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Abstract—We consider Carrier Sense Multiple Access is asymptotically accurate for large networks with a small
(CSMA,) schedulers for wireless networks. For networks whee  sensing time. Using the fixed point approximation, we char-
all nodes are within transmission range of each other, it has 5.iarize the achievable rate region of the static CSMA sched

been shown that such schedulers achieve the network capacit | f tworks with ori interf traihie
in the limiting region of large networks with a small sensing ulers Tor networks with primary interierence constrai

delay. However the design and analysis of CSMA schedulers Show that the achievable rate region converges to the dgpaci
for general networks has been an open problem due to the region for large networks with a small a sensing time.
complexity of the interaction among coupled interference en- Most recent work in this area focused on distributed
straints. For networks with primary interference constraints, we e chanisms that can implement tteoughput-optimator

introduce a tractable analysis of such CSMA schedulers basge . .
on a fixed point approximation. We then use the approximation Mmax-weight) policies (see for example [3], [7], [8], [10],

to characterize the achievable rate region of static CSMA [12]) that has been proposed in the seminal work of Tas-
schedulers. We show that the approximation is asymptotichf  siulas and Ephremides [11]. In view of their low-complexity

accurate for the limiting regime of large networks with a smadl  nature, random access schemes provide an attractive alter-
sensing delay, and that in this case the achievable rate reBi  54ve class of distributed transmission strategies; hewe
of CSMA converges to the capacity region. . h .
the current understanding of such schemes is still limited.
. INTRODUCTION Random access protocols have been analyzed in [13] by

Recently, there has been a growing interest in the devdpUTvy and Thiran using a packing approach, and in [14]
opment of distributed transmission policies for interfare- Py Bordenave, McDonald, and Proutiere, using a mean-field
limited wireless networks. A key objective of these dis2Nalysis approach. Related to [14], in this paper we analyze
tributed policies is to achieve any throughput within thé=SMA random access schemes using the CSMA fixed point

capacity regiod of the network. In this paper we focus on@PProximation. _ .
Carrier Sense Multiple Access (CSMA) schedulers where The paper is organized as follows. We describe the
nodes sense whether the channel is idle before maki,%reless network and the static CSMA schedulers that we
an attempt to transmit a packet. For single-hop networl&or!s'der for our analysis in Section Il. In Section IlI, we
where all nodes are within transmission range of each oth&gView well-know results for networks where all nodes share
it is well-known that CSMA schedulers achieve network® Singleé communication channel. Section IV presents the

capacity in the limiting regime of large networks with aCSMA fixed point formulation that we use to approximate
small sensing time [2]. However the analysis of csmathe performance of static CSMA schedulers. We show in

schedulers for general networks has been an open probl&gction IV that there always exists a unique CSMA fixed
due to the complexity of the interaction among couple®0int @nd hence our fixed point approximation is well-
interference constraints. In this paper, we provide anyasigl d€fined. In Section V, we show that the fixed point approx-
of CSMA schedulers for networks with primary interferencdMation is asymptotically accurate for large networks véth
constraints. small sensing delay. Section VI uses the CSMA fixed point
The main contributions of the paper are as follows. Wélpp_roximation to characteri_ze the_ achiev_able rate regfon o
provide a fixed point approximation, called the CSMA fixedtatic CSMA schedulers. Finally, in Section VII, we show
point, to characterize the service rates of CSMA scheduleff3at the achievable rate region asymptotically converges t
in networks with primary interference constraints, andveho the capacity region for large networks with a small sensing

that (under some assumptions) the fixed point approximatié'rﬁ“e- Due to space constraints, we state our results without
proofs.
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1The capacity region contains the set of arrival rates thataahievable a |_ink from nOdej to rPOdei' Let 4 =SUR denote the
by some feasible policy. A more rigorous definition will beopided later. neighbourhood of node Furthermore let% be the set of



links originating at node, i.e. we have that becomes more involved) to the case where the propagation
, . . delay between neighbouring nodes is upper-boundeg by
Zi={kj)eZk=i}. and the initial sensing times are not aligned.

