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Abstract

Over the last decade, online lecture videos have become
increasingly popular and have experienced a meteoric rise
during the pandemic. However, video-language research
has primarily focused on instructional videos or movies,
and tools to help students navigate the growing online lec-
tures are lacking. Our first contribution is to facilitate re-
search in the educational domain by introducing AVLec-
tures, a large-scale dataset consisting of 86 courses with
over 2,350 lectures covering various STEM subjects. Each
course contains video lectures, transcripts, OCR outputs
for lecture frames, and optionally lecture notes, slides, as-
signments, and related educational content that can inspire
a variety of tasks. Our second contribution is introduc-
ing video lecture segmentation that splits lectures into bite-
sized topics. Lecture clip representations leverage visual,
textual, and OCR cues and are trained on a pretext self-
supervised task of matching the narration with the tempo-
rally aligned visual content. We formulate lecture segmen-
tation as an unsupervised task and use these representa-
tions to generate segments using a temporally consistent 1-
nearest neighbor algorithm, TW-FINCH [45]. We evaluate
our method on 15 courses and compare it against various
visual and textual baselines, outperforming all of them. Our
comprehensive ablation studies also identify the key factors
driving the success of our approach.

1. Introduction

The last decade has seen a significant increase in on-
line lectures in the form of Massive Open Online Courses
(MOOCs) through platforms such as Coursera or EdX.
Many high-quality recorded lectures are also published on-
line, e.g., MIT through MIT OpenCourseWare (OCW)1, top
Indian universities through NPTEL2, and several professors
that make their lectures publicly available3. This increase

* indicates equal first author contribution
1MIT-OCW - https://ocw.mit.edu/
2NPTEL - https://nptel.ac.in/
3e.g. Statistics 110 or Stanford’s CS231n.

in online content is considered one of the biggest turning
points in the history of education as anybody can learn any
topic from the world’s leading teachers from the comfort of
their home [3, 22]. As the world moved to an online mode
during the pandemic, there is absolutely no doubt that such
online lecture content creation will only increase.

Creating an online course requires tremendous effort
from the instructor and teaching assistants. Apart from de-
signing and preparing the content itself, the mode of pre-
sentation poses challenges including segmenting the large
videos into smaller topics to enhance the learning experi-
ence, adding quiz-like questions during the lecture to re-
tain the student’s engagement, summarizing the lecture at
the end, etc. These tasks require carefully combing through
the lecture several times, a time-consuming and error-prone
process. Our goal is to encourage the community to address
these tasks automatically or at least provide automatic rec-
ommendations for a human-in-the-loop system as they have
the potential to reduce instructor’s efforts, giving them more
time and energy to improve the lecture content.

To build such solutions, machine understanding of
audio-visual (AV) lectures is crucial. However, currently,
there are no large-scale datasets of audio-visual lectures4.
Our first contribution is AVLectures, a large-scale dataset
to facilitate research in automatic understanding of lecture
videos (see Sec. 3 for details and statistics). By releasing
AVLectures, we wish to ignite research in the largely over-
looked applications in education to help manage the fast-
growing online lecture content.

Our second contribution is the formulation and bench-
marking of the lecture segmentation task, where, given a
long video lecture, our goal is to temporally segment it
into smaller bite-sized topics. Lecture segmentation can be
more challenging than scene segmentation in movies [42] or
cooking videos [28] as the differences across segments are
subtle, in both the visual and transcribed narrations. For ex-
ample, Fig. 1 shows a professor teaching on the blackboard
and walking along the podium. A model trained on movies
or instructional videos may find it hard to segment the lec-

4Despite educational videos being the fourth most consumed content
on the Internet according to this survey, just behind “How-to” videos.
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Figure 1: We address the task of lecture segmentation in an unsupervised manner. We show an example of a lecture segmented
using our method. Our method predicts segments close to the ground-truth. Note that our method does not predict the segment
labels, they are only shown so that the reader can appreciate the different topics.

ture as the objects or actions in the video do not change
significantly. Across segments, the visual boundaries are
subtle changes such as clearing the board, while the narra-
tion may see a shift in the overall topic of discussion.

We propose lecture segmentation as an unsupervised task
that leverages visual, textual, and OCR cues from the audio-
visual lecture. We first split the lecture into small clips
and extract each clip’s visual and textual features using pre-
trained models. To make our representations lecture-aware,
we learn a joint text-video embedding in a self-supervised
manner by matching the narration with the aligned visual
content. Finally, we obtain clusters using a temporally con-
sistent5 1-nearest neighbor algorithm, TW-FINCH [45].

We pick lecture segmentation as our first use case based
on an insightful large-scale study conducted on the EdX
platform [23]. They find that students who successfully
complete an online course typically spend 4.4 minutes on
a 12-15 minute long lecture clip, clearly demonstrating
the need for simplified navigation of long clips. Lecture
segmentation is also a first step towards creating a multi-
modal table of contents to summarize a lecture [32]. Fi-
nally, there is evidence for segmentation to assist in en-
abling non-linear video consumption [51] and efficient pre-
viewing [12, 16, 41]. While segmentation is our first task,
we emphasize that AVLectures can be used for various other
tasks in the future such as generating automatic quizzes for
the lecture, aligning lecture videos with the notes enabling
generation of lecture notes, retrieving relevant clips of the
lecture using text queries, summarizing long lecture videos,
retrieving and aligning similar courses/lectures from differ-
ent learning platforms, and many more.

Our key contributions are summarized below. (i) We in-
troduce a novel educational audio-visual lectures dataset,
AVLectures, that can facilitate several applications in the
education domain. (ii) We formulate and benchmark the
problem of unsupervised lecture segmentation. We show
that self-supervised multimodal representations learned by
matching the narration with temporally aligned video clips
greatly help the task of segmentation. (iii) Our method out-

5Temporally consistent here refers to temporally contiguous, i.e. the
segment membership of clips looks like [0, 0, 1, 1, 1, 2, 2] rather than [0,
1, 0, 2, 2, 1, 1]. TW-FINCH [45] allows this over base FINCH [46].

performs several baselines. We also provide extensive abla-
tion studies to understand prominent factors leading to the
success of our approach. We will release code and data.

2. Related Work

Applications in educational videos. Research in video-
language domain has focused primarily on movies [40, 43,
49], and instructional videos [7, 36, 44], especially cook-
ing videos [17, 56]. However, there are a few isolated
works [13, 14, 20, 22, 31, 32] that attempt to solve var-
ious problems in the education domain that we highlight
below. Mahapatra et al. [31] propose an approach to gen-
erate a hierarchical table of contents for a lecture video us-
ing multimodal information such as transcripts and associ-
ated metadata from video key frames. In the direction of
localizing and recognizing text on a blackboard, Dutta et
al. [20] introduce LectureVideoDB, a dataset consisting of
frames from multiple lecture videos (including blackboard).
Bulathwela et al. [13, 14] introduce datasets to understand
learner engagement with educational videos.

