to

πi =
diPn

i=1 di
. (1)

In other words, if the query packet is forwarded for suffi-
ciently long time, the probability it will be on vertex i will
be proportional to the degree di of i.

We define the relaxation time [1] τG of graph G as τG =
1/(1−λ2) where λ2 is the second largest eigenvalue of matrix
of the following matrix S = [Sij ]:

Sij = π
1/2
i Pijπ

−1/2
j .

The relaxation time relates to how quickly the random walk
covers new ground as a query is propagated over the graph,
just as the vertex expansion ratio did with respect to the
expanding ring mechanism (see, e.g., the proof of Propo-
sition 1 for a more precise statement of this relationship).
Moreover, for dmax the maximum degree of graph G, the re-
laxation time and the vertex expansion ratio can be bounded
in terms of each other as follows [3]:

2gG ≥ τ−1
G ≥ g2

G/(4dmax + 2dmaxg
2
G). (2)



Consider now the sequence of overlay graphs {Gn}n≥1 of
our model, where Gn is a connected graph of n vertices.
Recall that there exists a constant d > 2 such that for
all n the maximum degree dmax(n) of Gn is bounded by
d. Let τ(n) = τGn and g(n) = gGn , n ≥ 1, be the relaxation
times and the vertex expansion ratios associated with this
sequence. Define τ and g as

τ = lim sup
n→∞

τ(n), g = lim inf
n→∞

g(n). (3)

Then {Gn}n≥1 called an expander family [8] if g > 0, i.e., the
sequence g(n) is bounded away from zero. In fact, as g and
τ can be bounded in terms of each other through ineq. (2),
an equivalent definition of expanders is as follows: {Gn}n≥1

is an expander family if and only if τ < ∞, i.e. if τ(n) =
O (1) (or, the sequence τ(n) is asymptotically bounded from
above). We will occasionally be informal and say that “the
overlay graph is an expander” meaning however that the
sequence {Gn} in our model is an expander family.

The expander property is of importance because it com-
monly believed that it arises in typical unstructured peer-
to-peer systems, as a result of the way that nodes con-
nect in such systems. For example, Gkantsidis et al. [7]
argue analytically that the connection protocol employed
by most common unstructured peer-to-peer systems today
yields overlay graphs that are expanders with high proba-
bility. Furthermore, it is also known that for any degree
d > 2 almost all d-regular graphs are expanders [5]. This
implies that the expander property does not arise only on
the graph formation processes considered by Gkantsidis et
al.: any “rich enough” connection protocol (i.e. one that
can generate a large enough set of potential overlay graphs)
followed by a users in a peer-to-peer network would yield
graphs that are expanders. For this reason, although we
present general statements for general graphs of bounded
degree, we will focus on expander graphs as a case of par-
ticular interest.

4. ANALYSIS
In this section, we present the theoretical analysis of the

random walk and the expanding ring mechanisms. In par-
ticular, we characterize the expected query response time,
the server load and the average load per user generated by
each mechanism for a query that is issued with probability
p = p(n). We will pay special attention to the results in the
case where the overlay graph is an expander.

4.1 Random Walk Mechanism
The main result of this section is that if (a) the overlay

graph is an expander and (b) Tmax(n) is proportional to the
number of users n, both the average load per user and the
server load generated by the random walk mechanism will
be bounded. This suggests that a random walk on an un-
structured peer-to-peer network can be used to significantly
alleviate the traffic at the server -to the extent that having
constant server bandwidth is sufficient- without imposing a
significant burden on the users. We note that we also derive
bounds on the above two loads and the expected response
time D(n) for the (general) case where the overlay graph
is not an expander, as well as for non-linear waiting times
Tmax(n). The latter allows us to describe the tradeoff be-
tween the traffic load on the server and traffic load on users.

4.1.1 Expected Query Response Time
We begin by giving an upper bound on the expected query

response time. Intuitively, queries for items that are not
requested very often, and therefore are not carried by users
in the system, should require long response times. On the
other hand, items that are popular and are requested often
should be widely available within the peer-to-peer system,
and therefore queries for such items should have a small
response time. We are able to quantify the above intuition
with the following proposition.

Proposition 1. The expected response time D(n) for a
query that is issued with probability p(n) under the random
walk propagation mechanism is such that

D(n) = O
`
min

ˆ
τ(n)/p(n), nτ(n), Tmax(n)

˜
+

Tmax(n)(1− p(n))n−1´.
where τ(n) the relaxation times associated with the overlay
graph sequence {Gn}.