In the following we assume thaﬁ_: R,i=1,..N, ie. all B. Performance Measures

nodes have the same transmission range.

interference or node exclusive interferencenodel as given ik (i, j) € 2 as follows.

below (see also [8], [12]). Definition 3 (Service Rate)The service ratd;; ;,(p) of a
Definition 1 (Primary Interference Model)An attempt Static CSMA policyp for link (i, j) € £ is the fraction of

by nodei to capture link(i, j) is successful if it does not time nodei successfully captures link, j) underp. o

overlap with any attempt by another node to capture a linRlote that the service raf®; j)(p) of the link (i, j) is equal

(k,I) which has a node in common with lin, j). o to the throughput for the linKi, j) under the static CSMA

This interference model app"eS, for examp|e’ to Wire'esgolicy P for the case where all links are Saturated, i.e. there
systems where multiple frequencies/codes are availaiste (S always a packet to be sent for all linkisj) € £ . Using

ing FDMA or CDMA) to avoid interference, but each nodethe service rated; ;;(p), (i,j) € -2, we next define the
has only a single transceiver and hence can only send @hievable rate region of static CSMA policies.

or receive from one other node at any time (See [5] for Let % be a giVen set of routes for the above wireless

additional discussion). network, where route € % is characterized by the links
] that it traverses. Lex = {A;}ep € R‘f‘ be the mean packet
A. Static CSMA Schedulers arrival rate vector wherd, is the mean packet arrival rate

We consider a Carrier Sense Multiple Access (CSMAJjor router. Given a rate vectod, let
mechanism to schedule the times when nodes try to capture .
a link that is given as follows. Adij) = Z Ar, (i.))eZ, 1)
Before trying to capture a link, nodes sense whether the rper
link is idle. More precisely, we say thatrode i is idleif —be the total mean packet arrival rate over all routes%
it currently does not capture any lirk j), j € R, nor does that traverse link(i, j), and let
any nodej € § capture the link(j,i). We say that thdink A A
(i,]) is idle if both nodei and nodej are idle. Nodes only ' Z/V[ i) +Aal
try to capture links that have been idle fBrtime units. We JeA
refer toB as thesensing time(or de|ay), and define amdle be the total mean packet arrival rate over all routes%
slot for link (i, j) as the event that linki, ) has been idle that pass through node
for B time units. In addition, we define thend of an idle =~ We assume that the incoming packets for each (ink)
period at link(i, j) as the event that nodeand j have been are stored in a separate input-queue of infinite size.
jointly idle for exactlyk idle slots,k € {1,2,...}. Definition 4 (Stability): Consider an arrival rate vector
Definition 2 (Static CSMA Policy)A static CSMA policy A = {Ar}re% and a static CSMA policy with service rates
is given by a vectop = (p(i j))ijee € [0,1]". At a given T j)(P), (i,]) € £. We say thap stabilizes the network
time t > 0, let 4(t) be the set of links in% for which .
an idle period en(d)s at time Then nodei will mark link A < Tap(P); (.he?,
(i,]) € Z(t) at imet with probability p; ;), independently i.e. the arrival rate is strictly less than the service rateath
of all other attempts by any node in the network. If at timdinks (i, j) € .Z. S
t, nodei marks a single linki, j) € % (t), then it will make The achievable rate region of static CSMA policies is then
an attempt at time to capture that link. If nodemarks two, given as follows.
or more, links in the set#(t) at timet, then it will choose Definition 5 (Achievable Rate RegionJhe achievable
an arbitrary link among the marked links, s@yj), and will  rate region of static CSMA policigs the set of arrival rate
make an attempt at timeto capture the linki, j). vectorsA = {A;};c4 for which there exists a static CSMA
If a node tries to capture a link, it will hold (occupy) thepolicy that stabilizes the network. o
link for one packet transmission duration. In the following In the following we characterize the service rates of a
we assume that the transmission time of each packet is eqgiden static CSMA policy, as well as the achievable rate
to 1 time unit. If a node does not make an attempt to capturegion of static CSMA policies.
a link, then it will wait until the next time that an idle pedo
of a link (i, ]), j € A, ends. o
To simplify the analysis, we assume in the rest of the Before we present our analysis of static CSMA policies
paper that the propagation delay between a n@de a node for general networks, we review in this section well-known
j € 4, 1# j (i.e. the time it takes a noddo detect that node results on CSMA schedulers for networks whéienodes
j stopped/started transmitting) is equal to the sensing ime share a single communication channel [2]. In this case, an
Furthermore, we assume that all nodes are initially idle arattempt by a node to capture the channel after an idle period
start sensing at time= 0. The analysis can be extended (buis only successful if it does not overlap with an attempt by

i=1,..N, @)

