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Abstract

Dense video understanding requires answering several questions such as who is
doing what to whom, with what, how, why, and where. Recently, Video Situation
Recognition (VidSitu) is framed as a task for structured prediction of multiple
events, their relationships, and actions and various verb-role pairs attached to
descriptive entities. This task poses several challenges in identifying, disambiguat-
ing, and co-referencing entities across multiple verb-role pairs, but also faces
some challenges of evaluation. In this work, we propose the addition of spatio-
temporal grounding as an essential component of the structured prediction task in
a weakly supervised setting, and present a novel three stage Transformer model,
VideoWhisperer, that is empowered to make joint predictions. In stage one, we
learn contextualised embeddings for video features in parallel with key objects
that appear in the video clips to enable fine-grained spatio-temporal reasoning.
The second stage sees verb-role queries attend and pool information from object
embeddings, localising answers to questions posed about the action. The final
stage generates these answers as captions to describe each verb-role pair present
in the video. Our model operates on a group of events (clips) simultaneously and
predicts verbs, verb-role pairs, their nouns, and their grounding on-the-fly. When
evaluated on a grounding-augmented version of the VidSitu dataset, we observe a
large improvement in entity captioning accuracy, as well as the ability to localize
verb-roles without grounding annotations at training time.

1 Introduction

At the end of The Dark Knight, we see a short intense sequencethat involves Harvey Dent toss a coin
while holding a gun followed by sudden action. Holistic understanding of such a video sequence,
especially one that involves multiple people, requires predicting more than the action label (what
verb). For example, we may wish to answer questions such as who performed the action (agent),
why they are doing it (purpose / goal), how are they doing it (manner), where are they doing it
(location), and even what happens after (multi-event understanding). While humans are able to
perceive the situation and are good at answering such questions, many works often focus on building
tools for doing single tasks, e.g. predicting actions [8] or detecting objects [2, 4] or image/video
captioning [19, 29]. We are interested in assessing how some of these advances can be combined for
a holistic understanding of video clips.

A recent and audacious step towards this goal is the work by Sadhu et al. [28]. They propose Video
Situation Recognition (VidSitu), a structured prediction task over five short clips consisting of three
sub-problems: (i) recognizing the salient actions in the short clips; (ii) predicting roles and their
entities that are part of this action; and (iii) modelling simple event relations such as enable or
cause. Similar to the predecessor image situation recognition (imSitu [40]), VidSitu is annotated
using Semantic Role Labelling (SRL) [22]. A video (say 10s) is divided into multiple small events
(~2s) and each event is associated with a salient action verb (e.g. hir). Each verb has a fixed set
of roles or arguments, e.g. agent-Arg0, patient-Argl, tool-Arg2, location-ArgM(Location), manner-
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ArgM(manner), etc., and each role is annotated with a free form text caption, e.g. agent: Blonde
Woman, as illustrated in Fig. 1.

Grounded VidSitu. VidSitu poses
various challenges: long-tailed distri-
bution of both verbs and text phrases,
disambiguating the roles, overcoming
semantic role-noun pair sparsity, and
co-referencing of entities in the en-
tire video. Moreover, there is ambi-
guity in text phrases that refer to the

same unigue entity (e.g. “man in white
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Event N

shirt” or “man with brown hair”). A Argo (Roller) Boy in striped shirt | | Argo (Hitter) Man in armor Arg0 (Elevator) | Blonde woman
. . Argl (Thing rolled) | Himself Argl (Thing hit) | Bald man Argl (Thing ift) | Her phone
model may fail to understand which ArgM (Direction) | back and forth Arg2 (instrument) | spear ArgM (Direction) | Up
attributes are important and may bias Arg Scene Backyard Arg Scene Arena ArgM (Manner) | Quickly
: : V-N: Verb: Arg s An open field
towards a Spe(nﬁc Captlon (Or pattem M e Scene nopen 1o
. ; X ! Arg0 (Rubber) Person in blue shirt | | Argo (Wincer) Bald man
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multiple entities (e.g. agent and pa- rg Scene an open feld

tient) have similar attributes and the
model predicts the same caption for
them (see Fig. 1). To remove biases
of the captioning module and gauge
the model’s ability to identify the role,
we propose Grounded Video Situation
Recognition (GVSR) - an extension
of the VidSitu task to include spatio-
temporal grounding. In addition to
predicting the captions for the role-
entity pairs, we now expect the struc-
tured output to contain spatio-temporal localization, currently posed as a weakly-supervised task.

Figure 1: Overview of GVSR: Given a video consisting of
multiple events, GVSR requires recognising the action verbs,
their corresponding roles, and localising them in the spatio-
temporal domain. This is a challenging task as it requires
to disambiguate between several roles that the same entity
may take in different events, e.g. in Video 2 the bald man
is a patient in event 1, but an agent in event N. Moreover,
the entities present in multiple events are co-referenced in all
such events. Colored arguments are grounded in the image
with bounding boxes (figure best seen in colour).

Joint structured prediction. Previous works [28, 38] modeled the VidSitu tasks separately, e.g. the
ground-truth verb is fed to the SRL task. This setup does not allow for situation recognition on a new
video clip without manual intervention. Instead, in this work, we focus on solving three tasks jointly:
(1) verb classification; (ii) SRL; and (iii) Grounding for SRL. We ignore the original event relation
prediction task in this work, as this can be performed later in a decoupled manner similar to [28].