Before we present the proof of this statement, to illustrate
the intuition behind it, we focus on the case where (a) the
overlay graph is an expander, i.e., τ(n) = O (1) and (b)
Tmax(n) is sub-linear in the system size, i.e., it is O (n).

Proposition 1 implies that, under the above two assump-
tions, queries can be categorized under two regimes: fre-
quent queries, for popular items requested with probabil-
ity p(n) = Ω (1/Tmax(n)), and infrequent queries, for items
that are requested with probability p(n) = o (1/Tmax(n)).
Then, popular queries have an expected response time of
O (1/p(n)) while infrequent queries have an expected re-
sponse time of the same order as the worst case response
time, namely Tmax(n).

An important observation to make here is that not all
queries have delay Tmax(n). For example, queries that are
issued with constant probability (e.g., p =0.1) will experi-
ence a constant expected delay, if the overlay graph is an
expander.

Proof of Proposition 1. We will first give a Markov
process representation of our system. Let A(t) ⊆ V be set of
vertices of the overlay graph with users that have the data
item at time t. Then A(t) is the Markov process described
by Figure 1. Because the transition rate between two states

A
pµ

(1− p)µ

A \ {x}

A ∪ {y}
(|A|p + (n− |A|)(1− p))µ

. . .∀y ∈ Ac

. . .∀x ∈ A

Figure 1: The Markov process that describes A(t),
the set of vertices with users that have the data item.

A and A′ depends only on their cardinalities, the cardinality
|A(t)| of A(t) (i.e., the number of users in the system that
have the item) is also a Markov process.

Their steady state distribution of A(t) can be derived
without the balance equations, merely by observing that the



steady state probability that a given user has the data item
is equal to the probability it requests it, namely p. Hence,
by independence, the steady state distribution of A(t) is

νA = p|A|(1− p)n−|A|, A ⊆ V (4)

whereas the steady state distribution of |A(t)| is binomial:

νk =

 
n

k

!
pk(1− p)n−k, 0 ≤ k ≤ n. (5)

Note that A(t) is uniformized (see [6]), i.e., the departure
rate from all states is the same, namely nµ. For this rea-
son, the steady state probabilities of the embedded Markov
chain (that characterize state transitions) are the same as
the steady state probabilities of the Markov process A(t).

Let Tk, k = 1, 2, . . . be delay of the k-th query propa-
gation. The sequence {Tk}k≥1 can be viewed as a reward
function over the embedded Markov chain of Figure 1. We
are interested in computing the steady state expected de-
lay per query D(n) = E [T ], i.e., E [T ] = limk→∞ E [Tk] =

limk→∞
1
k

Pk
j=1 Tj a.s. where the last equality holds by er-

godicity. By renewal theory,

E [T ] = lim
k→∞

E [Tk] =
X
A⊆V

E [T | A] νA (6)

where E [T | A], A ⊆ V , is the expected delay of a query
occurring at a transition from state A and νA the steady
state probabilities of the embedded chain, given by (4).

Let Ei[TA] is the expected time it takes an unconstrained
random walk (i.e., one that does not stop after time Tmax)
that starts at vertex i to hit set A. Conditioned on a search
taking place, the next search may start at any i ∈ V with
equal probability 1/n. Then,

E [T | A] =
X
i∈A

Ei[min(TA\i, Tmax)]

n
+
X
i∈Ac

Ei[min(TA, Tmax)]

n

for any A ⊆ V with |A| > 1, E [T | {i}] = 1
n

`
Tmax+P

j∈V \{i} Ej [min(T{i}, Tmax)]
´

for any i ∈ V and E [T | ∅] =
Tmax. These give us

E [T ] =
1

n

X
A6=∅,V

X
i∈Ac

Ei[min(TA, Tmax)]
ˆ
νA∪{i} + νA

˜
+

1

n

X
i∈V

ν{i}Tmax + ν∅Tmax

(4)
=

1

n

X
A6=∅,V

X
i∈Ac

Ei[min(TA, Tmax)]p
|A|(1− p)n−|A|−1+

(1− p)n−1Tmax

=
X

A 6=∅,V

n− |A|
n

p|A|(1− p)n−|A|−1EuAc [min(TA, Tmax)]+

(1− p)n−1Tmax (7)

where EuAc [TA] = 1
|Ac|

P
i∈Ac Ex[TA], is the expected time

it takes a random walk starting from a point uniformly cho-
sen from within Ac to hit set A.

