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Abstract
Commonsense question-answering (QA)
methods combine the power of pre-trained
Language Models (LM) with the reasoning
provided by Knowledge Graphs (KG). A
typical approach collects nodes relevant to
the QA pair from a KG to form a Working
Graph (WG) followed by reasoning using
Graph Neural Networks (GNNs). This faces
two major challenges: (i) it is difficult to
capture all the information from the QA
in the WG, and (ii) the WG contains some
irrelevant nodes from the KG. To address
these, we propose GrapeQA with two simple
improvements on the WG: (i) Prominent
Entities for Graph Augmentation identifies
relevant text chunks from the QA pair and
augments the WG with corresponding latent
representations from the LM, and (ii) Context-
Aware Node Pruning removes nodes that are
less relevant to the QA pair. We evaluate our
results on OpenBookQA, CommonsenseQA
and MedQA-USMLE and see that GrapeQA
shows consistent improvements over its LM +
KG predecessor (QA-GNN in particular) and
large improvements on OpenBookQA.

1 Introduction

2 Introduction

Answering questions is a challenging NLP problem
as it involves understanding the question context
and sifting through relevant information to iden-
tify the answer. Question-answering models have
evolved from rule-based (Kahaduwa et al., 2017) to
RNN-based sequence models (Meng et al., 2017)
and now to Transformer-based Language Models
(LM) such as RoBERTa-large (Liu et al., 2019).
However, commonsense question-answering adds
a layer of complexity as the model needs to reason
about questions relating diverse topics, making the
task challenging for LMs that may not have seen
something similar in the pre-training data.

*These authors contributed equally to this work.

While LMs capture the implicit patterns and
contextual information within the data, KGs are
able to capture explicit relations between the text
entities. KGs such as Freebase (Bollacker et al.,
2008), Wikidata (Vrandečić, 2012), or Concept-
Net (Speer et al., 2017) store knowledge in the form
of graph triplets (topic-relationship-topic) and are
well suited for Graph Neural Networks (GNNs),
e.g. (Welling and Kipf, 2016). Thus, commonsense
QA in particular has attracted interest in combin-
ing LMs and KGs with the reasoning ability of
GNNs (Lin et al., 2019; Yasunaga et al., 2021).

Most works on LM + KG extract a sub-graph or
Working Graph (WG) from the KG based on con-
cepts mentioned in the QA pair (Lin et al., 2019;
Feng et al., 2020; Yasunaga et al., 2021) and fo-
cus on improving reasoning. For example, Lin
et al. (2019) propose a graph network to score an-
swers while Feng et al. (2020) focus on a multi-hop
message passing framework that allows each node
to attend to multi-hop neighbors in a single layer,
combining interpretable path-based reasoning with
scalable GNNs. Yasunaga et al. (2021) improve the
extracted WG through a relevance scoring mecha-
nism followed by joint reasoning and Zhang et al.
(2022) fuse information from both the modalities
(LM, KG) by mixing their tokens and nodes.

Our emphasis with GrapeQA lies in improving
the working graph (WG) with two simple ideas.
(i) We augment the WG with useful information
from the question-answer pair reducing the bur-
den on a single QA context node used in previous
works.(discussed in 3.2) (ii) Instead of keeping all
nodes of the WG, or simply scoring relevance, we
drop less relevant information (nodes) from the WG
simplifying the graph reasoning process. The im-
provements to the WG are combined with the rea-
soning process of QA-GNN (Yasunaga et al., 2021)
and evaluated on three datasets, where we see es-
pecially large improvements on domain-specific
OpenBookQA.(discussed in 3.2)
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3 GrapeQA Methodology

We briefly describe the QA-GNN approach before
our graph augmentation and pruning strategies.

3.1 LM + KG: QA-GNN as a case study

The objective of QA-GNN (Yasunaga et al., 2021)
is to use both LM and KG for commonsense QA
tasks. Each multiple-choice QA consists of a ques-
tion q and O answer options {ao}Oo=1 where only
one is correct. We create one Working Graph (WG)
per answer option and reason over the graph to pro-
duce a score. During training, cross-entropy loss
is applied to scores of all answer options while we
pick the highest scoring answer for inference.