Related to our work, lecture video segmentation was first
proposed by Gandhi et al. [22]. A visual saliency algorithm
is adopted to find the topic transition points in the lecture
automatically, however, this works primarily for slide-based
lectures. In contrast, our method shows promising results
across all lecture types: blackboard, slide-based, and digital
board. Additionally, the dataset of [22] is orders of magni-
tude smaller, 10 vs. 2,350 lectures. Finally, AVLectures is
not only video material but is augmented by rich metadata,
including transcripts, OCR outputs for slides/blackboard
frames, lecture notes, lecture slides, and assignments.
Joint representation learning of video and language. Our
proposed model learns meaningful representations of lec-
tures and aligned transcripts, which we use to perform
the lecture segmentation task. In this section, we review
popular works that address joint representation learning in
video and language. A common self-supervised objec-
tive used to learn good representations is aligning video
with its corresponding narrations [34, 36], which can then
be used for a number of downstream tasks, such as text-
to-video retrieval [21, 29, 36], visual question answer-
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Figure 2: AVLectures statistics. (a) Subject areas. ME: Mechanical Eng., MSE: Materials Science and Eng., EECS:
Electrical Eng. and Computer Science, AA: Aeronautics and Astronautics, BCS: Brain and Cognitive Sciences, CE: Chemical
Eng. (b) Lecture duration distribution. (c) Presentation modes distribution.

ing [9, 49, 54], video captioning [26, 39, 55], natural lan-
guage guided video summarization [38] among others. Typ-
ically, representations from off-the-shelf pre-trained visual
and language models are improved via a joint video-text
embedding trained on the alignment task [36]. Recent ap-
proaches [18, 21, 29] also adopt Transformer-based mod-
els that learn in an end-to-end manner from raw video pix-
els. Our work explores the first direction. We extract video
features using off-the-shelf models and combine them with
OCR features. Then joint embeddings are learned using
a pretext self-supervised task of matching the embeddings
from narrations with temporally aligned video clips.

Temporal video segmentation. While fully super-
vised [19], weakly supervised [30, 48], and unsupervised [6,
7, 28, 45] approaches have been explored, we adopt the
unsupervised path as collecting ground-truth segmentation
labels is challenging, and we would like our method to
generalize to diverse courses from novel educational plat-
forms. In the unsupervised space, instructional videos are
segmented by finding and grouping direct object relations in
the narrations [7] or through the use of frame-level features
that incorporates relative temporal information followed by
K-means clustering (CTE) [28]. Proxy tasks such as future
frame prediction are also used to perform temporal segmen-
tation [6]. Recently, a temporally weighted version of a 1-
nearest neighbor clustering algorithm is proposed to pro-
duce temporally consistent clusters (TW-FINCH) [45]. We
will show that self-supervised joint text-video representa-
tion learning together with TW-FINCH leads to good seg-
mentation performance on AVLectures.

3. The AVLectures Dataset

We introduce AVLectures, a large-scale educational
audio-visual lectures dataset to facilitate research in the do-
main of lecture video understanding. The dataset comprises
of 86 courses with over 2,350 lectures for a total dura-
tion of 2,200 hours. Each course in our dataset consists of
video lectures, corresponding transcripts, OCR outputs for
frames, and optionally lecture notes, slides, and other meta-

data, making our dataset a rich multi-modality resource.
Courses span a broad range of subjects, including Mathe-

matics, Physics, EECS, and Economics (see Fig. 2a). While
the average duration of a lecture in the dataset is about 55
minutes, Fig. 2b shows a significant variation in the dura-
tion. We broadly categorize lectures based on their pre-
sentation modes into four types: (i) Blackboard, (ii) Slides,
(iii) Digital Board, and (iv) Mixed, a combination of black-
board and slides. Fig. 2c depicts a healthy distribution of
presentation modes in our dataset. Additional statistics are
presented in the supplementary material.
Courses with Segmentation. Among the 86 courses in
AVLectures, a significant subset of 15 courses also have
temporal segmentation boundaries. We refer to this subset
as the Courses with Segmentation (CwS) and the remainder
71 courses as the Courses without Segmentation (CwoS).

3.1. Dataset Collection Procedure

Our dataset is primarily sourced from MIT-OCW [4].
We curated a list of courses by browsing the OCW website
and used web scraping tools to download the video lectures
and accompanying metadata such as narration transcripts,
assignments, lecture notes/slides, etc. Non-lecture videos
(e.g. instructor interviews) that were found in some courses
are manually discarded. We process and store the OCR out-
puts of video frames in each lecture using Google Cloud
Vision API. As sudden changes in the visual content of a
lecture are rare, we process one frame at every 10 seconds.

3.2. Curating the Lecture Segmentation Dataset

It is shown that partitioning a long duration lecture into
shorter topic-based clips helps in capturing students’ atten-
tion and improves the overall learning experience [23, 51].
However, manually segmenting lecture recordings is a time-
consuming and costly task. To evaluate automatic meth-
ods for lecture segmentation, we create a subset of our
dataset, called Courses with Segmentation (CwS), that in-
cludes courses in which long lecture videos are segmented
into multiple smaller clips. We curate 15 such courses with
350 lectures in total, where temporal segmentation ground-
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Figure 3: Segmentation pipeline. (a) Video clip and feature extraction pipeline used to extract visual and textual features
from small clips of 10s-15s duration. The feature extractors are frozen and are not fine-tuned during the training process.
(b) Joint text-video embedding model learns lecture-aware representations. (c) Lecture segmentation process, where we apply
TW-FINCH at a clip-level to the learned (concatenated) visual and textual embeddings obtained from (b).

truth (for each lecture) is obtained in one of two ways.
(i) Out of the 15 courses, 5 courses6 have topics in the table
of contents that refer to various temporal segments in a long
lecture video. We obtain the segmentation timestamps for
such courses directly by web scraping. (ii) The rest of the 10
courses7 have concepts that are presented as pre-segmented
short videos. Here, we re-assemble the small segments to
build the original complete lecture. We trim the intro and
outro from short video clips to avoid biasing the models to
identify the segments easily.

4. Lecture Segmentation
Our lecture segmentation approach involves three stages

(Fig. 3). In the first stage, we extract features from diverse
modalities of the lecture (Sec. 4.1 and Fig. 3a). In the sec-
ond stage, we learn lecture-aware representations by align-
ing the visual content with the corresponding narration us-
ing self-supervision (Sec. 4.2 and Fig. 3b). Finally, we per-
form segmentation using TW-FINCH [45] on the learned
representations (Sec. 4.3 and Fig. 3c).

4.1. Video clip feature extraction

We divide a lecture into small clips of 10-15 seconds
while ensuring that subtitles are not split. This clip is a ba-
sic unit for segmentation, i.e. segmentation boundaries can
be placed before or after, not in between. The chosen du-
ration is small enough to not introduce boundary errors for
segmentation but big enough to contain meaningful infor-
mation about the lecture, as will also be shown empirically.
Video feature extraction. The visual clip representation
consists of three feature types: OCR, 2D, and 3D. The

6(i) e.g. Single Variable Calculus
7(ii) e.g. Classical Mechanics

OCR feature encodes the output text from an OCR API
using the BERT sentence transformer model. Specifically,
we use MPNet (all-mpnet-base-v2) [47, 53] from Hug-
gingFace to obtain a 768-dimensional vector that captures
the semantic information of the recognized text. The 2D
and 3D features are extracted using a video feature ex-
traction pipeline [36]. An ImageNet pre-trained Resnet-
152 [25] model produces 2D features at 1 fps while the 3D
features are extracted using the Kinetics [15] pre-trained
ResNeXt-101 [24] to obtain 1.5 features per second. We
apply max-pooling across the temporal dimension to obtain
2048-dimensional vectors, v2d and v3d respectively.