Let πi, i ∈ V , be the steady state probabilities of a random
walk on Gn given by (1), and define

EπAc [TA] =
X
i∈Ac

πiEi[TA]/
X
i∈Ac

πi

It is easy to see that, for dmax/dmin the ratio of the maximum
to the minimun degree of Gn,

EuAc [TA] ≤ (dmax/dmin)2EπAc [TA]. (8)

On the other hand, it is a well known result (see Aldous and
Fill [1], eq. 87 and Corollary 34 of Chapter 3) that

EπAc [TA] ≤ dmaxτnδ

dmin|A|
(9)

where τ the relaxation time of Gn and δ the expected trans-
mission time per hop. As dmax/dmin ≤ d where d is a con-
stant, and EuAc [min(TA, Tmax)] ≤ min(EuAc [TA], Tmax) by
the concavity of the min operator, the theorem follows by
substituting the bounds (8) and (9) in (7) and carrying out
the summation.

4.1.2 Server Load and Average Load per Peer
The load at the server is characterized by the following

proposition, the proof of which we present below.

Proposition 2. Under the random walk query propaga-
tion mechanism, the server traffic load ρ0(n) generated by
queries issued with probability p(n) is such that

ρ0(n) = O
`
np(n)

ˆ
(1− p(n) + p(n)e

−Tmax(n)
ndτ(n)δ

˜n−1´
and

ρ0(n) = Ω
`
np(n)

ˆ
(1− p(n) + p(n)e−

2dTmax(n)
nδ

˜n−1·
(1− 2p(n)dτ(n))

´
,

where τ(n) are the relaxation times associated with the over-
lay graph sequence {Gn}.

Considering that if the overlay graph is an expander then
τ(n) is bounded, Proposition 2 implies the following:

Corollary 1. If the overlay graph sequence {Gn}n≥1 is
an expander family and Tmax(n) = Ω (n) the traffic load at
the server is bounded, i.e., ρ0(n) = O (1).

We note that the above result holds irrespectively of what
the request probability p(n) is. Intuitively, if p(n) is high
users generate many queries for an item. For example, if
p(n) is constant, the number of queries generated by users
per second is linear in n. However, because users store and
share the items they request, an item with high request prob-
ability will be widely available within the peer-to-peer net-
work. Hence, for such items, the probability that a query
reaches the server is quite low. On the other hand, if queries
for a data item are infrequent, users storing the item are less
likely to be in the system when a query takes place. Such
queries are more likely to reach the server. However, as
such queries are not frequent to begin with, the overall traf-
fic load they contribute to the server is small. Corollary
1 suggests that waiting times Tmax(n) that grow no slower
than linearly with the system size exhibit such a behavior
on expander graphs to the extent that load on the server
always remains bounded.

The above result is even more important when seen in
contrast with the load on users.

Proposition 3. Under the random walk query propaga-
tion mechanism, the average traffic load per user ρ generated
by queries issued with probability p(n) is such that

ρ(n) = O(min [τ(n), τ(n)p(n), Tmax(n)p(n)]+

Tmax(n)p(n)(1− p(n))n−1).



The proof also appears below. Again, the case where the
overlay graph is an expander is most interesting.

Corollary 2. If the overlay graph sequence {Gn}n≥1 is
an expander family and Tmax(n) = O (n) the average traffic
load per user is bounded, i.e., ρ(n) = O (1).

To understand the above result, recall from our discussion
on response times that if the overlay graph is an expander
and Tmax(n) = O (n), queries for an item are either fre-
quent, in which case they are served within approximately
1/p(n) hops, or infrequent, in which case they are served
within Tmax(n) hops. Proposition 3 implies that frequent
queries generate no more than a constant amount of traffic
per user: although such queries are issued often, they are
served within a small number of hops (O (1/p(n))), and the
overall traffic they generate is small. On the other hand,
an infrequent query may require many (O (Tmax(n))) trans-
missions but, as it does not occur as often, if Tmax(n) is
sub-linear the overall traffic they generate is decreasing.

Combining Corollaries 1 and 2 we get the following result.

Theorem 1. If the overlay graph sequence {Gn}n≥1 is
an expander family and Tmax(n) = Θ (n) both the average
traffic load per user and the server traffic load are bounded.

An important observation based on Propositions 2 and 3
is that, if the overlay graph is not an expander, the server
load and the average load per user cannot be simultaneously
bounded: For Tmax(n) = Θ (n) both can grow as fast as
τ(n), and other values of Tmax(n) can only have the effect
of increasing one of these two loads. This illustrates the
impact that the relaxation time of the overlay graph of a
peer-to-peer system has on its scalability.