We discuss the WG creation process starting
with the KG. Let G = (V, E) be the KG with V
nodes and a set of edges E ⊆ V × R × V with
R relation types. For a given question-answer
pair [q; ao], all nodes in the KG may not be rel-
evant. Hence, Question / Answer entity nodes, re-
ferred as qKG or aKG, that have some text match-
ing with the question q or answer option ao are
picked. Indirect relations between Question and
Answer entity nodes are captured through common
neighbors (2-hop away) by including them as Extra
nodes sKG. The sub-graph Gsub is formed together
with the edges in E that connect the chosen KG
nodes. In summary, the nodes of the sub-graph are
{qKG} ∪ {aKG} ∪ {sKG}.

Next, a relevance scoring mechanism is used to
prune irrelevant nodes that may appear in the sub-
graph. Scores are computed by encoding the QA
context (concatenated question and answer option
text) and node label using an LM followed by a
linear projection. The relevance score influences
the node representation in the sub-graph. Finally,
to create the Working Graph Gw, QA context is
added as a node to the sub-graph and connected
with other nodes using a new edge type.

Question, Answer, and Extra nodes in Gw are
initialized by creating sentences based on triplets
from the KG, feeding them to a pretrained LM, and
average pooling over relevant tokens (see (Feng
et al., 2020) for details). The QA context node is
initialized as z, an encoding of the [q; ao] text us-
ing an LM. To perform reasoning, a relation type
aware Graph Network is adopted. The output rep-
resentations for all nodes are pooled and added to
the LM’s original encoding of the QA context. Fi-
nally, an MLP is used to predict a score for the
correctness of the answer option. Fig. 1 illustrates

QA-GNN along with our proposed modifications.
Additional details of QA-GNN are in App. B.

3.2 Graph Augmentation and Pruning

GrapeQA proposes two improvements to the WG
and corresponding adaptations to QA-GNN. We
overcome the limited capacity of the WG to ex-
change useful information between the QA con-
text and the KG with Prominent Entities for Graph
Augmentation (PEGA) that introduces additional
nodes from the QA pair to the WG. We also pro-
pose QA-Context-Aware Node Pruning (CANP), a
pruning method that removes least relevant nodes.

Prominent Entities for Graph Augmentation
(PEGA). Graph augmentation begins by extract-
ing noun phrase chunks c from the question and
answer pair [q; ao]. We use Spacy’s (Honnibal et al.,
2020) noun chunk extractor fext to obtain

V ′ = {c | c ∈ fext([q; a])} . (1)

The QA context is fed as input to the LM and repre-
sentations of all the sub-word tokens are obtained.
Each extracted noun phrase is represented by aver-
aging over the embeddings of its sub-word tokens.
As part of augmentation, these noun chunks nodes
(V ′) are added as new nodes of type n to the work-
ing graph Gw. Noun chunk nodes also have two
types of edges: rno between all the new (V ′) and
old Gw nodes, and rnn among the noun chunks
themselves resulting in an augmented WG, G′w:

E ′ = {V ′ × rnn × V ′} ∪ {V ′ × rno × V} , (2)

G′w = (V ∪ V ′, E ∪ E ′) . (3)

QA Context-Aware Node Pruning (CANP) aims
to remove the less relevant nodes from the WG.
Our intuition is that some Extra nodes (i.e. 2-hop
neighbors from the KG which do not match the QA
text) may be less relevant to the QA as compared
to the Question / Answer entity nodes.

To perform pruning, we first associate and clus-
ter Extra nodes with Answer entity nodes. CANP is
only applied when there are more than one Answer
entity nodes. Recall that the WG is created for one
answer option (or one QA pair) and the number
of Answer entity nodes (and clusters) depends on
the number of nodes with text similar to the an-
swer option in the KG. Similar to relevance scoring
in QA-GNN, we calculate the relevance score for
each Extra node sKG against each Answer entity
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Figure 1: Method overview showing the approach to score the question with each answer option. GrapeQA
improves QA-GNN (Yasunaga et al., 2021) by augmenting the Working Graph with additional nodes that capture
information from the QA pair (step 4: PEGA) and then pruning the graph to remove the least relevant nodes (step
5: CANP).

aKG by encoding the concatenated text of the QA
pair, the Answer entity, and the Extra node.