Text feature extraction uses the same model as used
for OCR. The text feature encodes the instructor’s spoken
words or subtitles corresponding to each video clip.

4.2. Learning joint text-video embeddings

Our approach transforms features from off-the-shelf
models into lecture-aware embeddings and is inspired by
popular works on instructional videos [36, 44].

Model architecture. Fig. 3b depicts our model used to
learn lecture-aware embeddings by matching the visual fea-
ture of a clip with its corresponding text pair. We first
extract the visual and textual features for a video clip C
and transcript (text) T using the feature extraction pipelines
described above. We pass the OCR feature through a
fully-connected layer to obtain a 2048-dimensional vec-
tor o, and concatenate it with v2d and v3d to form a
6144-dimensional vector c describing the clip C. Simi-
larly, the text feature vector (output of the transformer) is
passed through a fully connected layer to obtain a 4096-
dimensional vector t, representing text T . Next, we learn a
projection using the non-linear context gating [35, 36] de-
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fined as follows:

f(c) = (W c
1c + bc1) ⊙ σ(W c

2 (W
c
1c + bc1) + bc2) , (1)

g(t) = (W t
1t + bt1) ⊙ σ(W t

2(W
t
1t + bt1) + bt2) , (2)

where W c
1 ,W

c
2 ,W

t
1 ,W

t
2 and bc1, b

c
2, b

t
1, b

t
2 are learnable pa-

rameters, ⊙ is element-wise multiplication and σ is an
element-wise sigmoid. f(c) and g(t) are 4096-dimensional
embeddings, which are used later for the segmentation task.
Loss function. We train our embedding model’s parameters
with the max-margin ranking loss [27, 52]. Specifically, we
consider the (cosine) similarity score between a clip Ci and
transcript Tj as sij = ⟨f(ci), g(tj)⟩. We loop over paired
samples of a mini-batch B and compute the loss as∑
i∈B

∑
j∈N (i)

max(0, δ+sij−sii)+max(0, δ+sji−sii) , (3)

where sii corresponds to a positive (aligned) clip-transcript
pair (Ci, Ti) and should score high, while N (i) is the set of
negative pairs such that half the negative pairs are from the
same lecture and act as hard negatives, while the others stem
from other lectures [8, 36]. Our mini-batch size is |B|= 32
and the margin is set at δ = 0.1.

4.3. Lecture segmentation with learned embeddings

We extract clip and transcript embeddings from our joint
text-video model and concatenate them to obtain an overall
representation ϕi = [f(ci), g(ti)]. All such representations
of a lecture with N clips, {ϕ1, . . . , ϕN}, are passed to the
TW-FINCH algorithm [45] that encodes feature similarity
and temporal proximity as a 1-nearest-neighbor graph and
produces a clustering as shown in Fig. 3c. Specifically, we
denote the feature similarity between clips as Es and tem-
poral proximity as Eτ .

Es(m,n) =

{
1− ⟨ϕm, ϕn⟩ if m ̸= n ,

1 otherwise .
(4)

Eτ (m,n) =

{
|τm − τn|/T if m ̸= n ,

1 otherwise ,
(5)

where m,n ∈ [1, . . . , N ], τm and τn are timestamps for the
clips m and n and T is the total lecture duration.

We construct a fully-connected graph G with N nodes
that have edge distances obtained as a combination of
feature-space distances and temporal proximity

E(m,n) = Es(m,n) · Eα
τ (m,n) , (6)

where α acts as a further modulating factor. The graph G
is converted to a 1-nearest-neighbor graph by keeping only
one edge to the nearest node for each node based on the

edge distances defined in E, resulting in the first cluster-
ing partition. TW-FINCH [45] operates recursively and
merges clusters (nodes) by averaging their representations
and timestamps until the desired number of clusters (con-
nected components) is obtained. For more details, we re-
quest the reader to refer to Algorithm 1 and 2 in [45].

Note that the original algorithm [45] does not include an
α scaling factor, or considers it to be 1 (c.f . Eq. 6). How-
ever, we observed a few cases where this is unable to pro-
duce temporally consistent segments using our learned em-
beddings. As higher values of alpha amplify the strength of
the temporal proximity factor, incrementing it progressively
(e.g. by 0.1 steps) yields temporally consistent clusters.

5. Experiments
We evaluate our proposed approach for lecture segmen-

tation and present extensive ablation studies.

5.1. Experiment setup

Training procedure involves two stages. In the first stage,
we pre-train the embedding model (Sec. 4.2) on the Courses
without Segmentation (CwoS). In the second stage, we fine-
tune our embedding model on the Courses with Segmen-
tation (CwS) in an unsupervised manner. Note that we do
not update the feature extraction backbones (BERT, ResNet,
etc.). Next, we extract the visual and textual embeddings
from the trained model, which are used to perform seg-
mentation using the TW-FINCH algorithm. We evaluate
the segments obtained from TW-FINCH using five differ-
ent metrics described below. Additional training details can
be found in the supplementary material (Sec. E).

Evaluation dataset. We evaluate all 15 courses of CwS
to report performance. Our self-supervised fine-tuning pro-
cess can be easily extended to a new course that needs seg-
mentation. Further impact of pre-training and fine-tuning
strategies is evaluated in Sec. 5.3, Ablation 2.

Evaluation metrics. Normalized Mutual Information
(NMI) is a standard clustering metric [33]; Mean over
Frames (MoF), F1-score, and Intersection over union (IoU)
or the Jaccard index are standard metrics used in segmen-
tation (e.g. [45]); and Boundary Score @ k (BS@k), is the
average number of predicted boundaries matching with the
ground truth boundaries within a k second interval. Differ-
ent from the above metrics, BS@k measures the localiza-
tion of boundaries rather than the overlap of segments.

