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Abstract

Chest radiograph (or Chest X-Ray,
CXR) is a popular medical imaging
modality that is used by radiologists
across the world to diagnose heart or
lung conditions. Over the last decade,
Convolutional Neural Networks (CNN),
have seen success in identifying patholo-
gies in CXR images. Typically, these
CNNs are pretrained on the standard
ImageNet classification task, but this
assumes availability of large-scale anno-
tated datasets. In this work, we ana-
lyze the utility of pretraining on unla-
beled ImageNet or Chest X-Ray (CXR)
datasets using various algorithms and
in multiple settings. Some findings of
our work include: (i) supervised train-
ing with labeled ImageNet learns strong
representations that are hard to beat;
(ii) self-supervised pretraining on Im-
ageNet (∼1M images) shows perfor-
mance similar to self-supervised pre-
training on a CXR dataset (∼100K im-
ages); and (iii) the CNN trained on
supervised ImageNet can be trained
further with self-supervised CXR im-
ages leading to improvements, espe-
cially when the downstream dataset is
on the order of a few thousand images.

Keywords: Chest X-Ray, Self-
Supervised Pretraining

1. Introduction

Modern medicine uses advanced medical
imaging techniques to assist physicians in
disease diagnosis. In particular, chest radio-
graphy (or Chest X-Rays, CXR) is a pop-
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Figure 1: Overview of various training or ini-
tialization strategies adopted in our work for
multi-label classification in Chest X-rays.

ular modality to identify pathologies in the
lungs or heart owing to its low cost and de-
cent availability (Ngoya et al., 2016; Smith-
Bindman et al., 2012). Unfortunately, the
number of X-Rays performed every year are
rapidly rising, while the number of skilled
radiologists required to analyze them is not
keeping pace (Henderson, 2022).

This has spurred interest among Ma-
chine Learning researchers to develop mod-
els for automated detection of pathologies
(e.g . consolidation) in Chest X-Rays (Ra-
jpurkar et al., 2017; Lakhani and Sundaram,
2017; Tang et al., 2020). However, today’s
deep models are data hungry and while there
is an abundance of X-Ray images, label-
ing them is a severe bottleneck. Obtain-
ing gold standard labels requires hiring sev-
eral radiologists, who may still disagree with
each other (Albaum et al., 1996; Johnson
and Kline, 2010), leading to potentially er-
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roneous labels (Brady, 2017). Such large
datasets may also be annotated automati-
cally with NLP parsers based on radiologi-
cal reports (Johnson et al., 2019; Irvin et al.,
2019), have varying prevalence for labels, and
may also have differing imaging properties.
Finally, relying on a set of annotations lim-
its predictions to a closed set of labels, which
are often different across datasets (cf . Ap-
pendix A).

A common practice to reduce the require-
ment of large labeled in-domain datasets is
transfer learning where models pretrained on
one task are used for initializing models on
the target task (Raghu et al., 2019; Mat-
soukas et al., 2022; Sellergren et al., 2022).
With over a million images spanning thou-
sand classes, ImageNet (Deng et al., 2009)
has emerged as the de facto pretraining
dataset for vision tasks and is surprisingly
effective even for medical imaging problems.

As an alternative to labeling large-
scale image datasets, self-supervised learn-
ing (SSL) has shown promise in learning fea-
tures on a proxy task such as distinguish-
ing a paired augmentation of the same image
against other images (Chen et al., 2020).

Findings. As illustrated in Fig. 1, we wish
to investigate the effect of using SSL pre-
training (PT) on in-domain CXR vs. out-
of-domain datasets. We denote SSL PT to
mean pretraining with a self-supervised ob-
jective. We conduct such experiments on
two CXR datasets (see Table 1) and iden-
tify three key takeaways: (i) SSL PT on the
ImageNet or NIH dataset outperforms train-
ing from scratch by a large gap; (ii) SSL PT
on ImageNet (∼1M images) achieves compa-
rable performance to SSL PT on the NIH
dataset (∼100K images); and (iii) SSL PT
on ImageNet followed by SSL PT on the
in-domain NIH improves downstream perfor-
mance.

We also compare SSL against supervised
learning, and find that SSL methods lag be-

Table 1: Details of Chest X-Ray datasets.