ψKG
sa = fhead (LM ([text(z); text(aKG); text(\)])) ,

(4)
where text(·) corresponds to the node’s label text:
[q; ao] pair for z, Extra node’s label sKG for \, and
the Answer entity label aKG for aKG. Thus, each
Extra node sKG is assigned to the cluster Vx corre-
sponding to the highest relevance score,

Vx = {sKG |x = arg max
aKG

ψKG
sa } . (5)

We compute the average relevance score for each
cluster and identify the least relevant cluster Vr as

ψKG
x =

∑
sKG∈Vx

ψKG
sx /|Vx| , (6)

Vr = Vx s.t. r = arg min
x
ψKG
x . (7)

Finally, we remove the cluster with lowest average
relevance score from the WG before continuing
with graph-based reasoning. The PEGA augmented
WG can be pruned as

G′′w = (V ∪V ′−Vr, E ∪E ′−{Vr×R×V}). (8)

4 Experiments

We evaluate GrapeQA on three QA datasets:
1. CommonsenseQA (CSQA) is 5-way multiple-
choice QA (MC-QA) dataset of 12,102 questions
that requires commonsense reasoning to answer
questions. We use standard splits (Lin et al., 2019)
and report results on the in-house test (IHtest).

2. OpenBookQA (OBQA) is a 4-way MC-QA
dataset of 5,957 questions based on elementary sci-
ence knowledge; splits by Mihaylov et al. (2018).
3. MedQA-USMLE is a 4-way MC-QA dataset
based on biomedical and clinical knowledge and
has 12,723 questions from United States Medical
License Exams, with splits by Jin et al. (2021).

Table 1 presents node counts in the WG for the
above datasets while Table 7 (App. C) shows a
small overlap between noun chunk and KG nodes.

Implementation & training details. The LM
adopted in our work is RoBERTa-large (Liu et al.,
2019) for CSQA and OBQA, and SapBERT (Liu
et al., 2020) for MedQA. ConceptNet (Speer et al.,
2017) is our KG for generating the WG in CSQA
and OBQA. For MedQA, we use the graph con-
structed by QA-GNN (Yasunaga et al., 2021). Our
model consists of an LM and a GNN with dim 200.
RADAM optimizer is used with a learning rate of
10−5 for the LM and 10−3 for the GNN. OBQA
& MedQA are trained for 50 epochs with a batch
size of 128 and CSQA for 20 epochs with a batch
size of 64. All models are a single run trained on
2 RTX 2080 Ti GPUs and take about 28 hours for
Table 1: Average number of nodes of each type in
WGs.

Node Type OBQA CSQA MedQA

Question entity qKG 6.52 7.36 6.1
Answer entity aKG 2.79 2.05 0.55
Extra nodes sKG 107.17 112.04 20.82
Noun chunk nodes V ′ 3.88 4.13 33.46



Table 2: Comparison of Accuracy between LM+KG methods on the OpenBookQA, CommonsenseQA (left) and
MedQA (right).

OBQA CSQA
Model Test IHTest

RGCN (Schlichtkrull et al., 2018) 62.45 68.4
GconAttn (Wang et al., 2019) 64.75 68.6
RN (Santoro et al., 2017) 65.20 69.1
MHGRN (Feng et al., 2020) 66.85 71.1
GreaseLM (AristoRoBERTa) (Zhang et al., 2022) 84.8 74.05

QA-GNN (RoBERTa-large) (Yasunaga et al., 2021) 67.80 73.4
GrapeQA: CANP (Ours) 66.20 74.94
GrapeQA: PEGA (Ours) 82.0 73.41
GrapeQA: PEGA+CANP (Ours) 90.0 74.05

MedQA
Model Test

BERT-base (Devlin et al., 2019) 34.3
BioBERT-base (Lee et al., 2019) 34.1
RoBERTa-large (Liu et al., 2019) 35.0
BioBERT-large (Lee et al., 2019) 36.7
SapBERT (Liu et al., 2020) 37.2
GreaseLM (Zhang et al., 2022) 38.5

QA-GNN (Yasunaga et al., 2021) 38.0
GrapeQA: (PEGA) (Ours) 39.51

Table 3: PEGA Ablations: Impact of different noun
chunk extraction methods on OBQA.