5.2. Comparison against Segmentation Baselines

We briefly describe the baselines below:

1. Naı̈ve. The video lecture is split into equal parts based
on the number of ground-truth (GT) segments.

2. Content-Aware Detector [2] is a shot/scene detection

5



Feature modality
Method visual textual learned NMI ↑ MOF ↑ IOU ↑ F1 ↑ BS@30 ↑

1 Naı̈ve (Equal Splits) - - - 71.8 75.5 62.7 74.0 32.5
2 Content-Aware Detector [2] ✓ - - 72.9 73.3 59.4 65.9 57.0
3 Text Tiling [5] - ✓ - 67.9 64.7 46.3 50.9 33.7
4 LDA [11] - ✓ - 70.0 72.4 57.6 68.2 38.8
5 K-Means - - ✓ 63.9 66.8 48.2 55.7 44.9
6 CTE [28] - - ✓ 67.2 67.3 48.1 57.3 41.5

7 ✓ - - 71.6 71.3 56.5 66.4 46.9
8 Vanilla TW-FINCH [45] - ✓ - 74.6 75.4 62.0 71.2 48.9
9 ✓ ✓ - 74.9 75.1 61.7 70.9 52.1

10 Ours - - ✓ 79.8 80.3 69.2 76.9 58.7

Table 1: Segmentation performance on all 350 lectures from 15 courses. Our approach outperforms all baselines. Here,
learned feature modality refers to the features extracted from our joint text-video embedding model (Sec. 4.2). For rows
2-4, the visual and textual feature modalities refer to the unprocessed lecture video or transcripts respectively. For rows 7-9,
visual and textual feature modalities refer to the features obtained from pre-trained backbones (ResNet or BERT, Sec. 4.1).

algorithm that detects jump cuts in a video by finding ar-
eas of high difference between two adjacent frames. While
there is no direct way to set the number of segments, we
search across several thresholds to generate the GT number
of segments to ensure a fair comparison.

3. Text Tiling utilizes only the transcripts to predict the
segments. We implement text tiling using the NLTK [5]
library. As there is no way to set the number of clusters, we
let the algorithm decide the appropriate number of clusters.

4. Latent Dirichlet Allocation (LDA) [1, 11] is a genera-
tive probabilistic model that automatically discovers hidden
topics based on a text corpora. LDA is used as a baseline in
identifying topic transitions in educational videos [22] and
many other topic modeling works [10, 50]. We train the
LDA model on the transcripts of AVLectures and represent
each clip as a distribution over topics. Finally, we use TW-
FINCH to perform lecture segmentation using these vectors.

5. K-Means clustering algorithm is applied to the learned
embeddings from our joint text-video embedding model.

6. CTE [28] is a strong unsupervised approach that in-
fuses features with relative temporal information and clus-
ters them using K-Means. We report CTE scores using
learned embeddings from our joint model.

7. Vanilla TW-FINCH [45]. Visual and textual features
from the feature extraction pipeline in Sec. 4.1 are adopted
here (no lecture-awareness). We apply the TW-FINCH seg-
mentation algorithm directly on these features.

We compare all baselines against our approach and re-
port performance in Table 1. For K-Means (row 5) and CTE
(row 6), we report the best performance with learned fea-
tures, while detailed ablations are presented in the Sec. D
of the supp. mat. We observe that the Naı̈ve baseline (row

1) performs quite well, and in fact outperforms strong base-
lines with learned features such as K-Means (row 5) and
CTE (row 6). This may be due to an inherent bias of the in-
structor spending close to equal amounts of time on various
sub-topics of the lecture (supp. mat. Sec. D digs deeper into
this). The text-only approach, Text Tiling (row 3) lags be-
hind the visual-only approach Content-Aware Detector (row
2) as the latter performs specially well on non-blackboard
courses (see Fig. 5). An additional factor is that we are un-
able to select the ground-truth number of clusters for Text
Tiling. Our approach (row 10) outperforms all baselines. In
fact, the gap between our approach and Vanilla TW-FINCH
baselines (rows 7-9) highlights the importance of training
lecture-aware representations using the joint text-video em-
bedding model, as even a combination of both modalities
(row 9) falls short of our approach by almost 5% on NMI.
This emphasizes the importance of learning lecture-aware
embeddings in a self-supervised manner.

We further analyze the results by slicing lectures based
on the number of GT segments in Fig. 4. Our method out-
performs all the other baselines irrespective of the num-
ber of segments in the ground truth, indicating the robust-
ness of our approach. Another way is to slice the data
based on presentation mode, specifically blackboard and
non-blackboard. Fig. 5 shows a similar trend, our approach
outperforms all baselines in both scenarios. Interestingly,
the Naı̈ve baseline works well for blackboard lectures (per-
haps indicative of relatively equal time allocation across
sub-topics), while slide-based lectures with clear transitions
are segmented well by the visual Content-Aware Detector.

5.3. Ablation Studies

We present various ablation studies to understand the
contributing factors to our approach’s performance.

6
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Figure 5: Comparing NMI across all methods grouped by
presentation mode: blackboard and non-blackboard.

Features Metrics
2D 3D OCR NMI ↑ MOF ↑ IOU ↑ F1 ↑ BS@30 ↑

✓ - - 76.6 76.8 64.4 73.0 54.4
- ✓ - 75.1 76.0 62.9 72.2 50.7
- - ✓ 78.9 79.7 68.2 76.2 57.7
✓ ✓ - 76.6 77.0 64.7 73.5 53.9
✓ - ✓ 79.5 80.3 69.1 76.9 58.6
- ✓ ✓ 78.4 79.5 68.3 76.4 57.9
✓ ✓ ✓ 79.8 80.3 69.2 76.9 58.7

Table 2: Impact of visual features.

1. How important is each visual feature? To understand
the impact of each individual visual feature, we train sepa-
rate models on all combinations of visual features and report
performance in Table 2. We observe that although the indi-
vidual features perform reasonably well, OCR outperforms
2D and 3D representations, and it is the combination of all
features that outperforms all other variations.

2. Impact of training datasets. Educational lecture
videos are very different compared to instructional videos

PT FT NMI ↑ MOF ↑ IOU ↑ F1 ↑ BS@30 ↑

1 HowTo100M - 73.0 58.8 68.3 73.0 48.5
2 HowTo100M CwS 74.5 75.1 61.5 71.0 49.7
3 - CwS 78.5 79.0 67.2 75.3 57.2
4 CwoS - 77.7 78.0 66.0 74.2 57.1
5 CwoS CwS 79.8 80.3 69.2 76.9 58.7

Table 3: Impact of pre-training (PT) on HowTo100M or
CwoS. The second column indicates whether unsupervised
fine-tuning (FT) is performed on CwS.

Embed. type NMI ↑ MOF ↑ IOU ↑ F1 ↑ BS@30 ↑

Visual 78.6 79.1 67.7 75.7 57.9
Textual 75.6 77.0 64.4 73.5 50.3
Visual + Textual 79.8 80.3 69.2 76.9 58.7

Table 4: Impact of different embedding modalities.

or movies. Lecture videos typically have much less dy-
namic visual content and compensate for this through sub-
stantial amounts of textual information, both accompany-
ing (narrated speech/transcripts) and even inside the video
(which we extract using OCR). As a result, the represen-
tations learned from instructional videos may not transfer
well to the tasks in the education domain, necessitating a
collection of lecture videos for learning representations.