We propose VideoWhisperer, a new three-stage transformer architecture that enables video under-
standing at a global level through self-attention across all video clips, and generates predictions for
the above three tasks at an event level through localised event-role representations. In the first stage,
we use a Transformer encoder to align and contextualise 2D object features in addition to event-level
video features. These rich features are essential for grounded situation recognition, and are used to
predict both the verb-role pairs and entities. In the second stage, a Transformer decoder models the
role as a query, and applies cross-attention to find the best elements from the contextualised object
features, also enabling visual grounding. Finally, in stage three, we generate the captions for each
role entity. The three-stage network disentangles the three tasks and allows for end-to-end training.

Contributions summary. (i) We present a new framework that combines grounding with SRL
for end-to-end Grounded Video Situation Recognition (GVSR). We will release the grounding
annotations and also include them in the evaluation benchmark. (ii) We design a new three-stage
transformer architecture for joint verb prediction, semantic-role labelling through caption generation,
and weakly-supervised grounding of visual entities. (iii) We propose role prediction and use role
queries contextualised by video embeddings for SRL, circumventing the requirement of ground-truth
verbs or roles, enabling end-to-end GVSR. (iv) At the encoder, we combine object features with video
features and highlight multiple advantages enabling weakly-supervised grounding and improving the
quality of SRL captions leading to a 22 points jump in CIDEr score in comparison to a video-only
baseline [28]. (v) Finally, we present extensive ablation experiments to analyze our model. Our
model achieves the state-of-the-art results on the VidSitu benchmark.



2 Related Work

Image Situation Recognition. Situation Recognition in images was first proposed by [10] where
they created datasets to understand actions along with localisation of objects and people. Another line
of work, imSitu [40] proposed situation recognition via semantic role labelling by leveraging linguistic
frameworks, FrameNet [3] and WordNet [20] to formalize situations in the form of verb-role-noun
triplets. Recently, grounding has been incorporated with image situation recognition [24] to add a
level of understanding for the predicted SRL. Situation recognition requires global understanding
of the entire scene, where the verbs, roles and nouns interact with each other to predict a coherent
output. Therefore several approaches used CRF [40], LSTMs [24] and Graph neural networks [14]
to model the global dependencies among verb and roles. Recently various Transformer [33] based
methods have been proposed that claim large performance improvements [6, 7, 36].

Video Situation Recognition. Recently, imSitu was extended to videos as VidSitu [28], a large scale
video dataset based on short movie clips spanning multiple events. Compared to image situation
recognition, VidSRL not only requires understanding the action and the entities involved in a single
frame, but also needs to coherently understand the entire video while predicting event-level verb-SRLs
and co-referencing the entities participating across events. Sadhu et al. [28] propose to use standard
video backbones for feature extraction followed by multiple but separate Transformers to model all
the tasks individually, using ground-truth of previous the task to model the next. A concurrent work
to this submission, [38], proposes to improve upon the video features by pretraining the low-level
video backbone using contrastive learning objectives, and pretrain the high-level video contextualiser
using event mask prediction tasks resulting in large performance improvements on SRL. Our goals
are different from the above two works, we propose to learn and predict all three tasks simultaneously.
To achieve this, we predict verb-role pairs on the fly and design a new role query contextualised
by video embeddings to model SRL. This eliminates the need for ground-truth verbs and enables
end-to-end situation recognition in videos. We also propose to learn contextualised object and video
features enabling weakly-supervised grounding for SRL, which was not supported by previous works.

Video Understanding. Video understanding is a broad area of research, dominantly involving
tasks like action recognition [5, 8, 9, 30, 35, 37], localisation [16, 17], object grounding [27, 39],
question answering [32, 41], video captioning [26], and spatio-temporal detection [9, 31]. These
tasks involve visual temporal understanding in a sparse uni-dimensional way. In contrast, GVSR
involves a hierarchy of tasks, coming together to provide a fixed structure, enabling dense situation
recognition. The proposed task requires global video understanding through event level predictions
and fine-grained details to recognise all the entities involved, the roles they play, and simultaneously
ground them. Note that our work on grounding is different from classical spatio-temporal video
grounding [42, 39] or referring expressions based segmentation [ 1] as they require a text query as
input. In our case, both the text and the bounding box (grounding) are predicted jointly by the model.

3 VideoWhisperer for Grounded Video Situation Recognition

We now present the details of our three stage Transformer model, VideoWhisperer. A visual overview
is presented in Fig. 2. For brevity, we request the reader to refer to [33] for now popular details of
self- and cross-attention layers used in Transformer encoders and decoders.

Preliminaries. Given a video V' consisting of several short events £ = {¢; }, the complete situation
in V, is characterised by 3 tasks. (i) Verb classification, requires predicting the action label v;
associated with each event e;; (ii) Semantic role labelling (SRL), involves guessing the nouns
(captions) C; = {C},} for various roles R; = {r|r € P(v;)Vr € R} associated with the verb v;. P
is a mapping function from verbs to a set of roles based on VidSitu (extended PropBank [22]) and R
is the set of all roles); and (iii) Spatio-temporal Grounding of each visual role-noun prediction C}; is
formulated as selecting one among several bounding box proposals 5 obtained from sub-sampled
keyframes of the video. We evaluate this against ground-truth annotations done at a keyframe level.