Dataset # Samples # Labels

NIH-CXR (Summers, 2019) 112,120 11
CheXpert (Irvin et al., 2019) 224,316 12

hind (sometimes only by a small margin) su-
pervised ImageNet PT. However, SSL PT on
in-domain CXR data provides small but con-
sistent improvements to the supervised Ima-
geNet representations.

Finally, we present two additional analy-
ses: (i) the number of labels used for eval-
uation (5 vs. all) has a small influence on
the gap between SSL PT vs. supervised Im-
ageNet performance; and

(ii) zero-shot evaluation of models fine-
tuned on one CXR dataset to another shows
that SSL PT learns robust models.

Related SSL works in CXR. Recently,
there have been significant efforts to explore
related directions of supervised contrastive
learning (Khosla et al., 2020), applying aug-
mentations based on medical records, e.g . in
the form of multiple views (Vu et al., 2021;
Azizi et al., 2021), learning from images and
their reports (Zhang et al., 2020), apply-
ing SSL methods to adapt pretrained Ima-
geNet models to the CXR domain (Sowrira-
jan et al., 2021; Gazda et al., 2021; Reed
et al., 2022), and even a review of SSL
applications in the medical domain (Krish-
nan et al., 2022). Our work is similar to
the multi-stage training strategy of Reed
et al. (2022), but we use unlabeled general-
ist pretraining on an out-of-domain dataset
and unlabeled specialist pretraining on an
in-domain dataset. Azizi et al. (2021) also
perform SSL PT on ImageNet followed by
SSL PT on CheXpert. Interestingly, while
they obtain small improvements (with 5 la-
bels), we see that supervised learning sur-
passes SSL PT when using all labels, while
the two come close when using 5 labels.
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2. Experimental Setup

We present the datasets, methods, and im-
plementation details used in this study.

Datasets. We formulate Chest X-Ray
pathology detection as a multi-label classi-
fication problem, where the list of labels is
specific to each dataset. We perform experi-
ments primarily on NIH-CXR (Wang et al.,
2017; Summers, 2019) and CheXpert (Irvin
et al., 2019), where the list of labels in
each dataset (post combination based on in-
puts from a radiologist) is presented in Ta-
ble 3 (Appendix A). We split the data into
80:10:10 between train, validation and test
while ensuring subjects are disjoint.

SSL Methods. We demonstrate results
on 5 different SSL algorithms. We apply
a limited set of augmentations to CXR im-
ages: horizontal flipping and rotation, as the
data is already in grayscale, and addition of
noise and blur may negatively affect perfor-
mance (Sowrirajan et al., 2021). We will see
that even with these few and simple augmen-
tations, pretraining on in-domain data shows
comparable performance.

(i) SimCLR (Chen et al., 2020) is among
the first SSL contrastive learning approaches.
It aims to maximize similarity between rep-
resentations of two augmentations of the
same image in the latent space via a con-
trastive loss function, while all other im-
ages in the minibatch are treated as nega-
tive pairs. (ii) MoCo (He et al., 2020) also
uses two augmented views of an image but
pairs them with two encoders, where the pa-
rameter updates for the momentum encoder
are performed through a linear interpolation
between the two encoders.

The previous methods apply contrastive
learning at an instance level and use neg-
ative samples in their formulation. Differ-
ent from them, (iii) SwAV (Caron et al.,
2020) creates multiple clusters to partition
the dataset, and attempts to map all aug-

mented views of the same image to the same
cluster, called prototype. (iv) BYOL (Grill
et al., 2020) uses two networks - online and
target - which have the same architecture.
Here, the target network is used to teach the
online network to correctly predict an aug-
mented view of the same image. Finally,
(v) SimSiam (Chen and He, 2021) uses two
parallel encoders to generate representations
of augmented views of the same image. How-
ever, gradient propagation is prevented in
one encoder through the use of the Stop-
Gradient operator.

Fine-tuning data subsets. Our PT mod-
els are fine-tuned on different proportions of
the NIH or CheXpert training sets. We use
subsets 1%, 10%, or 100% of the training
set to analyze the impact of fine-tuning on
smaller subsets of the data. For SSL PT, we
use the entire 100% NIH training set.