Proof of Propositions 2 and 3 . Let N(t), N0(t) be
the number of queries issued and the number of queries that
reached the server up to time and including t, respectively.
Note that N(t) is Poisson with rate nµp. By ergodicity, the
expected traffic load at the server in steady state is

ρ0 = lim
t→∞

N0(t)

t
= lim

t→∞

N(t)

t
· N0(t)

N(t)
= nµp · Ps (10)

where Ps the steady state probability that, given that a
query takes place, it reaches the server. Let Pi(TA > t)
be the probability that a random walk starting from ver-
tex i ∈ V hits set A in more than t time units. Then
as in the proof of Proposition 1, we can show that Ps =P

A6=∅,V
n−|A|

n
p|A|(1 − p)n−|A|−1PuAc (TA > Tmax) + (1 −

p)n−1 where PuAc (TA > t) = 1
|Ac|

P
i∈Ac Pi(TA > t). Let

PπAc (TA > t) =
X
i∈Ac

πiPi(TA > t)/
X
i∈Ac

πi

where πi the steady state probabilities of the random walk.
It is easy to show that

d−2PπAc (TA > t) ≤ PuAc (TA > t) ≤ d2PπAc (TA > t)

On the other hand, we have (see Aldous and Fill [1], Chapter
3, Proposition 21 part (iii) and Theorem 43) that„

1− 2d|A|τ
n

«
e−

d2|A|t
nδ ≤ PπAc (TA > t) ≤ e−

|A|t
dnδτ .

Using the above bounds, we can show that the probability
that a query hits the server is

Ps ≤ d2(1− p + pe−
Tmax
dnτδ )n−1, and

Ps ≥ d−2(1− p + pe−
2dTmax

nδ )n−1(1− 2pdτ).

Proposition 2 therefore follows by substituting the above
bounds in eq. (10).

To prove Proposition 3, we associate with each vertex
i = 1, . . . , n of the overlay graph Gn a counting process
{Mi(t), t ≥ 0} that corresponds to the number of query
messages that users residing on vertex i have received up
to and including time t, or, alternatively, the number of
times a random walk has passed through or has terminated
at vertex i. We formally define the load ρi at vertex i as

the time average load at vi, which is ρi = limt→∞
Mi(t)

t
.

We note that this limit exists almost surely in our model
and, additionally, by ergodicity it is also equal to the ex-
pected load in steady state. The average query traffic load
per peer is then ρ =

Pn
i=1

ρi
n

. The aggregate search load is

ρtot =
Pn

i=1 ρi = limt→∞
1
t

Pn
i=1 Mi(t). Let again N(t) the

number of queries issued up to and including time t, and
{Cj}j≥1 be the sequence of message costs (i.e. hops of the
random walk) associated with the i-th query. Observe then

that
Pn

i=1 Mi(t) =
PN(t)

j=1 Cj . Therefore ρtot is:

ρtot = lim
t→∞

PN(t)
j=1 Tj

t
= lim

t→∞

N(t)

t
· lim

t→∞

PN(t)
j=1 Tj

N(t)

= npµ · E [C] a.s.

where E [C] the expected message cost of a query in steady
state. From this we conclude that ρ = ρtot/n = pµE [C].
Finally, one can show that E [C] = Θ (D(n)/δ), where δ the
transmission delay of one message and D(n) the expected
query response time. Proposition 3 therefore follows from
Proposition 1.

4.1.3 Server Load vs. Load per User and Delay Trade-
offs

Propositions 1 to 3 describe the expected response time
and the server and user loads for general maximum waiting
time Tmax(n) that may not be linear. Here, we investigate
the tradeoffs established by Propositions 1 through 3. For
simplicity, we focus on the case where the overlay graph is
an expander, although the discussion below can easily be
extended to the case where τ(n) is not bounded.

Proposition 3 suggests that the worst-case load at the
server, over all request probabilities p(n), is for p(n) =
Θ (1/Tmax(n)). In this case, the traffic load is ρ0(n) =
Θ (n/Tmax(n)). On the other hand, as we discussed above,
for Tmax(n) = O (n) queries with p(n) = Ω (1/Tmax(n)), i.e.,
frequent queries, generate a bounded average load per user,
while queries with p(n) = o (1/Tmax(n)), i.e., infrequent
queries, generate a decreasing load per user (ρ(n) = o (1)).
We note that reducing Tmax(n) and therefore the number of
steps taken has the effect of increasing the queries for which
the load will decrease as n increases. In other words, when
considering the aggregate load per user, generated by all
data items, reducing Tmax(n) has the effect of reducing the
number of items that contribute traffic to the user. In addi-
tion, the worse case response time per query also decreases
(as it is of the order of Tmax(n)). On the other hand, this
comes at the expense of generating a a server load that scales
as n/Tmax(n) in the worst case over all probabilities p(n).