3.1 Contextualised Video and Object Features (Stage 1)

GVSR is a challenging task, that requires to coherently model spatio-temporal information to
understand the salient action, determine the semantic role-noun pairs involved with the action,
and simultaneously localise them. Different from previous works that operate only on event level
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Figure 2: VideoWhisperer: We present a new 3-stage Transformer for GVSR. Stage-1 learns the
contextualised object and event embeddings through a video-object Transformer encoder (VO),
that is used to predict the verb-role pairs for each event. Stage-2 models all the predicted roles by
creating role queries contextualised by event embeddings, and attends to all the object proposals
through a role-object Transformer decoder (RO) to find the best entity that represents a role. The
output embeddings are fed to captioning Transformer decoder (C) to generate captions for each role.
Transformer RO’s cross-attention ranks all the object proposals enabling localization for each role.

video features, we propose to model both the event and object level features simultaneously. We
use a pretrained video backbone ¢yiq to extract event level video embeddings x¢ = ¢yia(e;). For
representing objects, we subsample frames F = {f;}7_; from the entire video V. We use a pretrained
object detector ¢op; and extract top M object proposals from every frame. The box locations (along
with timestamp) and corresponding features are

B={bp},m=[1,....,M,t =[1,...,T], and {x%}M | = do;(f;) respectively. (1)
The subset of frames associated with an event e; are computed based on the event’s timestamps,
Fi=A{filei* <t < e} @

Specifically, at a sampling rate of 1fps, video V of 10s, and events e; of 2s each, we associate 3
frames with each event such that the border frames are shared. We can extend this association to all
object proposals based on the frame in which they appear and denote this as B;.

Video-Object Transformer Encoder (VO). Since the object and video embeddings come from
different spaces, we align and contextualise them with a Transformer encoder [33]. Event-level
position embeddings PE; are added to both representations, event x§ and object x7,, (¢t € F;). In
addition, 2D object position embeddings PE,,,; are added to object embeddings x? ,. Together, they
help capture spatio-temporal information. The object and video tokens are passed through multiple
self-attention layers to produce contextualised event and object embeddings:

[..., 00 €},...] = Transformeryo ([. .., x5, + PE; + PEyy,....x5 +PE;,...]) . (3)

mt’ 79

Verb and role classification. Each contextualised event embedding € is not only empowered to
combine information across neighboring events but also focus on key objects that may be relevant.
We predict the action label for each event by passing them through a 1-hidden layer MLP,

0; = MLP,(e}) . 4)



Each verb is associated with a fixed set of roles based on the mapping P(-). This prior information
is required to model the SRL task. Previous works [28, 38] use ground-truth verbs to model SRL
and predict both the roles and their corresponding entities. While this setup allows for task specific
modelling, it is not practical in the context of end-to-end video situation recognition. To enable
GVSR, we predict the relevant roles for each event circumventing the need for ground-truth verbs
and mapped roles. Again, we exploit the contextualised event embeddings and pass them through a
role-prediction MLP and perform multi-label role classification. Essentially, we estimate the roles
associated with an event as .

Ri = {r|c(MLP,(€})) > brole} 3)
where o (+) is the sigmoid function and 6, is a common threshold across all roles (typically set to

0.5). Armed with verb and role predictions, ¥; and R, we now look at localising the role-noun pairs
and generating the SRL captions.

3.2 Semantic Role Labelling with Grounding (Stage 2, 3)

A major challenge in SRL is to disambiguate roles, as the same object (person) may take on different
roles in the longer video V. For example, if two people are conversing, the agent and patient roles
will switch between speaker and listener over the course of the video. Another challenge is to
generate descriptive and distinctive captions for each role such that they refer to a specific entity. We

propose to use learnable role embeddings {rlk}gi‘ll which are capable of learning distinctive role
representations. As mentioned earlier, roles such as agent, patient, tool, location, manner, etc. ask
further questions about the salient action.

Creating role queries. Each role gets updated by the verb. For example, for an action jump,
the agent would be referred to as the jumper. We strengthen the role embeddings by adding the
contextualised event embeddings to each role, instead of encoding ground-truth verbs. This eliminates
the dependency on the ground-truth verb-role pairs, and enables end-to-end GVSR. Similar to the
first stage (VO), we also add event-level temporal positional embeddings to obtain role guery vectors

Qir =11 +e; + PE;. (6)
Depending on the setting, k can span all roles R, ground-truth roles R; or predicted roles Ri.

Role-Object Transformer Decoder (RO). It is hard to achieve rich captions while using features
learned for action recognition. Different from prior works [28, 38], we use fine-grained object level
representations instead of relying on event-based video features. We now describe the stage two of
our VideoWhisperer model, the Transformer decoder for SRL.

Our Transformer decoder uses semantic roles as queries and object proposal representations as keys
and values. Through the cross-attention layer, the event-aware role query attends to contextualised
object embeddings and finds the best objects that represent each role. We incorporate an event-based
attention mask, that limits the roles corresponding to an event to search for objects localised in the
same event, while masking out objects from other events. Cross-attention captures local event-level
role-object interactions while the self-attention captures the global video level understanding allowing
event roles to share information with each other.

We formulate event-aware cross-attention as follows. We first define the query, key, and value tokens
fed to the cross-attention layer as

q;ﬁk = Wqukv klfm‘ = WKo;n,h and V;nt = WVo;n,t . (7)

Here, W(q| kv are learnable linear layers. Next, we apply a mask while computing cross-attention
to obtain contextualised role embeddings as

r, = Zamtv;nt, where vy = softmax,,: ((qy, k,,,) - L(f: € Fi)), 8)
mt

where (-, -) is an inner product and 1(-) is an indicator function with value 1 when true and —oo
otherwise to ensure that the cross-attention is applied only to the boxes B;, whose frames f; appear
within the same event e;.

After multiple layers of cross- and self-attention, the role query extracts objects that best represent
the entities for each role.

[...,Zk,...] = Transformerro([. . ., Qiky - ;- Oupy---]) - )



Captioning Transformer Decoder (C). The final stage of our model is a caption generation mod-
ule. Specifically, we use another Transformer decoder [33] whose input context is the output role
embedding z;;, from the previous stage and unroll predictions in an autoregressive manner.