Training details. Images are resized to
224 × 224 resolution for training. We use
a ResNet50 backbone followed by a linear
layer for all our multi-label classification
models, and adopt the Binary Cross-Entropy
loss. We perform ImageNet pretraining us-
ing (MMSelfSup, 2021) and follow the same
settings for NIH. Following this, we per-
form supervised fine-tuning on different CXR
datasets - NIH and CheXpert (CheX). The
models are fine-tuned for 30 epochs, with a
learning rate of 1e-4, decayed by half every 5
epochs, and the Adam optimizer. Hyperpa-
rameters are tuned on the validation set.

Zero-shot experiments. We evaluate
models fine-tuned on one dataset (e.g . NIH)
on another dataset (e.g . CheXpert) to under-
stand the zero-shot transfer capability. As
necessary, we restrict to the set of commonly
used 5 labels (Irvin et al., 2019).

Metrics. We report the mean AUROC to
compare results for all experiments as in past
literature (e.g . (Rajpurkar et al., 2018)).
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Table 2: Comparison between models pretrained with different paradigms on NIH and
CheXpert (CheX). During PT, NIH corresponds to 100% of the train set. Supervised PT
uses a standard classification setup for ImageNet (ImNet). The number in green is the best
result with supervised ImageNet PT, and the number in blue is the best SSL PT strategy.

Algorithm
Pre-training Dataset Finetuning Dataset

Supervised Unsupervised
NIH NIH NIH CheX CheX CheX
1% 10% 100% 1% 10% 100%

1 - - - 0.5566 0.6794 0.7886 0.5582 0.6480 0.7534
2 ImNet - 0.6851 0.8026 0.8538 0.6916 0.7589 0.8066

3

SimCLR

- ImNet 0.5818 0.6917 0.8297 0.5738 0.7123 0.7902
4 - NIH 0.5916 0.7481 0.8291 0.6497 0.7314 0.7833
5 - ImNet → NIH 0.6109 0.7585 0.8435 0.6117 0.7471 0.7990
6 ImNet NIH 0.7151 0.8097 0.8559 0.7170 0.7665 0.8089

7

SwAV

- ImNet 0.5711 0.7031 0.8293 0.5643 0.7158 0.7933
8 - NIH 0.5880 0.7207 0.8384 0.6004 0.7328 0.7911
9 - ImNet → NIH 0.6304 0.7591 0.8496 0.6142 0.7468 0.8000
10 ImNet NIH 0.6347 0.8035 0.8540 0.6523 0.7569 0.8072

11

BYOL

- ImNet 0.5861 0.7219 0.8362 0.5744 0.7289 0.7938
12 - NIH 0.6017 0.7154 0.8305 0.5786 0.7272 0.7889
13 - ImNet → NIH 0.5918 0.7651 0.8445 0.6045 0.7449 0.7996
14 ImNet NIH 0.6783 0.7779 0.8496 0.6798 0.7614 0.8052

15

MoCo v2

- ImNet 0.5711 0.7087 0.8359 0.6033 0.7324 0.7977
16 - NIH 0.5841 0.719 0.8041 0.6373 0.7085 0.7607
17 - ImNet → NIH 0.6258 0.7343 0.8379 0.6382 0.7417 0.7992
18 ImNet NIH 0.7061 0.8093 0.8569 0.7142 0.7666 0.8077

19

SimSiam

- ImNet 0.5192 0.5630 0.7434 0.5503 0.6507 0.7659
20 - NIH 0.5143 0.5833 0.7852 0.5241 0.639 0.7586
21 - ImNet → NIH 0.5358 0.7039 0.8028 0.6244 0.7091 0.7668
22 ImNet NIH 0.5835 0.7796 0.8478 0.6714 0.7542 0.8036

3. Results and Discussion

Table 2 reports results for various combina-
tions of pretraining and fine-tuning strategies
on both NIH and CheXpert datasets.

Supervised PT on ImageNet, an out-of-
domain dataset, strongly benefits model per-
formance. The difference in AUROC when
training from scratch (row 1) vs. using Ima-
geNet initialization (row 2) is 13-14% (ab-
solute AUROC points) for the small data
subsets of NIH 1% and CheX 1%. While
this reduces progressively, there is a notable

5-7% gap even for the entire training set
(NIH 100% or CheX 100%).