Noun chunk extraction method Accuracy

20% random words 72.32
NLTK (Loper and Bird, 2002) 78.40
spaCy (Honnibal et al., 2020) 82.00

OBQA and 16 hours for CSQA and MedQA.

4.1 Comparisons with Baselines
We use accuracy as a metric and compare our re-
sults primarily against other works that also adopt
LM + KG methods (see Table 2). GrapeQA builds
on top of QA-GNN (for direct comparison) and
improving the WG results in highest performance
on OBQA & MedQA and comparable performance
on CSQA. For a fair comparison, we use the same
LM for all methods unless noted.

LM only methods tend to perform worse than
the baseline QA-GNN. RoBERTa-large (Liu et al.,
2019) for CSQA provides 72.1% while RoBERTa-
largeand AristoRoBERTa (Clark et al., 2019) for
OBQA show 64.80% and 77.8%, respectively. For
MedQA, the LM only model results are also shown
in Table 2 (right); we see that LMs trained on med-
ical data (e.g. SapBERT (Liu et al., 2020)) out-
perform generic LMs on this domain-specific task.
GrapeQA outperforms all these approaches.
OBQA. CANP applied to the original QA-GNN
WG is unable to improve performance (-1.6%),
probably because the WG is not rich. However,
PEGA provides a 14.2% accuracy improvement
over QA-GNN (82% vs. 67.8%). Interestingly,
CANP when used together with PEGA boosts the
accuracy to 90% (+22.2%); surpassing GreaseLM
that uses an improved LM (AristoRoBERTa) and

better integration of LM + KG by 5.2%. For the
domain-specific OBQA, PEGA adds relevant infor-
mation while CANP effectively cleans up irrelevant
nodes resulting in large improvements.

MedQA. PEGA achieves an improvement of 1.5%
over QA-GNN, and 1% over GreaseLM, the pre-
vious SoTA. A reason for the small improvement
(compared to OBQA) could be that the WG for
MedQA has fewer nodes (see Table 1). Addition-
ally, the small number of Answer entity nodes in
the WG also means that CANP is not applicable.

CSQA. On generic commonsense questions, the
WG can have large amounts of irrelevant infor-
mation that CANP can simplify. We see an im-
provement of 1.5% over QA-GNN when using
CANP only. However, unlike OBQA, PEGA shows
comparable performance to QA-GNN as it may
lead to stuffing the WG with common terms (noun
chunks) that do not provide discriminatory infor-
mation. Nevertheless, CANP alone also improves
over GreaseLM by 0.9% (all in absolute points).

4.2 Ablation experiments

Noun chunk extraction. While PEGA is an effec-
tive graph augmentation strategy, it relies on the
noun chunk extraction method. We evaluate auto-
matic noun chunk extraction methods spaCy and
NLTK (see App. D for details) against a simple
baseline that randomly adds 20% of the QA pair’s
words to the WG. Table 3 shows that extracting
meaningful chunks is important and may lead to
large performance change (on OBQA). Interest-
ingly, even random chunks of the QA pair provides
a 4.5% boost over QA-GNN that only includes one
node to encode the entire QA context.

Number of GNN layers is often an important



hyperparameter. We show results for both the
PEGA+CANP (Table 4) and PEGA-only (Table 5)
models in Appendix A. Generally, 5 layers seem to
work well for all settings, while the CSQA PEGA-
only model shows better results with 4 layers.

5 Conclusion

We presented GrapeQA, an effective approach to
integrate information from QA (LM) and KG for
commonsense QA. We proposed two simple im-
provements to the working graph: PEGA, a graph
augmentation that improves information flow be-
tween the QA and the KG; and CANP that prunes
less relevant information. Our approach led to new
SoTA results on three datasets OBQA, CSQA, and
MedQA, with a large 22% increase on OBQA.

6 Ethical Impact

In order to support commonsense thinking, this
study suggests a general method for fusing lan-
guage models and external knowledge graphs. We
rely on publicly available datasets and benchmarks
and knowledge graphs for each experiment. We
could not anticipate any immediate social ramifi-
cations or ethical concerns as we neither amplify
existing bias in the data nor do we inject any social
or ethical bias into the model.
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Appendix
We first present additional results in Appendix A

followed by a detailed explanation of QA-GNN in
Appendix B. Appendix C provides some statistics
for the datasets and working graphs, while Ap-
pendix D presents details of noun chunk extraction
methods used in PEGA.