IIl. SINGLE-HOPNETWORKS



any other node. A static CSMA policy is then given by thechannel is idle. For the above scaling, it is then well-known
vectorp = (pg, ..., pn) € [0,1]N where py, is the probability (see for example [15]) that the number of nodes that make
that noden makes an attempt to capture the channel. Underan attempt to capture the channel after an idle period weakly
given static CSMA policyp, the service rat@,(p) of noden  converges to a Poisson random variable with m@&atJsing

is the fraction time node successfully captures the channethis result, it then follows that

underp. The network service rat€(p) is given by . (N) B = (N) B
lim [T(p™) —1(G)|=0 and lim[p(p™)—p(G)| =0,

N
T(p) =) Tn(p). i.e. the approximations given by Eq. (3) and Eq. (7) are
n=1 asymptotically accurate.
For a given static CSMA scheduling policy =

(pL;---, Pn), let G(p) = TN_, pn denote the rate (also called IV. CSMA FIXED POINT ANALYSIS

the offered load with which nodes make attempts to capture In this section, we approximate the service rates of a static
the channel at the end of an idle period. For a given statiGSMA policy p for a general network using a fixed point
CSMA policyp, the following approximation for the network analysis. In the Section V, we show that this approximation

service rate is well-known (see for example [2]),

r(Gp) = o @
For B > 0, one can show that (see for example [2])
1(G) <1, G>0, (4)
and forG*(B) = /2B, B > 0, we have that
im (G*(B)) =1 6)

Using Eq. (3), the service ratg(p) of noden under a
given static CSMA policyp can be approximated by

pne*G(p) ©)
1+B—eGP)’
In the above expressiom, is the probability that noda

tries to capture the channel after an idle period an@(P)
characterizes the probability that this attempt is sudugss

Tn(p) n=1,...,N.

is asymptotically accurate for large networks with a small
sensing time.

A. Fixed Point Formulation

Given a static CSMA policyp, we approximate the
fraction of time pi(p) that nodei is idle underp by the
following fixed point equation,

(o) — B _
pl(p)—m, |—1,...,N, (8)
whereG;(p) is given by
Gi(p) = Z [p(i,j)+p(j,i)]pj(p), i=1,...,N. 9)

jeM
Let G(p) = (Gi(p),---,Gn(p)). We refer to Eq. (8)
as the CSMA fixed point equationand to p(p) =

(P1(P),--,Pn(P)), @s well asG(p) = (G1(p), -, Gn(P)), as
the CSMA fixed point

The intuition behind the CSMA fixed point can be ex-

i.e. the attempt does not collide with an attempt by any othgilained as follows. Suppose that the fraction of time that

node.

nodei is idle under the static CSMA policp is equal to

Similarly, the fraction of time that the channel is idle canpi(p), and suppose that the times when nads idle are

be approximated by

B B
TBrl-eo®

where we have that ligyop(G"(B)) = 0.

p(p) = p(G(p)) (7)

independent of the processes at all other nodes. If hbds
been idle forB time units then the probability that node
makes an attempt to capture the lifikj), j € 4, is equal
to pgi,jPj(p), and the probability that nodg € .4 makes
an attempt to capture the linl§,i) is pj ipj(p). Hence, the

Eq. (3)-(7) are obtained by approximating the number ofate at which node receives or makes attempts to capture a

nodes that make an attempt to capture the channel after
idle period by a Poisson distribution with me&gp). This
approximation is asymptotically accurate for large neksor

[k after it has been idle foBf time units is given by Eq. (9).
Using Eq. (7) of Section lll, the fraction of time that node
is idle underp can be approximated by Eq. (8).

where each node makes an the attempt to capture the channelet

with a small probability. More precisely, consider a seqigen
of networks withN nodes and le{p) }n~1, p™) € [0, 2]V,
be a sequence of CSMA policies such that

N
yp'=G  N>1
n=1

for some constanG > 0, and limMy_e pﬁN) =0, vn. Under

the above scaling, the offered load stays constant, and equa

to G, as the number of nodds increases.