To illustrate the above, we consider a numerical exam-
ple. Suppose that the item popularity p(n) is a decreasing
function of n, e.g., p(n) = 1/nc for some 0 < c < 1, and



the expected number of users requesting the item (given by
np(n)) grows slower than linear in n. For this case, we get
that the load at individual users can decrease as the user
population grows by choosing Tmax(n) appropriately. For

example, if Tmax(n) = nc′
, 0 < c′ ≤ c, the load per user will

be decreasing for all items such that p(n) = o(1/nc′
). More-

over, the worst-case response time will be no worse than nc′
.

However, this comes at the cost of incurring a load at the

server which scales as n1−c′
.

4.2 Expanding Ring Mechanism
As we saw in the previous section, the choice of Tmax(n)

determines the query response time D(n), as D(n) is of the
order of Tmax(n) in the worst case (over all probabilities
p(n)). For example, if we choose Tmax(n) to be proportional
to n in order to keep the server load and the load per user
bounded as n grows, then the query response time will grow
linearly in n for queries for unpopular items. Items that
are requested with probability Ω (1/n) on the other hand
will have sublinear expected response times. In the worst
case however, while the random walk mechanism leads to
good performance in terms of the load at the server and at
individual users, it might have a poor performance in terms
of the query response time.

This motivates our study of the expanding ring mecha-
nism, for which we similarly characterize ρ0(n), ρ(n) and
D(n) under different choices of Tmax(n) (see Propositions 4
to 6 ). While we were able to obtain a bounded load both
at the server and at individual users under the random
walk, this was not the case for the expanding ring. How-
ever, if the overlay graph is an expander, we show that for
Tmax(n) = δ logd n both the server load and the average

load per user will be O
“
n1−logd(1+g)

”
, where d, the bound

on the degree of the overlay graph and g the limit of ex-
pansion ratios given in eq. (3). Note that these loads will
grow very slowly if 1 + g ≤ d is large and, as we discussed
in Section 3.1, the expanding ring covers the graph quickly.
On the other hand, the query response time in this case
is given by D(n) = O

`
log2

d(n)
´

which is significantly bet-
ter than the linear response time required under the ran-
dom walk mechanism to bound both the server and the user
load. This implies that the expanding ring mechanism leads
to a much improved query response time compared to the
random walk. As our bounds are not constant in n, they
suggest a small increase in the query traffic when the ex-
panding ring is used. However, our approximations involved
in computing these bounds are much cruder than the ones
used in the previous section for the random walk. As a re-
sult, the bounds are not as tight, which is also illustrated in
our simulations results of Section 5, and can be improved.

4.2.1 Server Load and Average Load Per Peer
The server load is given by the following Proposition, the

proof of which we omit for reasons of brevity.

Proposition 4. For the expanding ring mechanism with
Tmax(n) ≤ δ logd(n), the load at the server ρ0 generated by
a query that is issued with probability p(n) is such that

ρ0(n) = O
`
np(n)(1− p(n))ξ(n)´

where ξ(n) = (1+g(n))Tmax(n)/δ and g(n) are the expansion
ratios associated with the overlay graph sequence {Gn}n≥1.

The upper bound that we obtain on server load is not con-
stant. In general, it depends on p(n), but its worst-case
order is for p = Θ(1/ξ(n)), in which case it is ρ(n) =
O (n/ξ(n)). If the overlay graph is an expander, for Tmax =

δ logd(n), the load at the server is O
“
n1−logd(1+g)

”
, where

g is given by (3). Hence, the server load may grow in n,
although sub-linearly (with an exponent smaller than one).
The larger 1+ g, the smaller this exponent is and the slower
the server load grows. For smaller values of Tmax(n), our
bound on the load at the server increases accordingly and
for a constant Tmax the worst-case load becomes linear.

The average load per user is as follows:

Proposition 5. For the expanding ring mechanism with
Tmax(n) ≤ δ logd(n), the average load per user ρ generated
by a query that is issued with probability p(n) is such that

ρ(n) =

(
O
“
p(n)−(log1+g(n) d−1)

”
, if p(n) = Ω (1/ξ(n))

O
`
p(n)ξ(n)log1+g(n) d

´
, if p(n) = o (1/ξ(n))

where ξ(n) = (1+g(n))Tmax(n)/δ and g(n) are the expansion
ratios associated with the overlay graph sequence {Gn}n≥1.