A Additional Results

Number of GNN layers ablations. Tables 4 and
5 show ablation studies by varying the number of
GNN layers over PEGA+CANP and PEGA-only
respectively. 5 layer GNNs seem to be a suitable
for both methods, while CSQA with PEGA-only
shows highest performance with 4 layers.

CANP is not necessary on MedQA. Table 1 of
the main paper shows the average number of nodes
of different types in a WG. The number of extra
concept nodes is much higher than the QA concept
nodes except in the MedQA dataset. This makes
it necessary to prune these nodes to keep only the
relevant ones. In case of MedQA since the number
of extra nodes in WG are already quite low, and the
nodes from the KG are often meaningful (domain-
specific) we do not perform CANP pruning.

Results on CSQA. Table 6 shows the results
of our model on the official test set for Com-
monsenseQA. We compare our results with other
existing approaches, both using powerful LMs
(e.g., UnifiedQA) or LM+KG methods (QA-GNN,
GreaseLM, etc.). Unfortunately we were unable
to evaluate our best performing model on the in-
house test set (GrapeQA: CANP-only) due to lim-
ited number of submissions indicated for the eval-
uation. Even on the in-house test set, we see no
performance change between PEGA-only and QA-
GNN (73.41% vs. 73.4%) while a ±1% variation
exists due to random seeds.

B QA-GNN Method Details

We provide further details of the question-
answering procedure adopted by QA-GNN (Ya-
sunaga et al., 2021).

B.1 Relevance Scoring

Extracting a sub-graph by selecting few hop neigh-
bors adds many irrelevant nodes to the sub-graph.
QA-GNN proposes a relevance scoring mechanism
to add an “importance score” to the initial embed-
ding of concept nodes. This helps the GNN to

Table 4: Impact of the number of GNN layers using the
PEGA+CANP model.

Accuracy
#layers OBQA CSQA

4 88.38 72.60
5 90.00 74.05
6 88.96 71.88

Table 5: Impact of the number of GNN layers using the
PEGA only model.

Accuracy
#layers OBQA CSQA

4 83.20 74.62
5 82.00 73.41
6 81.40 73.17

Table 6: Comparison on CommonSenseQA official test
set using RoBERTa-largemodel. The best result is in
bold and second best is underlined. Due to limited en-
tries for evaluation, we were unable to evaluate our best
method on CSQA: CANP-only. *UnifiedQA has 11B
parameters and is about 30x larger than QA-GNN and
our model and is trained on much more data.

Model Test Acc.

RoBERTa (Liu et al., 2019) 72.1
RoBERTa + FreeLB (ensemble) (Zhu et al., 2019) 73.1
RoBERTa + HyKAS (Ma et al., 2019) 73.2
RoBERTa + KE (ensemble) 73.3
RoBERTa+KEDGN (ensemble) 74.4
XLNet+GraphReason (Lv et al., 2019) 75.3
RoBERTa+MHGRN (Feng et al., 2020) 75.4
Albert+PG (Wang et al., 2020) 75.6
QA-GNN (Mihaylov et al., 2018) 76.1
Albert (ensemble) (Lan et al., 2020) 76.5
UnifiedQA* (Khashabi et al., 2020) 79.1

GrapeQA (PEGA) (Ours) 73.5

focus on nodes with high relevance score while
performing graph reasoning.

ρv = fhead (fenc ([text(z); text(v)])) , (9)

ρt = fρ (ρv) . (10)

The text of each concept node text(v) is concate-
nated with the QA-pair (referred to as text(z)). The
LM encoding and following an MLP head produces
an embedding ρv that is converted into a relevance
score ρv using an MLP fρ. Nodes with a score
lower than a threshold are discarded.

B.2 Node and Relation Types
QA-GNN constructs a working graph which is het-
erogeneous and multi-relational. It uses a node



type (u) aware and relation type (r) aware iterative
message passing network to reason over it. Differ-
ent node types are represented using embeddings u.
These include QA context, Question entity, Answer
entity and Extra nodes. Whereas, edge embeddings
e include relations in KG and two new relation
types between the QA context node and KG entity
nodes.