GR(p) = )P (P)-
(p) jezmp“,)pj(p)

Using the above CSMA fixed point formulation, we approx-
imate the service rate for linki, j) under a static CSMA

policy p by

p(i’j)pj(p)ef(GiR(pHGj(p))
1+ —e GilP)

Note that the above equation is similar to Eq. (6) where

(10)

TihP) =

Let T(p™)) be the network service rate for the networkp; ;,P;j(p) captures the probability that nodemakes an

with N nodes, and Igb(p")) be the fraction of time that the

attempt to capture linKi, j) if it has been idle for3 time



units, and exp—(GR(p) + G;j(p))] is the probability that this V. LARGE NETWORKS WITH A SMALL SENSING TIME
attempt is successful, i.e. the attempt does not overlap wit
an attempt by any other node to capture a link that has
endpoint in common with linki, j). Note that

In this section, we study the behavior of the CSMA fixed
%int under the limiting regime where the number of nodes
N increases to infinity and the sensing tifiedecreases to

p(i,j)Be*(Gi(p)+Gj(p)) zero. For this case, we show that the CSMA fixed point
Ti,j(p) = o) = (11)  description of the operating point is asymptotically aeter
(1+B—eG®) (1+ p—e™ ) This result states that for large networks with a small sensi

time 3, the CSMA fixed point approximates well the actual

In the next subsection we show that there always existspgrformance of the static CSMA policy.

unigue CSMA fixed point, and hence the CSMA fixed point Consider_ a sequence_of_ networks ,Ilor which the number
approximation (8) is well-defined of nodesN increases to infinity. LetZ™) be the set of all

links in the network withN nodes, and Iel/lf(N) be the set

B. Existence of a Unique Fixed Point of neighbours of nodé As the network size increases, we
The next proposition shows the existence of a CSMA fixe@ssume that the sensing time decreases as follows.

point for all p. Assumption 1:The sensing tim@™) for the network with
Lemma 1:For every static CSMA policy, there exists a N nodes given by

CSMA fixed pointp(p). g — 1

The proof for Lemma 1 uses the continuity properties of the KN)

fixed point equation given Eg. (8), and is a straightforwarqvhereK(N)

application of the Brouwer’s fixed point theorem.
The next lemma states that for the CSMA poligywith lim % _o.

pi.n =0, (i,]j) € Z, there exists a single CSMA fixed point. . N—oo K" .
(Ij)emma 2:Consider the CSMA policyp with p; j) = 0, Folr_ the ab(ﬁ\)/e scalmr?, cor(ll\?)ldderf_a sequence (();‘Ss’\t/la:sc CI.SMA

(i,}) €.Z. Then for anyB > 0 theuniqueCSMA fixed point  P° icies {p™ }n-1, wherep'™ defines a static pOoll-

p(p) is given bypi(p) = 1 andGi(p) = 0, fori = 1,...,N. cies for the network witiN nodes. We make the following

' (N)
Th It of L 2 btained b lying@SSumptions for the sequenfe'™ }n>1.
es result o emma is obtaine y applying Assumption 2:For  the sequences{p(m}Nzl and

Eq. (8) and (9) to the CSMA policp with p; j, = 0. N o
We next study the continuity properties Gi(p). To do {B™}nz1 the following is true.

asGi(p) > GR(p).

is a positive integer such that

this, we consider the mapping (a) Forpﬁ'?gx: max p(.N.> we have that
[ ] ezt D
Blpiy+Pun)
filGp) =G- Yy ——=>——2=, i=1...,N. (12 (N)
cp=a jezm (1+B-e) (2 lim ZT@X:O.
N—o0
Note that the mappind(G,p) = [fi(G,p)]i=1...n iS contin-

uous and we have that(G(p),p) = 0. We then obtain the (b) There exists a constant and an integeNy such that
following result. for all N > Ny we have that

Proposition 1: The correspondencé : [0,1]" — RY is (N) N1 v gN) i—1
upper-semicontinuous; i.eG(p) has a closed graph. _ ;N)[p(i-ﬁ TR i)] = XB™, !
jeN

Using the mappingf(G,p) = [fi(G.p)li-1..n gven by o o (a) implies that the attempt probability of each
Eq. (12), we obtain the next proposition which establlshe”snk becomes small al becomes large, and that the sensing
the local uniqueness of the correspondeGep). delay does not decrease too fastMisncreases. Condition

Proposition 2: For all static CSMA policiesp and all (b) impli . o .
. = ! i implies that the total rate with which links that origiaa
CSMA fixed pointsG € G(p), there exist neighbourhoods . . . )
U CRE of GandV C [0,1]" of p such that for each €V the or end at a given nodeare captured, is upper-bounded by

equationf_(G, p)=0 ha_s a unique solu_tio@ €U. Moreover, .For the above scaling et pMN(EN) =
this solution can be given by a functigh= ¢(p) where@ (N) /- (N) (N) (1 (N) ' . .
is continuously differentiable oW. (o (P™),-. oy~ (PTY)) - be thiN)CSMA fixed  point