We again omit the proof for reasons of brevity. The above
bound on the average load at users also grows with n. For an
expander graph with expansion ratio g, the worst-case value
(over all probabilities p) is for p = Θ (1/ξ(n)), in which case
it is O

`
ξ(n)log1+g d−1

´
. For a Tmax = δ logd(n), the load

is O
“
n1−logd(1+g)

”
, i.e., of the same order as the server

load for this Tmax. For smaller values of Tmax, the average
load per user decreases while the server load increases. For
a constant Tmax, our bound on the average load per user
becomes constant whereas the one on the load at the server
becomes linear.

4.2.2 Expected Query Response Time
For the expanding ring mechanism, D(n) is as follows:

Proposition 6. For the expanding ring mechanism, the
expected response time D(n) for a query that is issued with
probability p(n) is such that

D(n) = O
`
T 2

max(n)
´
.

Proof. The worst-case delay is Tmax(Tmax +δ)/(2δ).

The response time is therefore of the order of the square
of Tmax. In particular, comparing the case of Tmax(n) =
logd(n) for the expanding ring and the and Tmax(n) = n
for the random walk, as for these values the server load and
load per user become equal, we see that the response time
of the expanding ring mechanism is of the order of log2

d(n),
considerably less than the linear response time of the random
walk. The expanding ring mechanism therefore considerably
reduces the response time compared to the random walk
query propagation mechanism.

5. EXPERIMENTAL RESULTS
To illustrate the validity of our analytical results, we con-

ducted a numerical study in which we relaxed several of the
modeling assumptions of Section 3. First, instead of assum-
ing that the overlay graph and the system size are fixed, in
our simulations we let both vary as time evolves. Second,
instead of assuming that the overlay graph is static during



query propagation, our simulated system can change while
a query is being propagated. Finally, we allow queries to
take place at times chosen uniformly at random within a
user’s lifetime, as opposed to when a user initially enters
the system.

We restricted our numerical evaluation to overlay graphs
that are expanders, motivated by the fact that unstructured
peer-to-peer networks tend to have this property, as dis-
cussed in Section 3.5. To create an overlay graph that is an
expander, we use an algorithm proposed by Law and Siu [9]
that has been known to construct expander graphs w.h.p.

Even though we considerably relaxed several modeling as-
sumptions of Section 3, for the random walk search mecha-
nism our analytical results of Section 4.1 predict remarkably
well the behavior of the simulated system. For the expand-
ing ring mechanism, our analytical bounds on the traffic
loads are not as tight. The main reason for this is that
our approximations involved in computing these bounds are
much cruder than the ones used for the random walk. Over-
all, the simulation results suggest that our analytical model
indeed captures the important features of hybrid peer-to-
peer systems, and that the analytical results that we obtain
provide the correct insight for the scalability of such sys-
tems. In particular, for the case where the overlay graph
is an expander, our the simulations confirm the analytical
result that the system has very good scalability properties
in terms of the traffic generated at both the server and the
users.

5.1 Simulation Setup
As mentioned above, in our simulations we let the number

of users be time-variant. In particular, we let users arrive
according to a Poisson process with rate λ and stay in the
system for exponentially distributed times with mean 1/µ
equal to 20 minutes. To scale the system, we repeated our
simulations with different arrival rates λ, ranging between
1, 000×µ and 500, 000×µ. As a result, the expected number
of users in the system in each of our experiments, given by
n = λ/µ, scales between a thousand and half a million nodes.

In addition, in our simulations we let the overlay graph
topology change over time contrary to what we assumed in
our model. In particular, we let users join and leave the
peer-to-peer network according to the Law and Siu algo-
rithm [9] which we briefly outline below; we refer the reader
to [9] for a more detailed description. At any point in time,
the overlay graph consists of d Hamilton cycles [18]. Every
user in the graph has precisely degree 2d: for each Hamilton
cycle k, k = 1, . . . , d, user i is connected to two other users,
its predecessor predk(i) and its successor succk(i). When a
new user i′ enters the system, it joins each of the d cycles as
follows: for each cycle k, k = 1, . . . , d, user i′ picks a node
j at random and becomes its successor on the cycle while
also becoming succk(j)’s predecessor. This way, each node
maintains precisely 2d connections after an arrival, and each
of the k sequences of successors forms a Hamilton cycle. De-
partures are handled similarly: when a node i leaves, its d
predecessors reconnect to the respective d successors of i,
maintaining thus both a constant degree and the Hamilton
cycle property. We use a half-degree of d = 8 in the simula-
tions presented here, although we repeated our experiments
with values as low as d = 2 and obtained similar results.