We validate the above claim by showing that pre-training
on AVLectures is more effective than pre-training on the
general instructional videos (e.g. HowTo100M) for the lec-
ture segmentation task, see Table 3. While using a model
to improve representations is clearly better than the naı̈ve
baseline (NMI 73.0 vs. 71.8), we can see that a model
pre-trained on AVLectures (rows 3-5) outperforms a model
pre-trained on HowTo100M (rows 1-2) consistently. This
strengthens our dataset contribution and highlights the im-
portance of pre-training on AVLectures for tasks in the ed-
ucation domain. In row 4, though the model is trained only
on CwoS, it is able to generalize well to unseen courses
and predict reasonable segmentation boundaries. After fine-
tuning the model on CwS we get a slight boost in perfor-
mance (row 5). Row 5 outperforms row 3 that is trained
only on CwS, justifying our adoption of pre-training on
CwoS followed by fine-tuning on CwS. Note that all the
training is performed in an unsupervised manner and only
applies to the text-video embedding model.
3. Impact of modalities. From the joint text-video embed-
ding model we can extract visual and textual embeddings.
We compare visual-only, textual-only, and a concatenation
of visual and textual learned embeddings in Table 4. A com-
bination of both modalities shows best results.
4. Impact of lecture clip duration. Works on instructional
videos such as [34, 36] typically split videos into short clips
of 4s. We perform an experiment to determine an appropri-
ate clip duration for lecture videos: 4-8s, 10-15s, or 20-25s.
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Beyond the well-mixed room
(Physics of COVID-19 Transmission)

Figure 6: Segmentation examples for three lectures. Our approach closely resembles the ground-truth. Best viewed in color.

PT FT Duration NMI ↑ MOF ↑ IOU ↑ F1 ↑ BS@30 ↑

4-8 53.2 58.7 53.0 40.9 26.4
✓ - 10-15 77.7 78.0 66.0 74.2 57.1

20-25 73.9 77.0 64.6 74.8 36.7

4-8 54.6 60.0 54.1 42.2 26.6
✓ ✓ 10-15 79.8 80.3 69.2 76.9 58.7

20-25 74.5 77.7 65.6 75.6 36.8

Table 5: Performance for different clip durations (in sec-
onds). PT: Pre-training on CwoS, FT: Fine-tuning on CwS.

The results reported in Table 5 coincide with our expec-
tations that 4-8s clips are too short to capture meaningful
information while 20-25s clips are harder to represent due
to the pooling operation and also cause a significant drop
in BS@30 due to their longer duration. Clips of 10-15s
are a good compromise and span meaningful lecture con-
tent while not losing information to pooling.
Additional ablations on the number of GT segments, max-
margin vs. contrastive loss, different language models, em-
bedding dimension, and evaluation of BS@k at multiple
values of k are presented in Sec. D of the supp. mat.

5.4. Qualitative results

We visualize segmentation outputs for three video lec-
tures from different courses in Fig. 6 and compare our
method with all other baselines. It is clear that our method
yields better segments (overlap) and boundaries as opposed
to other methods that produce noisy segments. In the third
lecture, the first and second predicted segments of our ap-
proach are different from the GT while the other boundaries
are detected correctly. We explain failure cases in Sec. B
and show more results in Sec. F of the supp. mat.

An additional problem that can be addressed using the
embeddings learned from our joint text-video model is the
text-to-video retrieval task. Given a text query, we retrieve
a list of lecture clips for which the similarity scores with
the text query are the highest. Fig. 7 shows some of the
retrieved clips for various text queries. We can see that our
model is able to relate the visual notion of graphs with the
word. Similar results are observed for the other queries.
Sec. F of the supp. mat. shows many more examples.

      Graphs

      Newton’s Laws

      Logic Gates

Figure 7: Examples of text-to-video retrieval for different
queries using our learned joint embeddings. Our model is
able to retrieve relevant lecture clips based on the query.

6. Conclusion

We made two significant contributions. We introduced
AVLectures, a large-scale audio-visual lectures dataset
sourced from MIT OpenCourseWare, with 86 courses
and over 2,350 lectures from various STEM subjects and
showed it’s efficacy for pre-training on tasks in the edu-
cational domain. We also formulated unsupervised lec-
ture segmentation and proposed an approach that learns
multimodal representations by matching the narration with
temporally aligned visual content. When used with TW-
FINCH, the learned embeddings resulted in significant per-
formance improvements and highlighted the importance of
both the visual and the textual modalities. Thorough exper-
iments demonstrated that our approach outperforms multi-
ple baselines while comprehensive ablation studies identi-
fied the key factors that lead to the success of our approach:
textual and visual representations with all 3 features (2D,
3D, OCR) and the pre-training and fine-tuning strategy.
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ported by the Google Cloud Research Credits program with
the award GCP19980904. We thank MIT-OCW for mak-
ing their content publicly available. We thank Vinay Nam-
boodiri for initial discussions on this project. This work is
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Unsupervised Audio-Visual Lecture Segmentation
Supplementary Material

The supplementary material is structured as follows: In
Sec. A we present details about the vocabulary of AVLec-
tures. Next, we analyze a failure case example of segmen-
tation in Sec. B. In Sec. C we provide details on segmenting
the lectures manually. Further, we discuss some more abla-
tion studies in Sec. D and training details in Sec. E. Next,
we provide additional qualitative results for both the text-
to-video retrieval as well as the lecture segmentation task in
section Sec. F. Finally, we report segmentation scores for
each of the 15 courses in Sec. G.

A. AVLectures Dataset: Additional Details
AVLectures has a vocabulary size of around 13,000

words with over 7.1M words in total. Fig. 8 shows the dis-
tribution of the most occurring words in the dataset. AVLec-
tures is currently dominated by STEM courses, primar-
ily Electrical Engineering & Computer Science, Physics,
and Mathematics, which is evident from the word cloud in
Fig. 8. In our dataset, we have a good mix of old and new
courses, as seen in Fig. 9, with the majority being recorded
in the last decade.
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Figure 8: Wordcloud summarizing the distribution of fre-
quently occurring words in AVLectures.

B. Deep dive into the failure case
In this section, we provide more insights into a failure

case example of segmentation.
Consider Fig. 10, in which the predicted segments from

our model are slightly different from the ground truth seg-
ments. However, segmentation is a subjective task, and
there can be more than one valid segmentation for some
lectures. Our aim in audio-visual lecture segmentation is to
temporally segment a lecture into several smaller segments,
such that each segment represents a unique concept/sub-
topic. Consider a case in which a single concept can be
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Figure 9: Courses from AVLectures that are recorded over
the last 2 decades.
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Figure 10: Example of segmentation where the predicted
segments differ slightly from the ground truth segments.

divided into two smaller concepts. In this case, two valid
segmentations are possible: (i) the single concept consid-
ered as one complete segment or (ii) the two smaller con-
cepts considered as two separate segments.

Now we compare the Ground Truth (GT) segmentation
with the segmentation predicted by our model for the lec-
ture Implicit differentiation of the Single Variable Calculus
course8. We will refer to the ith segment of Ground Truth
as GTi and that of the segment predicted by our model as
Predi for the rest of this section. Also, let len(segment)
represent the total duration (or the length) of the segment.