Cip = Transformerc(zy) - (10)
The role-object decoder in stage 2 shares all the necessary information through self-attention, and
allows us to generate the captions for all the roles in parallel; while [28, 38] generate captions
sequentially , i.e. for a given event, the caption for role k is decoded only after the caption for role
k — 1. This makes VideoWhisperer efficient with a wall-clock runtime of 0.4s for inference on a 10s
video, while the baseline [28] requires 0.94 seconds.

Grounded Semantic Role Labelling. The entire model is designed in a way to naturally provide
SRL with grounding in a weakly-supervised way, without the need for ground-truth bounding boxes
during training. Cross-attention through the Transformer decoder RO scores and ranks all the objects
based on the role-object relevance at every layer. We extract the cross-attention scores ., for each
role k and event e; from the final layer of Transformergg, and identify the highest scoring box and
the corresponding timestep as

l;;,l;f = arg max Q,; - 11
m,t

3.3 Training and Inference

Training. VideoWhisperer can be trained in an end-to-end fashion, with three losses. The first two
losses, CrossEntropy and BinaryCrossEntropy, are tapped from the contextualis ed event embeddings
and primarily impact the Video-Object Transformer encoder

L;(erb _ CE(ﬁZ,UZ) and L;Ole — Z BCE(r IS 7%,1‘77’ S Rl) . (12)
TER;

The final component is derived from the ground-truth captions and helps produce meaningful SRL
outputs. This is also the source of weak supervision for the grounding task,

LGt =N " CE(CY. C) (13)

where the loss is applied in an autoregressive manner to each predicted word w. The combined loss
for any training video V' is given by

L= Z L;/erb + Z Lriole + Z L;z;ption . (14)
% i ik

Inference. At test time, we split the video V' into similar events e; and predict verbs ¢; and roles

R; for the same. Here, we have two options: (i) we can use the predicted verb and obtain the
corresponding roles using a ground-truth mapping between verbs and roles P(%;), or (ii) only predict

captions for the predicted roles R;. We show the impact of these design choices through experiments.

4 [Experiments

We evaluate our model in two main settings. (i) This setup mimics VidSitu [28], where tasks are
evaluated separately. We primarily focus on (a) Verb prediction, (b) SRL and (c) Grounded SRL.
This setting uses ground-truth verb-role pairs for modelling (b) and (c). (ii) End-to-end GVSR, where
all the three tasks are modelled together without using ground truth verb-roles.

Dataset. We evaluate our model on the VidSitu [28] dataset that consists of 29k videos (23.6k train,
1.3k val, and others in task-specific test sets) collected from a diverse set of 3k movies. All videos
are truncated to 10 seconds, have 5 events spanning 2 seconds each and are tagged with verb and
SRL annotations. There are a total of 1560 verb classes and each verb is associated with a fixed set of
roles among 11 possible options, however not all are used for evaluation due to noisy annotations (we
follow the protocol by [28]). For each role the corresponding value is a free-form caption.

Metrics. For verb prediction, we report Acc@K, i.e. event accuracy considering 10 ground-truth verbs
and top-K model predictions and Macro-Averaged Verb Recall@K. For SRL we report CIDEr [34],



CIDEr-Vb: Macro-averaged across verbs, CIDEr-Arg: Macro-averaged across roles, LEA [21], and
ROUGE-L [15]. For more details on the metrics pleas refer to [28].

Implementation details. We implement our model in Pytorch [23]. We extract event (video)
features from a pretrained SlowFast model [8] for video representation (provided by [28]). For object
features, we use a FasterRCNN model [25] provided by BUTD [2] pretrained on the Visual Genome
dataset [13]. We sample frames at 1 fps from a 10 second video, resulting in 7' = 11 frames. We
extract top M = 15 boxes from each frame, resulting in 165 objects per video.

All the three Transformers have the same configurations - they have 3 layers with 8 attention heads,
and hidden dimension 1024. We use the tokenizer and vocabulary provided by VidSitu [28] which
uses byte pair encoding. We have 3 types of learnable embeddings: (i) event position embeddings PE;
with 5 positions corresponding to each event in time; (ii) object localization 2D spatial embedding;
and (iii) role embeddings, for each of the 11 roles. The verb classification MLP has a single hidden
layer of 2048 d and produces an output across all 1560 verbs. The role classification MLP also has a
single hidden layer of 1024 d and produces output in a multi-label setup for all the 11 roles mentioned
above. We threshold role prediction scores with ;5 = 0.5.

We use the Adam optimizer [12] with a learning rate of 10~* to train the whole model end-to-end.
As we use pretrained features, we train our model on a single RTX-2080 GPU, batch size of 16.

4.1 Grounding SRL: Annotation and Evaluation

As free form captions and their evaluation can be ambiguous, we propose to simultaneously ground
each correct role in the spatio-temporal domain. To evaluate grounding performance, we obtain
annotations on the validation set. We select the same T" = 11 frames that are fed to our model sampled
at 1fps. For each frame, we ask annotators to see if the visual roles (agent, patient, instrument), can
be identified by drawing a bounding box around them using the CVAT tool [1] (see Appendix E for a
thorough discussion). For each event ¢ and role %, we consider all valid boxes and create a dictionary
of annotations G, with keys as frame number and value as bounding box. During prediction, for each
role 7 € R;, we extract the highest scoring bounding box as in Eq. 11. The Intersection-over-Union
(IoU) metric for an event consists of two terms. The first checks if the selected frame appears in the
ground-truth dictionary, while the second compares if the predicted box has an overlap greater than 0
with the ground-truth annotation,

[Ril
> 16 € Gix] - 110U (b}, Girt]) > 6] . (15)

k=1

ToUQH =

IR

4.2 Grounded SRL Ablations

We analyze the impact of Table 1: Architecture ablations. All the models use event-aware cross-
architecture choices, role attention. + indicates stages of the model. V: Video encoder, VO: Video-
query embeddings, and ap- Object encoder, VOR: Video-Object-Role encoder, RV: Role-Video
plying a mask in the cross- decoder, RO: Role-Object decoder, and C: Captioning Transformer.