Proposition 2 can be proved using the implicit functiorfor the network of sizeN, and letp™ (p™)) be the actual
2, we obtain the following result. (N) (N) (o(N)y _ 5(N) ((N)

Theorem 1:For every static CSMA policy, there exists %" = i:nf,.a.‘.),(mm' (P = (P
a unigue CSMA fixed poinp(p). . N '

The uniqueness result of Theorem 1 combined with thkée. the maximurm approximation error of the CSMA fixed

k T " . L point. Similarly, let

upper-semicontinuity of Proposition 1 directly implieseth

N.

geeey

continuity of G(p), and hence op(p). This is stated in the ™ (p™N)
following corollary. 5T(N) — max |1-— (é'\lli
Corollary 1: The fixed pointo(p) is continuous inp. (pez® | T (pMN)




be the maximum relative approximation error of the linkA. Many Flow Asymptotic

service rates under the CSMA fixed point. We following Recall that in Section V we introduced a sequence of
result states that in the limit ad approaches infinity the natworks for which the number of nodeéé increases to
CSMA fixed point approximation becomes asymptoticallyyfinity, and let.#™N) be the set of all links in the network

ac;urate._ ion 3: For the above defined scali h h with N nodes, and/i{(N> be the set of neighbors of node
roposition 3: For the above defined scaling we have tha, yhe network withN nodes. In this section, we introduce
lim 5;gN) -0, and lim 5T(N) —0. a similar scaling for the set of flows in addition to those.

N— o0 . N—oc0 i 1 (N) I
To prove the above Proposition 3, we make a connecuoIH particular, we letZ™ be the set of given routes for the

. N

with the Erlang fixed point for loss networks [6]. Specifigall NeWOrk with N nodes and le M =A™}, om0 be the
we show that for the above scaling the CSMA fixed point i§"€@n arrival rate vector. For the mean rate veaid?, let
asymptotic_ally identical to the Erlang fixed_point of a loss AN z Ar(N), (i,j) € PN
network with two-hop routes where each link can support (1)
at most one connection, and use the analysis of Hajek and
Krishna in [4]. be the total mean packet arrival rate over all routesz?N)

that traverse link(i, j), and let

rezN):(i,j)er

VI. ACHIEVABLE RATE REGION
In this section we use the CSMA fixed point approxi- AN = > [/\((i’?;>)+/\((j'tli>)}? i=1..N,
mation to characterize the achievable rate region of static jen™
CSMA schedulers. In Section VII we will show that this
characterization is asymptotically accurate for largevoeks
with a small sensing time.
Consider a wireless network with sensing tifie- 0 as

be the total mean packet arrival rate over all routesZN)
that traverse node
Definition 6 (Many Flow Asymptotic)Given a sequence
N N -
described in Section II. Note thé denotes the set of routes ©f neworks {ZM), 7! n’”@%’ we define as the set of
in the network. Also, recall the definitions of and A;, &l rate vector sequenced ™} for which the following

i €., as given in (1) and (2), respectively. Using thes@ oPerties hold.

definitions, let the seff (B) be given by (a) There exists a constantand an integeN such that
N GHB) for all N > N we have thaV\i(N) <A i=1.,N.
r(B)= {)\ ={AhrealNi < T(GT(B))e &P i = 15"'7N}a (b) For everye > 0, there exists an integéNy such that

for N > No we have thad ™ < ¢, (i,j) e 2N, o
whereG" (B) = /2B (see Section Ill). The next proposition =0 (i.) (1)

N . — .
states that under the CSMA fixed point approximation thé‘ sequence{A| >}N21 € 2 defines the limiting regime

achievable rate region of static CSMA policies is equal t(gvhere (a) the ””mbef of nodes and routes of the network
r(B). increases, (b) the arrival on each route decreases, and (c)

Proposition 4: Given B8 > 0, for every A € ['(3) there for each node we have that the total rate over all routes

: : ; that pass through the node stays bounded. The definition is
t tatic CSMA I h thatA : i , . .
ZXIJ'S) Se ;5 alic policyp such thatAj) < Tij)(P) closely related to the definition ¢drge networks with diverse

Our proof for Proposition 4 is constructive in the Senséoutingthat has been used in the context of the Erlang fixed

that given a rate vector € '(f3), we derive a static CSMA point app_roximation [6] [4]' . . .
policy p such thatk; ;, < T, (p), (i, ) € . Itis also shown We define the asymptotic achievable rate region of static

that the resulting policy satisfies Assumption 2, and heace SMA.‘ pglicies for large networks as follows. .
feasible. Definition 7: The asymptotic achievable rate region of