GT1 and Pred1 are about the introduction to implicit
differentiation. However, Pred1 is slightly longer as it in-
cludes the part where the professor greets the late-coming
students. However, this non-lecture segment is a part of
GT2 and the rest of it is similar to the Pred2, which covers
the topic of the rational exponent rule. The ending bound-

8 Implicit differentiation lecture video
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Lecture Method NMI MOF IOU F1 BS@30

Green’s A-1 98.0 99.6 99.0 99.5 100.0
Theorem A-2 76.1 75.2 55.8 63.1 66.7

Ours 86.7 95.4 88.8 94.0 66.7

Parametric A-1 89.7 92.6 87.8 93.0 66.7
Equations A-2 81.4 77.5 63.1 74.2 50.0

Ours 86.6 84.8 76.3 84.1 66.7

Table 6: Inter-Annotator segmentation scores. Here, A-
1 stands for Annotator-1, A-2: Annotator-2, Ours: Our
model’s prediction.

ary of GT2 is approximately equal to that of Pred2. Also,

len(GT1) + len(GT2) ≈ len(Pred1) + len(Pred2)

GT3 discusses the calculation of the slope of the tan-
gent to a circle using the direct method and GT4 using the
implicit method. However, Pred3 combines both the seg-
ments into one. The ending boundary of GT4 is close to that
of Pred3. Also,

len(GT3) + len(GT4) ≈ len(Pred3)

Next, GT5 is an example involving a fourth-order equation.
In the case of predicted segmentation, the example is di-
vided into two segments Pred4 and Pred5, which corre-
spond to the two steps involved in solving it. This is an
error made by our model as it breaks the two-step solution,
however, it is nice to observe that the split is still at a mean-
ingful location. The ending boundary of GT5 is approxi-
mately equal to that of Pred5. Also,

len(GT5) ≈ len(Pred4) + len(Pred5)

The last three segments of GT are about the derivatives of
inverse functions and a couple of examples. Among the
last three predicted segments, segment 6 and segment 7 are
about the derivatives of inverse functions and the problem
statement of the examples. The final predicted segment cov-
ers the solution to both the examples.

len(GT6) + len(GT7) + len(GT8)

≈ len(Pred6) + len(Pred7) + len(Pred8)

Hence, even though the predicted segmentation is slightly
different from the GT segmentation, it is still a valid seg-
mentation.

C. Inter-annotator variation
To further analyze the subjective nature of the segmen-

tation task, we asked two annotators to independently seg-
ment a few lectures to check the agreement with the cor-
responding ground truth segmentation and among them-
selves. Fig. 11 shows two such results. In the first ex-
ample, Annotator-1 considered the topic and its example

Ground Truth
Annotator - 1
Annotator - 2

Our model’s prediction

Ground Truth
Annotator - 1
Annotator - 2

Our model’s prediction

Green’s Theorem
(Multivariable Calculus)

Parametric Equations
(Single Variable Calculus)

Figure 11: Segmentation of two lectures done manually by
two annotators.

Method Partition NMI ↑ MOF ↑ IOU ↑ F1 ↑ BS@30 ↑

2nd last 63.7 61.7 59.5 42.6 42.3
Ours 3rd last 72.1 59.7 39.1 42.7 65.2

GT 79.8 80.3 69.2 76.9 58.7

2nd last 58.6 58.9 54.1 40.5 27.0
Naive 3rd last 66.9 51.2 33.8 39.3 38.9

GT 71.8 75.5 62.7 74.0 32.5

Table 7: Allowing TW-FINCH to estimate the number of
clusters.

to be the same segment, whereas Annotator-2 split them
into two separate segments. We can see that even though
the Annotator-2’s segmentation does not match with the
Ground Truth, it is still a valid segmentation. Also, our
model predicts segments that are closer to that of GT and
Annotator-1. In the second example, our model predicts
the first two segments in line with Annotator-2’s segments
while the rest of the segments are similar to that of GT and
Annotator-1’s segments. In Table 6, we provide quantitative
results of segmentation done by each of the annotators, as
well as the prediction from our model with respect to MIT
OCW’s ground truth.

D. Additional Ablation studies

1. What if the number of segments is unknown? It is not
trivial to guess the ideal number of segments for the unseen
lectures. In such cases, we let the TW-FINCH algorithm
decide the appropriate number of clusters. TW-FINCH pro-
duces a hierarchy of partitions where the number of clusters
reduces with successive partitions. We use the 2nd- and the
3rd-last partitions to estimate the number of segments auto-
matically and report performance in Table 7. We also report
scores for the Naı̈ve baseline on the above partitions as well.
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In addition to the usual metrics we also compute the L1
distance between the ground-truth number of clusters and
the number of automatically estimated clusters for both the
partitions. The L1 distance between the last and 2nd-last
partition is 8.554 and that of 3rd-last is 4.614. The 3rd-
last partition has a lower L1 score compared to the 2nd-last
partition. This, along with the other metrics, indicates that
the number of clusters generated by the 3rd-last partition is
closer to the ground-truth.

Language Model NMI ↑ MOF ↑ IOU ↑ F1 ↑ BS@30 ↑
Word2Vec 78.9 79.7 68.4 76.4 58.2
mpnet-v1 79.1 79.7 68.3 76.2 58.4
mpnet-v2 79.8 80.3 69.2 76.9 58.7

Table 8: Impact of different Language Models.

2. Using different language embedding models. In this
study, we experiment with three different text embeddings,

1. word2vec: We first preprocess the transcripts by re-
moving the most common stop words. Next, we ex-
tract the word embeddings from the GoogleNews pre-
trained word2vec model [37]. word2vec encodes each
word into to a 300-dimensional vector.

2. multi-qa-mpnet-base-dot-v1 (mpnet-v1 in Ta-
ble 8): This is a sentence transformer BERT model
that uses the pre-trained MPNet [47] model and is
trained on 215M (question, answer) pairs from diverse
sources. This model encodes the transcripts into a 768-
dimensional vector.

3. all-mpnet-base-v2 (mpnet-v2 in Table 8): This
model uses the pre-trained MPNet [47] model and is
fine-tuned on a 1B sentence pairs dataset using a con-
trastive learning objective: given a sentence from the
sentence pairs, the model should predict which sen-
tence from a randomly sampled other sentences was
paired with it. This is the same model that was de-
scribed in the Main paper Sec. 4.1.

The results of all three models are reported in Table 8. Al-
though, the all-mpnet-base-v2 model performs slightly
better when compared to the other two text embedding mod-
els the scores are almost similar in all three variations. The
results show that there is no significant impact on the type
of text embeddings that are used to train the model.
3. How does the model’s embedding dimension affect the
performance of segmentation? We train the model with
four different output embedding dimensions: 512, 1024,
2048 and 4096. It can be seen from Table 9 that the learned
features are robust and independent of the feature dimen-
sion and therefore has little impact on the overall perfor-
mance of the model on the segmentation task. Although

Embed. dim. NMI ↑ MOF ↑ IOU ↑ F1 ↑ BS@30 ↑
512 79.3 79.7 68.3 76.1 59.7
1024 79.3 80.3 68.9 76.7 59.0
2048 79.8 80.4 69.4 77.1 59.6
4096 79.8 80.3 69.2 76.9 58.7

Table 9: Impact of different embedding dimension.

the embedding dimensions 2048 and 4096 perform slightly
better than the rest.