Finally, in addition to the case where an arriving user re-
quests the data item immediately upon its arrival, we also

consider the case where requests are issued at a time uni-
formly chosen among a user’s lifetime. In either case, re-
quests occur with probability p(n). We repeated our simula-
tions for different request probabilities p(n) given by p(n) =

0.5, p(n) = 0.5 log(1000)/ log(n), p(n) = 0.5
p

1000/n, p(n) =

0.5(1000/n)1/3, p(n) = 0.5 · 1000/n, p(n) = 0.5(1000)2/n2,
p(n) = 0.5(1000)2.5/n2.5 and p(n) = (1000)3/n3. We start
each simulation in steady state: if the expected number of
users is n and the request probability is p(n), we start with
a system populated with n users, each one storing a copy of
the data item with probability p(n). We observe the system
for 20 million arrivals and measure the traffic load at the
server, the traffic load at peers and the query response time.

5.2 Random Walk Mechanism
We first illustrate the results obtained in Section 4.1 for

the random walk query propagation mechanism. Queries
in our simulations are propagated according to a random
walk, where the one-hop transmission delay of a query is
exponentially distributed with mean δ = 20 milliseconds.
Queries are redirected to the server after a time period of
Tmax(n) = δn, where n the expected number of users in the
system.
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Figure 2: The average traffic load per user for dif-
ferent request probabilities p(n) = Ω (1/n), with 98%
confidence intervals.

Our analysis in Section 4.1 suggests that, if Tmax(n) is
linear and the overlay graph is an expander, then queries
can be grouped in to two categories: frequent queries, with
request probabilities p(n) = Ω (1/n), and infrequent queries,
with request probabilities p(n) = o (1/n). We first present
the results for frequent queries. Figure 2 shows the average
traffic load ρ per user, with 98% confidence intervals, for
the request probabilities p(n) that decrease no faster than
1/n. The observed values of ρ confirm Proposition 3 of Sec-
tion 4.1: the traffic loads generated for all request proba-
bilities p(n) = Ω (n) are constant, close to one query every
thousand seconds. This is indeed the behavior predicted for
frequent queries.

In Figure 3, we plot the query response times for frequent
queries. The 98% confidence intervals are too small to be
displayed on the same graph as the observed values. We
also plot with dashed lines the respective bounds on the re-
sponse time obtained by Proposition 1. To compute these
bounds, we use the results from Figure 2 to estimate the
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Figure 3: The query response times for p(n) =
Ω (1/n). The dashed lines indicate the theoretical
bounds.

(time-average) relaxation time of the Law and Siu network.
In particular, from Proposition 3, we have that ρ = τµ for
high request probabilities. Hence, can use the observed value
of ρ in Figure 2 to estimate the relaxation time as τ = ρ/µ.
We estimated it to be τ = 1.176 and then used this value
to compute the bound on the delay as expressed by Propo-
sition 1. The bounds we obtain give a correct prediction of
the response times both qualitatively and quantitatively; in
particular, the delays grow as 1/p(n). This indicates that
our model predicts system behavior quite accurately, in spite
of the simplifying assumptions it employs.

For all p(n) = Ω (1/n) and throughout the 20 million
measurements of our simulations, we observed zero traffic
at the server. This might seem surprising at first, however
this is also consistent with our theoretical analysis. Using
τ = 1.176, Proposition 3 gives that, for queries with request
probabilities p(n) = Ω (1/n), the server traffic load is less of
10−120 queries per second. Such a traffic load is too small
to be observed from our measurements.

In Figures 4 to 6 show the average traffic load per user, the
query response time and the server load for request proba-
bilities p(n) that decay faster than 1/n. In each of the above
figures, we also plot with dashed lines the theoretical bounds
obtained in Section 4.1, using τ = 1.176. For Figure 4, the
98% confidence intervals are too small to be plotted along
with the observed values. The theoretical bounds for the
age for p(n) = Θ

`
1/n2.5

´
and p(n) = Θ

`
1/n3

´
are too close

to Tmax(n) to be distinguishable, so only the latter appears
in Figure 6. We note that, contrary to the frequent query
regime, we observe a traffic load on the server.

In our model, we assumed that the network is effectively
static during query propagation. As for infrequent queries
the delays are quite large, this modelling assumption is clearly
violated in our simulations. However, as we see from Fig-
ures 4 to 6, our analytical results still correctly predict all
three measured quantities, both qualitatively and quantita-
tively. This suggests that the model used for our analysis
indeed captures the important features of the system and
provides correct insight on its behavior. As predicted by
the analytical results, the above simulations show that (a)
the system scales well in terms of both the server and peer
traffic loads and (b) the query response times can be large.
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Figure 4: The average traffic load per user for
p(n) = o (1/n). The dashed lines indicate the theo-
retical bounds.
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Figure 5: The server load for p(n) = o (1/n), with
98% confidence intervals. The dashed lines indicate
the theoretical bounds.
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Figure 6: The query response time for p(n) = o (1/n),
with 98% confidence intervals. The dashed lines in-
dicate the theoretical bounds.
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Figure 7: The average traffic load per user for
queries occurring at a time chosen uniformly within
a user’s lifetime, with 98% confidence intervals.