attention of the role-object 4 Architecture Query Emb. CIDEr IoU@0.3 IoU@0.5
decoder. All ablations in

this section assume access 1 RV +C Role + GT-verb 47.91 +0.53 - -

to the ground-truth verb or 2 RO+C Role + GT-verb 70.48 +1.09 0.14 +0.01 0.06 + 0.003

roles as this allows us to 3 YOR+C Role + Event  67.4 £081 0.22 £0.00 0.09 +o0.002

analyze the effect of vari- 4 v+ RO+C Role+Event 69.15 +062 0.23 £003 0.09 + 001

ous design choices. Simi- 5 vO + RO + C Role + Event  68.54 + 048 0.29 + 0013 0.12 + 0.01
lar to [38] we observe large

variance across runs, therefore we report the average accuracy and the standard deviation over 3 runs
for all the ablation experiments and 10 runs for the proposed model (VO+RO+C).

Architecture design. We present SRL and grounding results in Table 1. Rows 1 and 2 use a two-stage
Transformer decoder (ignoring the bottom video-object encoder). As there is no event embedding
e}, role queries are augmented with ground-truth verb embedding. Using role-object pairs (RO)
is critical for good performance on captioning as compared to role-video (RV), CIDEr 70.48 vs.
47.91. Moreover, using objects enables weakly-supervised grounding. Row 3 represents a simple



Transformer encoder that uses self-attention to model all the video events, objects, and roles (VOR)
jointly. As before, role-object attention scores are used to predict grounding. Incorporating videos
and objects together improves the grounding performance.

We switch from a two-stage to a three-stage model between rows 1, 2, 3 vs. 4 and 5. Rows 2 vs. 5
illustrates the impact of including the video-object encoder. We see a significant improvement in
grounding performance 0.14 to 0.29 for IoU@0.3 and 0.06 to 0.12 for [oU@0.5 without significantly
affecting captioning performance. Similarly, rows 4 vs. 5 demonstrate the impact of contextualizing
object embeddings by events. In particular using contextualised object representations o/,,, seems to

help as compared against base features x;,,.

Rolle( query embeddlngs d’e.51gn.[ Prior Table 2: Comparing role query embeddings.
works 1n situation recognition |/, s

] use verb embeddings to identify en- # Query Emb. CIDEr loU@0.3 IoU@0D.5
tities from both images or videos. In 1 Role only 68.61 061 0.27 £ 0011 0.11 +0.009

this ablation, we show that instead of 2 Role + GT-verb 68.71 +1.06 0.25 +0.02 0.10 £ o0.01
learning verb embeddings that only cap- 3 Role + Event  68.54 + 048 0.29 +0.013 0.12 001
ture the uni-dimensional meaning of a
verb and ignore the entities involved, event (or video) embeddings remember details and are suitable
for SRL. In fact, Table 2 (architecture: VO + RO + C) row 2 vs. 3 show that event embeddings are
comparable and slightly better than GT-verb embeddings when evaluated on SRL and Grounding
respectively, eliminating the need for GT verbs. Somewhat surprisingly, we see that the role em-
beddings alone perform quite well. We believe this may be due to role embeddings (i) capture the
generic meaning like agent and patient and can generate the correct entities irrespective of the action
information; and (ii) the role query attends to object features which are contextualised by video
information, so the objects may carry some action information with them.

Masked cross-Attention in RO decoder. We use Taple 3: Impact of masking in RO decoder.

masking in event-aware cross-attention to ensure that Mask  CIDEr _ 1oU@03 IoU@0.5
the roles of an event attend to objects coming from the

same event. As seen in Table 3 (model: VO + RO+ No  67.02 o051 0.25 +002 0.10 +£0.012
C, query is role + event embedding), this reduces the Yes 68.54 +0.48 0.29 +0013 0.12 +0.01

object pool to search from and improves both the SRL
and Grounding performance.

4.3 SRL SoTA comparison

In Table 4, we compare our results against VidSitu [28] and a concurrent work that uses far better
features [38]. We reproduce results for VidSitu [28] by teacher-forcing the ground-truth role pairs to
make a fair comparison while results for work [38] are as reported in their paper. Nevertheless, we
achieve state-of-the-art performance with a 22 points gain in CIDEr score over [28] and a 8 point
gain over [38], while using features from [28]. Moreover, our model allows grounding, something
not afforded by the previous approaches.

Table 4: SoTA comparison, results for SRL and grounding with GT verb and role pairs.

Method CIDEr C-Vb C-Arg R-L Lea IoU@0.3 IoU@O0.5

SlowFast+TXxE+TxD [28]  46.01 56.37 43.58 43.04 50.89 - -
Slow-D+TXE+TxD [38] 60.34 +0.75 69.12 + 143 53.87 +0.97 43.77 +038 46.77 +0.61 -
VideoWhisperer (Ours)  68.54 + 048 77.48 + 152 61.55 +0.79 45.70 +030 47.54 +055 0.29 +0.013 0. 12 +0.01

Human Level 84.85 91.7 80.15 39.77 70.33 - -

4.4 GVSR: Joint Prediction of Video Situations

The primary goal of our work is to enable joint prediction of the verb, roles, entities, and grounding.

Verb prediction is an extremely challenging problem due to the long-tail nature of the dataset. In
Table 5, we evaluate verb prediction performance when training the model for verb prediction only
(rows 1-3) or training it jointly for GVSR (rows 4, 5). Using a simple video-only transformer encoder
boosts performance over independent predictions for the five event clips (46.8% to 48.8%, rows 1 vs.
2). Including objects through the video-object encoder (row 3) provides an additional boost resulting
in the highest performance at 49.73% on Accuracy@1.