Does SSL ImageNet PT help? Yes.
Rows 3, 7, 11, and 15 show a consistent
3-5% performance improvement over row 1
(training from scratch). Interestingly Sim-
Siam (row 19) is the only SSL method that
hurts performance – perhaps the domain gap
is too large for the stop-gradient based train-
ing with parameter updates.

Comparing NIH vs. ImageNet PT.
Pairs of rows 3-4, 7-8, 11-12, and 15-16 allow
us to compare the impact of in-domain (NIH)
vs. out-of-domain (ImageNet) pretraining.

4



SSL pretraining for CXR

Co
ns

oli
da

tio
n

Em
ph

ys
em

a

Ed
em

a

At
ele

ct
as

is

No
du

le/
Ma

ss

Pn
eu

m
ot

ho
ra

x

Fib
ro

sis

Ca
rd

iom
eg

aly

He
rn

ia

Ef
fu

sio
n

Pl.
 T

hi
ck

en
in

g

Labels

0.6

0.7

0.8

0.9

AU
RO

C 
Sc

or
es

None (mAUROC: 0.6794)
Unsup IN (mAUROC: 0.7031)
NIH 100% (mAUROC: 0.7207)

Unsup IN -> NIH 100% (mAUROC: 0.7591)
Sup IN (mAUROC: 0.8026)
Sup IN -> NIH 100% (mAUROC: 0.8035)

Figure 2: Per-label AUROC. SSL PT algorithm: SwAV, Finetuning: NIH 10% dataset.

Note that ImageNet has about 1M images
while NIH has less than 100K images. We
see largely comparable performance or small
improvements of 0.5-1% when fine-tuning on
NIH, indicating the efficiency of a smaller in-
domain PT dataset. Importantly, in-domain
PT shows a substantial improvement of 3-
8% over a model trained from scratch (row
1). For CheXpert, while SimCLR, SwAV,
and BYOL show 3-7% improvements for
CheX 1%, when using the full CheX 100%
for training, ImageNet PT models are com-
parable or better.

Does chaining SSL PT strategies im-
prove performance? We compare ImNet
→ NIH (rows 5, 9, 13, 17) against their in-
dividual ImageNet only or NIH only vari-
ants. Barring a few exceptions, we see con-
sistent improvements ranging from 0.5-5% by
chaining the PT strategies for all methods.
This verifies that the hierarchical pretrain-
ing strategy suggested by Reed et al. (2022)
is also applicable when both PT datasets are
used in the self-supervised mode. With this
method, and when using 100% of the fine-
tuning datasets, we observe that SSL PT
models are less than 1% away from super-
vised ImageNet PT (row 2).

Is it possible to chain SSL in-domain
PT with supervised ImageNet PT? Yes,
in fact, row 6 (SimCLR) seems to achieve the

best performance across 5 of the 6 settings,
with row 18 (MoCo v2) being a close second
in 2 settings. We see larger improvements of
3% and 2.6% on the NIH 1% and CheX 1%
subsets, however, these shrink when using
the entire training set to 0.2-0.3%.

Which SSL method is the best? As ex-
pected, there is not one method that per-
forms best in all scenarios. However, SwAV
seems to perform well in the SSL only set-
tings, while SimCLR chains well with super-
vised ImageNet achieving good performance
across all settings. SimSiam underperforms
on all fine-tuning results.

Cross-dataset evaluation. As seen in the
comparison between in-domain and out-of-
domain PT, we note that the PT dataset is
always NIH even when we fine-tune on CheX-
pert. It is encouraging to see that PT on a
different CXR image dataset still helps im-
prove performance on CheXpert.

Labelwise performance. Fig. 2 shows
the AUROC for individual labels when fine-
tuned on the NIH 10% dataset. It is en-
couraging to observe that chaining unsuper-
vised ImageNet and NIH PT (dark blue bar)
outperforms SSL PT on individual datasets
across each label. However, the same can-
not be said for the supervised ImageNet set-
tings (yellow bars). Looking at the individ-
ual labels, we see a large variation in perfor-
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Figure 3: Comparing fine-tuning on 5 vs. all
labels using the SimCLR algorithm. Top:
NIH, Bottom: CheXpert.

mance - interestingly, this is not only driven
by the number of instances that are available
for each pathology.