Feature modality
visual textual learned NMI ↑ MOF ↑ IOU ↑ F1 ↑ BS@30 ↑

1 ✓ - ✗ 53.1 58.6 38.2 46.2 37.5
2 - ✓ ✗ 48.5 55.1 33.5 41.0 34.3
3 ✓ ✓ ✗ 53.1 58.9 38.6 46.5 37.9
4 ✓ - ✓ 63.9 66.8 48.2 55.7 44.9
5 - ✓ ✓ 49.2 56.4 35.0 42.4 33.7
6 ✓ ✓ ✓ 60.2 64.9 46.0 53.3 44.1

Table 10: Impact of different feature modalities on K-
Means

Feature modality
visual textual learned NMI ↑ MOF ↑ IOU ↑ F1 ↑ BS@30 ↑

1 ✓ - ✗ 65.0 65.4 45.9 55.4 38.6
2 - ✓ ✗ 67.2 68.1 49.6 59.4 35.3
3 ✓ ✓ ✗ 66.3 66.5 47.4 57.0 39.8
4 ✓ - ✓ 67.1 67.2 48.2 57.6 41.0
5 - ✓ ✓ 64.7 65.7 45.4 54.8 35.6
6 ✓ ✓ ✓ 67.2 67.3 48.1 57.3 41.5

Table 11: Impact of different feature modalities on CTE

4. Impact of different feature modalities on K-Means
and CTE [28] We show the segmentation results for K-
means and Continuous Temporal Embedding [28] (CTE) on
the features extracted using the pipeline (Sec. 4.1 Main Pa-
per) as well as on the learned embeddings from our joint
text-video model. The scores are shown in Table 10 and 11.
For K-Means, the learned visual embeddings (row 4) and
the combination of learned visual and textual embeddings
(row 6) outperforms all other variations by a good mar-
gin. The results highlight the importance of training lecture-
aware representations using our joint text-video embedding
model. For CTE, even though all the scores are relatively
closer to each other, the one that uses text features (BERT
embeddings) (row 2) and a combination of learned visual
and textual embeddings (row 6) perform the best. Note that
using a combination of learned visual and textual embed-
dings results in the highest boundary score, highlighting the
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Method NMI ↑ MOF ↑ IOU ↑ F1 ↑ BS@30 ↑

NCE 70.6 71.5 56.3 66.3 43.2
Ours 79.8 80.3 69.2 76.9 58.7

Table 12: Segmentation performance when lecture-
transcript alignment is done using Noise Contrastive Esti-
mation (NCE) loss.

importance of our learned representations in predicting bet-
ter boundaries.

5. Deeper analysis on Naı̈ve method performing well. As
discussed in the paper, one reason why the Naı̈ve method is
effective is due to an inherent bias of the instructor spending
almost equal amounts of time on different topics in certain
lectures. For example, consider a lecture on Multivariate
Calculus9. Here each of the segment is approximately 16
minutes, thus giving an upper-hand to the naive method.
Upon further analysis, we observe that 73 of 350 lectures
(nearly 20 % of CwS) have GT segment boundaries within
3 minutes to the boundaries suggested by the Naı̈ve base-
line. We perform an ablation study by varying the number
of splits obtained by automatically clustering lectures with
TW-FINCH. The results indicate that splitting lectures at
the ground truth number of segments gives a better segmen-
tation performance than splitting it in any other way, as seen
in Table 7.

6. Boundary scores at various intervals. We also perform
an ablation study by computing Boundary Scores at various
values of K, and it’s plot is shown in Fig. 12. Typically, the
instructor spends at least 25-30 seconds (in answering stu-
dent’s questions, erasing the blackboard etc.) before switch-
ing to new a topic. This was the reason behind reporting the
scores for BS@30 in the paper. As expected, all methods
perform worse for lower values of K and as K approaches
15, the use of 10-15s clip sizes hurts performance.

7. Impact of lecture-transcript alignment strategies. We
also compare our approach with a more popular approach
that uses Noise Contrastive Estimation (NCE) loss for align-
ing video-text pairs [34]. The results are reported in Ta-
ble 12. Our approach, which uses max-margin ranking loss
outperforms the NCE loss perhaps due to the scale of the
dataset and the limited number of negative samples in the
batch. We were unable to train with larger batch sizes due
to GPU memory restrictions.

E. Training details

We train our joint text-video embedding model’s param-
eters with the max-margin ranking loss. We use a mini-
batch size of 32. Our model is trained on a 1080ti NVIDIA

9Multivariate Calculus - segment-1, segment-2, segment-3
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Figure 12: Boundary scores at different values of K.

GPU using Adam optimizer with a learning rate of 1e-4 and
a learning rate decay of 0.9. We use the same hyperparam-
eters for both the pre-training and fine-tuning.

F. Additional Qualitative Results: Retrieval
and Segmentation

This section shows additional qualitative results for the
text-to-video retrieval and the lecture segmentation task.
Fig. 13 shows some of the retrieved clips for different text
queries like graphs coloring, operating systems, etc. We
also tested a query erasing board to check the model’s
comprehension of non-conceptual keywords, as shown in
the last example of the figure. Although this query is not
present in the transcript, it still correctly retrieves the clips
in which the professor erases the blackboard. This demon-
strates the importance of pre-training on the CwoS dataset.

Fig. 14 shows more qualitative results from the lecture
segmentation task for lectures from different courses. Re-
gardless of the number of segments, our method yields
better segmentation length and boundaries when compared
with the other baselines.

G. Course-wise segmentation results
We report the top 5 segmentation scores for each of the

courses of the CwS dataset across all of its lectures in Ta-
ble 13. The mapping between the course ID and the course
name is shown in Table 14, along with other metadata like
the subject area, number of lectures, the average number of
segments, and the presentation mode. As seen in the table,
our method outperforms all of the other baselines for the
majority of the courses. However, there are a few courses
(mit032, mit035, mit038, and mit049) for which the Con-
tent Aware Detector baseline has scores better than the other
methods. These are the courses where we combine the indi-

14

https://ocw.mit.edu/courses/18-02sc-multivariable-calculus-fall-2010/resources/clip-equations-of-planes-1/
https://ocw.mit.edu/courses/18-02sc-multivariable-calculus-fall-2010/resources/clip-linear-systems-and-planes/
https://ocw.mit.edu/courses/18-02sc-multivariable-calculus-fall-2010/resources/clip-solutions-to-square-systems/


      operating system

      graphs coloring
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M   mass and energy

      aerosol droplet

E    erasing board

Figure 13: Text-to-video retrieval results on six queries. The figure shows the thumbnails of the top 3 retrieved lecture clips
from our model. Our model is able to retrieve relevant lecture clips according to the query.
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Figure 14: Segmentation examples for six lectures from different courses with varying a number of segments.

vidual shorter video segments to form the complete lecture.
Since each of these shorter video segments was filmed inde-
pendently, the lighting/camera angle may have been slightly
different for each of these segments. This makes it easier for
the Content Aware Detector to predict accurate boundaries.
For the other courses, the Content Aware Detector scores
are considerably lower than most of the other baselines and
our model. All in all, our model outperforms all of the other
baselines on an average across all the lectures of the CwS

dataset easily, as shown in the last panel of Table 13.
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Course ID Method NMI MOF IOU F1 BS@30 Course ID Method NMI MOF IOU F1 BS@30