A similar improvement is observed in rows 4 to 5 (V vs. Table 5: Verb prediction performance.
VO stage 1 encoder). Interestingly, the reduced perfor- Rows 1-3 train only for verb prediction.
mance of rows 4 and 5 as compared against rows 1-3is Rows 4, 5 are trained for GVSR.

primarily because the best epoch corresponding to the  # Architecture Acc@1 Acc@5 Rec@5

highest verb accuracy does not coincide with highest ;
SRL performance. Hence, while the verb Accuracy @1 1 Baseline [28] 46.79  75.90  23.38
of the GVSR model does reach 49% during training it 2V 48.82  78.01 23.32
degrades subsequently due to overfitting. Nevertheless, 3 Vo 49.73 7872 2472

we observe that the macro-averaged Recall@5 is high- 4 V+RV+C 4083 70.73 24.37
est for our model, indicating that our model focuseson 5 VO +RO+C 45.06 75.59 25.25

all verbs rather than just the dominant classes. In Ap-
pendix C, we show the challenges of the large imbalance and perform experiments that indicate that
classic re-weighting or re-sampling methods are unable to improve performance in a meaningful
mannner. Addressing this aspect is left for future work.

Understanding role prediction. The verb-role prediction accuracy is crucial for GVSR, since the
SRL task is modelled on role-queries. In Table 6 we analyse role prediction in various settings
to understand its effect on SRL. Previous work [28] used ground-truth verbs for SRL, while roles
and their entities or values are predicted sequentially. This setting is termed “GT, Pred” (row 2)
as it uses the ground-truth verb but predicts the roles. We argue that as the verb-role mapping
‘P is a deterministic lookup table, this setting is less interesting. We enforce a “GT, GT” setting
with ground-truth verbs and roles in [28] by teacher-forcing the GT roles while unrolling role-noun
predictions (row 1). Another setting is where the verb is predicted and roles are obtained via lookup,
“Pred, GT map” (row 3). Note that this enables end-to-end SRL, albeit in two steps. The last setting,
“Pred, Pred” predicts both verb and role on-the-fly (row 4).

Comparing within variants of [25], Table 6: Role prediction in various settings. Role F1 is the
surprisingly, row 1 does not perform  F] score averaged over all role classes.

much better than row 2 on CIDEr. 3
This may be because the model is # Architecture Verb Role V. Acc@1 Role F1 CIDEr

trained on GT verbs and is able to pre- 1 GT GT - - 46.01
dict most of the roles correctly (row 2 VidSitu [28] GT  Pred - 0.88 45.52
2, Role F1 = 0.88). Subsequently, 3 . Pred GTmap 46.79 29.93

both rows 3 and 4 show a large perfor- 4 Pred Pred 46.79 047 3033
mance reduction indicating the over-

reliance on ground-truth verb. We see > RO+C GT  GT . ) 7048
similar tren%ls for our model's Rows 6 VO+RO+C Pred GT 45.06 ) 68.54
. 7 VO+RO+C Pred GTmap 45.06 51.24

7 and 8 with predicted verb-role pairs
lead to reduced SRL performance as
compared against rows 5 and 6. Nev-
ertheless, our “Pred, Pred” CIDEr score of 52.3 is still higher than the baseline “GT, GT” at 46.0.
Appendix B.3 discusses further challenges of multi-label and imbalance in predicting roles.

8 VO+RO+C Pred Pred 44.05 044 5230

GVSR. We evaluate our end-to-end  Taple 7: GVSR: Results for end-to-end situation recognition.

model for grounded video situation  Qur model architecture is VO + RO + C.
recognition. In order to enable end- Prediction Verb ToU

to-end GVSR in [28], we use it in - Model Verb Role SRL Acc@l “PFT 03 05
the “Pred, Pred” setting discussed i i

above, that allows verb, role, and  VidSitu [28] v o v v 4679 3033 - -

SRL pI'ediCtiODS. Table 7 shows that ) . v v 44.06 52.30 0.13 0.05
our model improves SRL perfor- VideoWhisperer v GT v 4506 6854 029 0.12
mance over Vidsitu [28] by a margin - : : -
of 22% on CIDEr score. In addition
to that, our model also enables Grounded SRL, not achievable in VidSitu [28].

4.5 Qualitative Results and Limitations

We visualize the predictions of VideoWhisperer (Pred-GT) in Fig. 3 for one video of 10 seconds'
and see that it performs reasonably well given the complexity of the task. VideoWhisperer correctly

"More examples on our project page, https://zeeshank95.github.io/grvidsitu/GVSR.html.


https://zeeshank95.github.io/grvidsitu/GVSR.html

Video ID: v_g6j_OvS_NNM_seg_175_185
Event Frame 1 Frame 2 Frame 3 Verb Arg0 Argl Arg2 ADir AMnr Aloc

woman in
" towards the .
white dress in a house
walk.01 door slowly

woman inside of a room
walk.01 towardsa  slowly
wearing with purple walls

door
white

woman in

hite dress in a house
walk 01 e herself around fnahou

woman inside of a room
turn.01 herself back
wearing with purple walls

white

woman in

s drees togetto  towards the in 8 house
i i
walk 01 vt dr herself  the door door .