Comparison of 5 vs. all labels. Fig. 3
shows the results when evaluating on 5 or all
labels. As expected, all results improve when
looking at a subset of 5 labels that appear
often or are more important (Irvin et al.,
2019). Interestingly, the gap between the
models trained using the SSL PT strategy
(blue bars) and supervised ImageNet models
(light yellow bar) reduces as we transition
from All to 5 labels for CheXpert. We are
not sure why this may happen.

Zero-shot evaluation. Finally, we present
an experiment where fine-tuned models are
evaluated across datasets. In Fig. 4, we show
results for models fine-tuned on NIH data
on MIMIC-CXR (Johnson et al., 2019) and
CheXpert (using 5 labels as there are dif-
ferent labels in these datasets), and a model
fine-tuned on CheXpert evaluated on MIMIC
with all labels (as they have the same la-
bel set). We observe that models that have
been trained with in-domain SSL PT meth-
ods (dark blue and blue bars) outperform
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Figure 4: Zero-shot evaluation. Models are
PT using the SwAV algorithm. Top: NIH
→ MIMIC (5 labels). Middle: NIH →
CheXpert (5 labels). Bottom: CheXpert →
MIMIC (all labels).

even supervised ImageNet PT. This indicates
that such models may be more robust to de-
ploy in real-world scenarios as they are less
affected by domain shifts in the dataset.

Conclusion. We evaluated various super-
vised and self-supervised pretraining strate-
gies for CXR datasets and showed the effects
of in-domain and out-of-domain pretraining.
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Table 3: Final labels in each dataset. Under-
lined labels are used in the experiments with
5 labels.

Dataset Labels

NIH-CXR
(11 labels)

Consolidation, Emphysema,
Edema, Atelectasis, Fibrosis,
Pneumothorax, Nodule/Mass,
Cardiomegaly, Effusion,
Hernia, Pleural Thickening

CheXpert
(12 labels)

Consolidation, Effusion,
Edema, Pneumothorax,
Nodule/Mass, Fracture,
Enlarged Cardiomediastinum,
Lung Opacity, Pleural Other,
Cardiomegaly, Atelectasis,
Support Devices

Appendix A. Dataset Details

Pathologically similar dataset labels were
merged after consulting radiologists. This
makes the dataset and our model more suit-
able for clinical deployment.

NIH-CXR originally contained 14 labels.
We’ve merged two sets of labels - 1) Infil-
tration, Consolidation and Pneumonia into
Consolidation, and 2) Nodule and Mass
into Nodule/Mass. For CheXpert, we 1)
combined Consolidation and Pneumonia, 2)
renamed Lung Lesion to Nodule/Mass to
maintain consistency across datasets. The no
finding label was removed, as absence of all
labels in the multi-label setup automatically
indicates the same. The final list of labels in
each dataset is shown in (cf . Table 3)

Appendix B. Supplementary
Results

Comparison of 5 vs. all labels. We see a
trend similar to SimCLR from Fig. 3 for the
SwAV algorithm in Fig. 5. While the SSL
PT models finetuned on NIH 5 labels still
lag behind the supervised models as in the
all labels setting, the SSL PT models fine-
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Figure 5: Comparing fine-tuning on 5 vs. all
labels using the SwAV algorithm. Top: NIH,
Bottom: CheXpert.
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Figure 6: Zero-shot evaluation. Models are
PT using the SwAV algorithm. CheXpert →
NIH (5 labels).

tuned on 5 labels of CheXpert have a similar
performance to those supervised PT models.
This provides further evidence for the trend
observed earlier.

Zero-shot evaluation. In Fig. 6, we
present the results of models finetuned on
CheXpert and evaluated on NIH. The SSL
PT models (blue bars) are particularly
strong in this setting. Chained pre-training
on unlabeled ImageNet and NIH either per-
forms at par or slightly improves the results
of the supervised models. This shows the
promise of pre-training on unlabeled domain
data, and then fine-tuning on labeled domain
data, even if it has a different labeled set.
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