Next, we investigated the case in which the queries where
not issued upon the arrival of a new user in the system, but
at a time uniformly chosen among a user’s lifetime. Due to
space limitations, we only present these results for the ran-
dom walk mechanism and for frequent queries, although sim-
ulations on both infrequent queries and the expanding ring
yielded the same behavior. Comparing Figures 2 and 7, we
see that the traffic load is again constant (close to 1 query
every 580 seconds), though it has increased roughly by a
factor of two. Intuitively, obtaining the data item at a time
uniformly chosen from within a user’s lifetime reduces the
expected time that a user shares the file to 10 minutes, i.e.,
half the user lifetime (20 minutes), with a corresponding
increase in the experienced delay and the traffic loads. In
Figure 8 we plot the observed delays along with the theoret-
ical bounds from Proposition 1 for a lifetime of 10min and
τ = 1.176. The results further attest to the fact that the
system has the same behavior as the one represented in our
model, where the mean lifetime has been reduced to 10min.
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Figure 8: The query response time for queries oc-
curring at a time chosen uniformly within a user’s
lifetime. The dashed lines indicate the theoretical
bounds with 1/µ = 10min.

5.3 Expanding Ring Mechanism
Next, we investigate numerically the expanding ring query

propagation mechanism. We repeat the above experiments
for the expanding ring with Tmax(n) = δ log16 n.
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Figure 9: The average traffic load per user for p(n) =
Ω (1/n), with 98% confidence intervals.
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Figure 10: The average traffic load per user for
p(n) = o (1/n).

Figures 9 and 10 present the average traffic load per user
for request probabilities that decay slower and faster than
1/n, respectively. Comparing Figures 2 and 9, we see that
the user loads are 16 to 20 times larger than the ones ob-
served under the random walk. This is not surprising, as
the expanding ring propagates messages more aggressively.

Propositions 5 and 4 give bounds for the average load
at users ρ and the server load ρ0 for request probabilities
p(n) = Ω (1/n) that grow as (fractional) polynomials of n.
However, we do not observe such behavior. In fact, the
observed loads ρ of Fig. 9 are asymptotically constant, while
no traffic was observed on the server. The above suggest
that our bounds can be improved and that the expanding
ring mechanism also yields a hybrid system with very good
scalability properties in terms of traffic loads.

On the other hand, for request probabilities p = o (1/n),
our model correctly predicts the asymptotic behavior of the
load on the users and the load on the server, as seen in
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Figure 11: The server load for p(n) = o (1/n), with
98% confidence intervals.

Figures 10 and 11. However, we note that we overestimate
the behavior for low values of n and that our bounds are
not as close as the ones obtained for the same probabilities
under the random walk (Figures 4 and 5, respectively).
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Figure 12: The query response time for different
request probabilities.

As expected, the expanding ring considerably outperforms
the random walk in terms of query response times. Fig. 12
shows the observed response times as well as the worst-case
delay of Prop. 6. Response times are considerably smaller
(by 2 to 5 orders of magnitude) than the respective ones un-
der the random walk (Figures 3 and 6). In addition, they ap-
proach the worst-case bound of Prop. 6 only for p = o (1/n).

6. CONCLUSIONS
Our theoretical analysis and our numerical experiments

suggest that hybrid peer-to-peer systems with desirable scal-
ability properties can be constructed based on the random
walk and the expanding ring query propagation mechanisms.
In particular, our analysis shows that a system in which both
the traffic load at the server and the traffic load at peers can
be bounded irrespective of the system size, a result corrob-
orated by our numerical experiments.

Our proposed model, that captures the effect of overlay
graph on the scalability of the system though the relaxation
time, can be useful in addressing other questions as well. In
particular, an interesting future direction of this work would
be to investigate the scalability of different query propa-
gation mechanisms, including variants of the above mecha-
nisms that include path replication or caching of data items.
Furthermore, our model could also be applied in a pure peer-
to-peer setting. In that context, understanding the relation-
ship between scalability, as expressed by the traffic on peers,
and the likelihood that queries succeed, has many parallels
with the problem we considered here.
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