woman inside of a room
reach.03 herarm  toopena infrontof
wearing with purple walls
cabinet her
white

woman in

white dress door quickly ina house
open.01

woman a oneata inside of a room
wearing cabinet time with purple walls
white

open.01

woman in
white dress the ina house
door

write.01

woman inside of a room
wearing shelves with purple walls
white

rummage.01

Figure 3: 'We show the results for a 10s clip that can be viewed here: https://youtu.be/q6j_
O0vS_NNM?t=175. The video is broken down to 5 events indicated by the row labels Ev1 to Ev5. Ata
1fps sampling rate, we obtain boxes from 3 frames for each event (with Frame3 of event ¢ — 1 being
the same as Framel of event 7). On the right side of the table, we show the predictions for the verb
and various roles in the “Pred GT” mode, discussed in Table 6 (row 6). Predictions are depicted in
blue, while the ground-truth is in green. Each role is assigned a specific color (see table header), and
boxes for many of them can be found overlaid on the video frames (with the same edge color).

predicts verbs for actions like “open" and “walk". Given the large action space and complex scenes,
there can be multiple correct actions, e.g. in Ev2 we see a reasonable “walk" instead of “turn”.

For SRL, the model generates diverse captions with good accuracy, like “woman in white dress".
Even though the ground-truth is syntactically different, “woman wearing white", they both mean the
same. In fact, this is our primary motivation to introduce grounding. In Ev3, the model incorrectly
predicts “walk" as the verb instead of "reach". While “walk” does not have the role Arg2, we are able
to predict a valid caption “to get to the door”” while grounding the woman’s arm in Frame3. We see
that our model correctly understands the meaning of Arg2 as we use ground-truth role embeddings
combined with event features for SRL. This shows the importance of event embeddings, as they may
recall fine-grained details about the original action even when there are errors in verb prediction.

For grounding SRL, we see that the model is able to localize the roles decently, without any bounding
box supervision during training. While we evaluate grounding only for Arg0, Argl, and Arg2 (when
available), we show the predictions for other roles as well. In Fig. 3, the model is able to ground
the visual roles Arg0 and Argl correctly. For non-visual roles like “Manner"”, the model focuses its
attention to the face, often relevant for most expressions and mannerisms.

Limitations for our current model are with verb and role prediction and disambiguation, improving
the quality and diversity of captions to go beyond frequent words, and the division of attention
towards multiple instances of the same object that appears throughout a video (details in Appendix D).
Nevertheless, we hope that this work inspires the community to couple videos and their descriptions.

5 Conclusion

We proposed GVSR as a means for holistic video understanding combining situation recognition
- recognizing salient actions, and their semantic role-noun pairs with grounding. We approached
this challenging problem by proposing VideoWhisperer, that combines a video-object encoder for
contextualised embeddings, video contextualised role query for better representing the roles without
the need for ground-truth verbs and an event-aware cross-attention that helps identify the relevant
nouns and ranks them to provide grounding. We achieved state-of-the art performance on the VidSitu
benchmark with large gains, and also enabled grounding for roles in a weakly-supervised manner.
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Grounded Video Situation Recognition - Appendix

We start with a brief mention of additional qualitative results from our model in Appendix A. Follow-
ing this, we present quantitative results including an extended table that shows SRL performance on
all VidSitu [28] metrics, and role prediction performance of our model (Appendix B). We also present
challenges of predicting roles (which appear rarely) in Appendix B.3 and long-tail related challenges
of predicting verbs in Appendix C. We end this document by talking a bit about the limitations in
Appendix D and the annotation process to obtain boxes on the validation set (Appendix E).

A More qualitative results

GVSR is a challenging problem that requires to correctly identify the action, disambiguate the roles
taking part in it, localise the roles, and generate descriptive captions. Moreover, the videos are
curated from complicated movie scenes with fast motion, shot changes, and diverse scenes. For better
visualisations we create an HTML file GVSR.html, with predictions on 10 videos. There are a total
of 5 events in each video. As described in the method section, we sample 11 frames from the entire
video, divided between 5 events, each with 3 frames with 1 frame sharing the event boundary. Fig. 3
of the main paper illustrates an example of this visualization.

B Additional quantitative results and metrics

B.1 SRL Evaluation on the Test Set

We evaluate our model on the test set from the evaluation servers of VidSitu [28]. A constant
improvement over [28] can be seen in Table 8. The trend is similar when compared with Table 4 from
the main paper that reports performance on the validation set.

Note that we do not report grounding metrics as the ground-truth nouns are not available. We are
currently working with the authors of VidSitu [28] to establish this as part of the benchmark.

Table 8: Results of SRL with GT verb and role pairs on the test dataset. VidSitu’s [28] results are as
reported in their paper.

Method CIDEr C-Vb C-Arg R-L Lea IoU@0.3 IoU®@O0.5

SlowFast+TXE+TxD [28] 47.25 5292 4548 43.46 50.88 - -
VideoWhisperer (Ours) 68.04 81.23 62.19 46.15 48.77 - -

Human Level 83.68 87.78 79.29 40.04 71.77 - -

B.2 GVSR, all metrics

In Table 9 we show the results of end-to-end GVSR on all the metrics. We can see a clear improvement
over the "pred, pred" VidSitu [28] on all the metrics for SRL. Due to lack of space, we showed only
the primary metrics in Table 7.

Table 9: GVSR: Results for end-to-end situation recognition. Our model architecture is VO+RO+C.

Prediction Verb ToU
Model Verb Role SRL Acc@l CIPEr C-Vb CArg RL - Lea (3775
VidSitu [25] v v v 4679 3033 3956 2397 2998 3592 - -

v v 4406 5230 61.77 38.18 3584 38.00 0.13 0.05

. A v
VideoWhisperer - o1, 4506 6823 7415 6179 4558 4822 027 0.15

B.3 Role prediction

Role prediction is critical for end-to-end GVSR. We analyse its performance for each role separately.
As can be seen from Table 10 roles like Arg0, Argl, Ascn, ADir, AMnr which appears a lot more
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frequently than other roles in the dataset, have both high precision and recall, suggesting that role
prediction can be done with a reasonably high accuracy directly from the video features. Other roles
that appears less frequently have a good precision but a very low recall, which is expected due to the
long tail nature of roles.