Using the results of Section Ill, we have that static CSMA policies under the many flow lingtthe set of
’ sequence$A (N 1> € 2 for which there exists a sequence

Ilmr(ﬁ) ={A={AhezlNi<1li=1.,N}. of static CSMA scheduling policie§p™ }n-1 such that
L. N
Note that any rate vectox for which there exists a node “,(}L'E‘cf (Aﬁmﬂ - 1) >0, n>1.

with Aj > 1 cannot be stabilized, as the service rate at each
node is upper-bounded by 1. Hence, the above result suggelsxtzaereAﬁr'fig1 = min(i‘j)eb%(N) T(E'\;;//\(ﬁN.)). o
that for network with a small sensing time the achievabl@he above definition imp’lies t’hat every rate sequence
rate region of static CSMA policies is equal to the capacityA ™ }y>1 in the asymptotic rate region can eventually be
region. In the next section we show that this result is true fostabilized by a static CSMA policy.
the limiting regime of large networks with a small sensing Note that a sequend@ (\) 1y~ € 2 for which there exists
time. a nodei with .

VII. ASYMPTOTIC OPTIMALITY OF CSMA rxll'rllo/\i 21

In this section we consider the case of large networks witban not be stabilized as service rate at each node is bounded

a small sensing time under the many flow asymptotic. by 1. Hence, the achievable region under the many flow limit



is contained in the set

€ = {{/\<N>}N21 € 9| 3N <1 and an integeN such that

in order to obtain a good approximation. We carried out
several numerical case studies which suggest that the CSMA
fixed point approximation is already remarkably accurate fo
networks where each nodes has more than 5-10 neighbours.
Second, the construction of a static CSMA scheduler re-
We refer to¢ as the capacity region under the many flonquires the a priori-knowledge of the arrival rate vector. We
limit. are investigating an approach using a queue-length based
. . scheduler similar to [9] in order to obtain CSMA schedulers
B. Asymptotic Rate Region that are able to dynamically adapt to any rate vector in the
In this subsection we characterize the asymptotic achie¥chievable rate region. Third, the current analysis isigtet!

able rate region of static CSMA policies under the manyo wireless networks with primary interference, and it is
flow limit for networks with a small sensing time, and showgn open problem to extend the analysis to more general

YN >N we haveA™ <A, i= 1,...,N}.

that the asymptotic achievable rate region of static CSMAnterference models.

policies is equal to capacity regic#i.

Consider the same scaling of the sensing time as in
Section V as described in Assumption 1. We have thdi]
following result.

Proposition 5: Under the scalinggN), for every sequence 4
A(N) € ¢ there exists a sequence of static CSMA policies(3]
{pN1y>1 that asymptotically stabilizes the network, i.e.

L N [4]

“r@gf (Afm% — 1) >0, n>1

where
[5]
(N) /(N
A T ™) .
min — N) '
(iez™ Al

(i.§)
We provide a sketch of the prloJof for Proposition 5. By

definition, for each sequendg\ (N }n-1 € € there exists a
scalarA < 1 and an integeN such that folN > N we have

(7]
(8]

AV <A =1\ [0

As limy_« BN =0 and limg o 7(G*(B)) =1 (see Eq. (5)),
there exists a integely and a constang; such that for
N > Ng we have that

AV < (G (BN Y e BV (1), =1, N

[10]

(11]

Using the proof of Proposition 4, we can then construct A
sequence of static CSMA policiggp™ }n>1 such that for
N > Ny we have

N .

)\((i’j)) <15 (PM)(1- &), (i,j) e 2™

where & > 0 is a constant that does not depend Nn
Using Proposition 3, the approximatiar j,(p™)) of the
service rate of link(i, j) is then asymptotically accurate as
N increases, and the result follows.

[13]

[14]

[15]
VIII. CONCLUSIONS

In this paper we introduced the CSMA fixed point ap-
proximation to study static CSMA schedulers in wireless
networks with primary interference, and showed that the
approximation is asymptotically accurate for large neksor
with a small sensing time. There are three important issues
that are not addressed in this paper, but are being invéstiga
in our ongoing work. First, while we showed that the
CSMA fixed point approximation is asymptotically accurate,
we did not investigate “how large” a network has to be
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