Node and relation types are embedded using
MLPs fu and fr respectively,

ut = fu (ut) , (11)

rst = fr (est, us, ut) . (12)

The message from the source to target node is con-
structed by concatenating the source node and type
representations along with the relation embedding
from the source to target and projecting it (to node
embedding dimension) using the MLP fm.

mst = fm

(
h(`)
s ,us, rst

)
. (13)

B.3 Message Passing

Node representations are updated at each layer us-
ing the following attention mechanism

qs = fq

(
h(`)
s ,us,ρs

)
, (14)

and

kt = fk

(
h
(`)
t ,ut,ρt, rst

)
. (15)

The query qs and key kt vectors of the source
and target nodes are computed using the node rep-
resentation h, the node type embedding u and rele-
vance score embeddings ρ. Finally, we score atten-
tion αst as

αst =
exp (γst)∑

t′∈Ns∪{s} exp (γst′)
, γst =

q>s kt√
D

.

(16)
The attention weights for messages from source

to target αst are calculated using q and k vectors.
Finally, we aggregate messages and update the
node representation as

h
(`+1)
t = fn

 ∑
s∈Nt∪{t}

αstmst

+ h
(`)
t . (17)

Table 7: Number of unique nodes across all WG of the
dataset. Even though more nodes are added from the
KG on average (see Table 1), they are not all unique
across the dataset and result in a smaller count.

Noun chunk Nodes Overlapping
Dataset nodes from KG nodes

OBQA 14470 7506 1958
CSQA 23881 12485 4023
MedQA 69370 2753 1268

Table 8: Average number of words in the question q
and answer option ao for the different datasets.

Question Answer

OBQA 13.5 2.8
CSQA 13.8 1.5
MedQA 116.2 3.6

C Working Graph Statistics

Given a question and corresponding answer option,
KG nodes with matching text entities are identified.
These matched nodes along with the Extra nodes
that fall in 2-hop paths from them form the sub-
graphs for each [q; a] pair. Working Graphs are
constructed by joining these sub-graphs with QA
context nodes initialized with the representation
from LM. In each Working Graph, the QA context
node is connected to all the concept nodes in it
which are extracted from the KG.

Node counts. Table 1 in the main paper shows the
number of nodes added to the WG on average. We
see that general KGs (ConceptNet) afford a large
number of extra nodes (100+) while MedQA with
a smaller KG only adds a few extra nodes (∼20).
The large number of noun chunks added in the
MedQA is explained by the fact that the questions
in MedQA are very large as they include patient’s
description. Table 8 presents the average number
of words in the question and answer option.

Noun chunks are unique. Table 7 shows the num-
ber of unique nodes present in each dataset. It can
be observed that the total number of unique nodes
selected from the KG is low as compared to the to-
tal number of unique noun chunk nodes extracted.
Even though Table 1 shows that a large number
of nodes are added to the graph, they are not all
unique. Thus, even if the average number of noun
chunk nodes for each WG are low, they are more
diverse compared to nodes from KG. A small over-
lap between noun chunk nodes and nodes from the



KG indicates that this way of constructing the WG
may provide better opportunity for graph reasoning
to exchange information effectively between the
QA (LM) and the KG.

D Noun chunk extraction methods

SpaCy is a Python and Cython programming
language-based open-source software library for
sophisticated natural language processing1. The
library is distributed under the MIT licence.

In our experiments, we used en core web sm
package which provides functionalities like
tok2vec, tagger, parser, attribute ruler, lemmatizer,
ner. We have used the noun chunk parser technique
for extracting the noun chunks.
NLTK In order to work with human language data,
Python programs can be built using the NLTK
framework. NLTK offers simple access to more
than 50 corpora and lexical resources, including
WordNet, as well as a number of text processing li-
braries for categorization, tokenization, stemming,
tagging, parsing, and semantic reasoning.

In our implementation, we first tokenize the
input sentence using NLTK’s word tokenizer.
Then to extract the noun chunks, the POS tagger of
NLTK is used.

1https://spacy.io/

https://spacy.io/