Naı̈ve 72.1 63.9 49.0 61.6 22.2 Naı̈ve 66.3 78.5 66.5 77.1 39.4
CAD 63.2 55.9 33.4 42.7 29.0 CAD 51.3 66.7 47.7 58.6 35.3

mit001 LDA 70.0 60.7 43.7 55.2 28.1 mit002 LDA 57.2 73.4 58.0 69.5 37.3
V-TWF 76.5 68.2 52.5 62.2 45.5 V-TWF 67.8 77.4 64.7 73.7 54.1

Ours 76.5 68.4 52.3 62.2 44.2 Ours 75.0 83.9 73.9 80.6 57.3

Naı̈ve 72.0 79.0 67.7 78.0 47.3 Naı̈ve 75.8 83.2 72.1 82.8 29.8
CAD 96.1 96.0 94.9 94.8 94.8 CAD 94.9 94.0 89.8 92.1 91.4

mit032 LDA 68.4 75.9 62.0 72.3 50.7 mit035 LDA 70.2 74.0 60.0 72.0 28.0
V-TWF 78.7 80.4 71.0 78.2 72.4 V-TWF 71.3 70.5 56.6 67.5 39.2

Ours 87.8 88.2 81.9 86.3 86.5 Ours 77.3 79.6 69.0 78.2 45.7

Naı̈ve 73.0 82.1 70.9 81.7 26.3 Naı̈ve 70.1 78.9 67.1 77.4 44.8
CAD 98.0 97.1 95.8 96.8 96.7 CAD 76.6 77.5 61.8 66.9 70.7

mit038 LDA 69.7 73.9 59.7 71.0 27.2 mit039 LDA 78.2 82.3 69.7 77.7 62.2
V-TWF 74.6 77.6 64.2 73.6 42.7 V-TWF 76.8 81.2 69.2 77.5 57.6

Ours 76.7 78.9 66.9 75.8 45.8 Ours 83.4 86.0 77.6 83.2 75.6

Naı̈ve 73.0 72.9 58.7 71.4 26.2 Naı̈ve 74.4 76.0 63.1 74.5 30.0
CAD 94.3 89.5 84.3 86.5 90.1 CAD 57.7 56.2 35.7 44.8 26.0

mit049 LDA 78.8 79.7 66.4 76.6 47.4 mit057 LDA 68.6 67.1 51.3 62.8 30.6
V-TWF 82.2 79.8 66.6 74.3 62.9 V-TWF 71.2 69.3 53.7 65.2 32.8

Ours 84.4 84.7 73.8 81.4 63.2 Ours 76.3 76.0 62.8 72.4 41.2

Naı̈ve 74.5 77.2 65.0 76.2 34.6 Naı̈ve 73.9 72.4 58.7 71.4 24.1
CAD 57.8 57.1 35.6 45.6 24.2 CAD 68.3 57.5 37.4 47.4 42.1

mit075 LDA 74.0 73.8 59.8 70.2 40.3 mit088 LDA 76.9 72.2 58.2 68.6 46.0
V-TWF 72.2 71.5 56.7 67.6 35.4 V-TWF 79.2 71.7 57.2 66.1 54.2

Ours 73.4 74.8 60.6 71.3 35.2 Ours 80.3 74.8 61.8 71.0 56.0

Naı̈ve 65.7 81.6 70.2 80.4 43.8 Naı̈ve 67.0 66.6 51.1 63.5 21.7
CAD 63.0 75.3 61.2 68.9 58.7 CAD 52.0 57.9 33.6 42.1 27.5

mit097 LDA 65.8 79.6 66.2 74.8 56.5 mit126 LDA 67.7 68.0 52.5 63.8 24.4
V-TWF 72.3 81.9 71.5 79.7 67.3 V-TWF 69.0 69.1 51.5 62.1 39.4

Ours 79.2 86.1 77.5 83.9 72.4 Ours 72.4 71.1 56.4 66.4 41.5

Naı̈ve 76.1 65.2 47.8 60.3 23.3 Naı̈ve 77.1 68.6 53.5 65.5 25.8
CAD 76.7 66.9 59.0 60.3 63.6 CAD 86.5 76.7 65.1 71.2 70.1

mit151 LDA 77.0 66.9 50.4 61.0 27.4 mit153 LDA 77.7 68.6 50.7 61.1 39.8
V-TWF 85.2 79.4 64.0 73.2 50.4 V-TWF 85.3 77.5 64.2 72.0 65.4

Ours 95.1 93.6 84.7 88.0 84.6 Ours 90.8 84.7 74.6 79.9 78.8

Naı̈ve 81.2 85.6 76.4 85.5 31.6 Naı̈ve 71.8 75.5 62.7 74.0 32.5
CAD 95.8 91.7 88.7 91.0 92.5 Average CAD 72.9 73.3 59.4 65.9 57.0

mit159 LDA 78.6 76.8 65.9 75.6 31.3 (across all LDA 70.0 72.4 57.6 68.2 38.8
V-TWF 81.8 80.9 69.7 77.6 61.2 the 350 lectures) V-TWF 74.9 75.1 61.7 70.9 52.1

Ours 98.4 99.4 98.8 99.4 97.2 Ours 79.8 80.3 69.2 76.9 58.7

Table 13: Course-wise segmentation scores. Here, CAD stands for Content Aware Detector, V-TWF : Vanilla TW-FINCH
applied on the concatenation of visual and textual features. The last panel shows the average scores across all the 350 lectures
of the CwS dataset.
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Course ID Course Name Subject area # Lectures Avg. # segments Mode

mit001 Single Variable Calculus Mathematics 35 7.9 Blackboard
mit002 Multivariable Calculus Mathematics 35 3.2 Blackboard
mit032 Classical Mechanics Physics 38 4.3 Digital Board
mit035 Quantum Physics I Physics 24 4.8 Blackboard
mit038 Quantum Physics III Physics 24 4.2 Blackboard
mit039 Introduction to Special Relativity Physics 12 4.2 Digital Board
mit049 Introduction to Nuclear and Particle Physics Physics 11 6.1 Digital Board
mit057 Introduction to Psychology BCS 24 5.5 Blackboard
mit075 Principles of Microeconomics Economics 26 5.1 Blackboard
mit088 Computation Structures EECS 21 6.6 Slides
mit097 Mathematics for Computer Science EECS 35 3.2 Slides
mit126 Engineering Dynamics ME 27 5.3 Blackboard
mit151 Physics of COVID-19 Transmission Biology 4 9.4 Digital Board
mit153 Introduction to Probability EECS 26 9.3 Slides
mit159 Learn Differential Equations Mathematics 8 6.9 Blackboard

Table 14: Mapping between course IDs and course names along with additional metadata. Here, BCS stands for Brain and
Cognitive Sciences, EECS - Electrical Engineering and Computer Science, and ME - Mechanical Engineering.
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