Table 10: Precision, Recall and, F1 score for role-prediction performance on all the role classes.
Architecture is VO + RO + C in the “Pred Pred" mode.

Method Role-name Precision Recall Fl
Arg0 0.90 097 093
Argl 0.79 093 0.86
Arg2 0.55 0.26 0.36
Arg3 0.30 0.05 0.09
Argd 0.15 0.04 0.06

VideoWhisperer AScn 0.74 093 0.83
ADir 0.66 0.49 0.56
APrp 0.36 0.03 0.06
AMnr 0.71 0.66 0.68
ALoc 0.40 0.12 0.19
AGol 0.65 0.15 0.24

C Long Tailed Verb Classification

The grounded SRL task depends heavily on the action information. In addition to complex scenes,
the VidSitu dataset encompasses a large number of verbs and has a long-tailed distribution. In
fact, the number of verbs, 1560, is 2-4x larger than popular large-scale video action recognition
datasets (Kinetics400 / Kinetics700). We believe that these are the key challenges that result in lower
performance for verb classification which inevitably affects the SRL.

We experiment with three common approaches to handle long-tailed distributions. (i) Loss re-
weighting applies weights corresponding to the inverse verb frequency to the cross-entropy loss;
(i1) Focal loss is applied as described in [ 18] (with gamma = 2.0); and (iii) Balanced sampling, we
apply a weight for each sample such that the DataLoader picks samples with a higher weight. The
results are presented in Table 11.

Table 11: Results of three common approaches to handle long-tailed distribution of verbs. V only
represents the Video encoder (no object features) trained only for verb prediction.

Method Verb Acc@1
V only 48.82
V only + Loss Re-weighting 48.91
V only + Focal loss 47.81
V only + Balanced sampling 35.38

Unfortunately, we do not see any significant improvement using these simple approaches. We have
observed that the dataset is very challenging and has complex movie events with fast shot changes
and many actions can be confusing. For example in Figure 3 the woman turns while walking, but
the model predicts “Walk” instead of “Turn” which is the dominant, but less significant action (if
one considers duration). Balanced sampling in particular leads to a significant drop since our sample
consists of 5 event clips, each with a verb. When rare verbs are oversampled, co-occurring event clips
with potentially not-so-rare verbs are also oversampled, leading to a skewed training dataset. This is
similar to the challenges of applying balanced sampling to multi-label classification.
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D Limitations

Major challenges in GVSR include: (i) role disambiguation, (ii) descriptive caption generation, and
(iii) localisation. We describe each aspect in detail.

Role disambiguation directly depends on the event features, since we use role queries contextualised
by event embeddings. As described in Sec. 4.4, event embeddings help in disambiguation of role
even when the predicted action is incorrect. But in many cases when the event embedding captures
an action very far from the ground-truth, the role query gets updated based on the incorrect action
and this hampers role disambiguation, in turn affecting the quality of SRL captioning and grounding.

Descriptive captioning. We are able achieve descriptive captioning by exploiting object features.
Our model is able to predict difficult long-tailed entities like “Monsters" and descriptive captions like
“Man in red towel", with high accuracy. However, the presence of “Man in black jacket" or “AMnr:
with a smile" is undeniably high.

Localising roles in a weakly supervised manner is a very challenging task, it requires to disambiguate
the roles and shift the attention to the right object out of a large pool of objects. Since the supervision
comes from captions, which are descriptive and may refer to multiple attributes of an object, the
attention is divided among many objects and it is difficult to get the most representative object with
high probability. Our model is able to ground the roles reasonably well, but leaves a lot of room for
improvement.

E Annotations

Sampling frames and creating an annotation task for a video. In a video of 10 seconds consisting
of 5 events, we sample frames at 1fps, 7 = {f;}7_, from the entire video V/, resulting in 11 frames.
Then, from the SRL annotations, we extract the captions for the typically visual roles: agent, patient,
and instrument from all the 5 events. We retain all the unique captions from the selected ones and use
them as ground-truth labels for the video V. For each video we create a separate annotation task on
the CVAT tool [ 1], with video specific labels as shown in Fig 4.

E.1 Annotation Process

We iterate over every frame in JF, and find if any of the label is visually recognised. If it is we select
the label, and draw a bounding box around the visual entity as shown in Fig 5, 6, and 7. Some labels
might not be visually present in the frames, like Policeman is not visible in any of the frames in Fig. 6
or ground is not visible in Fig 8. Some entities are non-visual like up in Fig. 9. We do not annotate
boxes for such roles.

After the annotations are done, for each event ¢ and role k in a video, we create a dictionary of
annotations G;; with keys as frame number of all the frames that has the role k annotated in it and
values as the coordinates of the bounding box corresponding to them. We will share the annotations
for further research on our project page.

Compensation. We fairly compensated the annotators for their efforts at almost twice the minimum
daily wage.
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second from a 10 second video. Text highlighted in red are the labels.
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Figure 5: Select a label from the set of labels that can be visually recognised and draw a box around
it.
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Figure 6: Labels Man on suit, Man in black, on a car bonnet and, Police car are visible in frame_09.
Four boxes are drawn around the corresponding four entities
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Figure 7: Labels Man in black, on a car bonnet and, Police car are visible in frame_04
. Three boxes are drawn around the three corresponding objects.
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Figure 8: Label ground is not visible in frame_00, hence it is not annotated
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Figure 9: Label up is a non-visual role, hence it is not annotated.
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