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ABSTRACT

Chest X-ray (CXR) abnormality classification faces sev-
eral challenges: (i) limited training data; (ii) training and
evaluation sets that are derived from different domains; and
(iii) classes that appear during training may have partial over-
lap with classes of interest during evaluation. We propose
an integrated framework called Generalized Cross-Domain
Multi-Label Few-Shot Learning (GenCDML-FSL), which
supports class overlap during training and evaluation, cross-
domain transfer, and few-shot learning for multi-label CXR
image classification. Additionally, we introduce Generalized
Episodic Training (GenET), a strategy that trains models to
handle the challenges observed in GenCDML-FSL scenario.
Our approach outperforms transfer learning, hybrid transfer
learning, and multi-label meta-learning on multiple datasets.

Index Terms— Meta-learning, Cross-domain, Few-shot.

1. INTRODUCTION

Deep neural networks (DNNs), show promise in automat-
ing chest X-ray interpretation. However, they require vast
amounts of labeled data for effective training, and the time-
consuming process of labeling X-rays highlights the scarcity
of such data in healthcare. Few-shot learning (FSL) has
emerged as a sub-field of machine learning [1] aimed at train-
ing DNNs with minimal data while maintaining generaliza-
tion to new images. Meta-learning (MetaL) is effective for
FSL but faces challenges in chest X-ray classification, such
as overlapping labels and distributional differences between
train and test datasets. While cross-domain few-shot learning
(CDFSL) methods [2] address distributional issues, they as-
sume unique labels per image and disjoint label sets between
train and test data, making them less suitable for chest X-rays
with multiple and overlapping abnormalities.

We propose Generalized Cross-Domain Multi-Label Few-
Shot Learning (GenCDML-FSL), a problem setup where:
(i) Generalized indicates partial overlap between train and
test labels, inducing model bias towards the overlapping
classes [3]; (ii) Cross-domain refers to domain differences
between training and evaluation data [2]; (iii) Multi-label ac-
counts for X-ray images often showing multiple abnormali-

ties; and (iv) Few-shot learning deals with the challenge of
fine-tuning on limited data. Additionally, we propose Gen-
eralized Episodic Training (GenET), a training pipeline to
handle these challenges. GenET uses support, fine-tune, and
query sets for training, fine-tuning, and evaluation, with pos-
sible class overlap between the sets to simulate real evalua-
tion conditions. This helps the model adapt to both new and
overlapping classes. Cross-domain differences are introduced
through varied augmentations applied to each set, ensuring
the model learns to adjust to domains for effective general-
ized learning. Further, multi-label classification is enabled by
relaxing number of shots per class and episodic training im-
proves generalizability even with limited data.

2. GenCDML-FSL FORMULATION

Preliminaries. In an FSL setup, the training, validation, and
test datasets are denoted as Train, V al, and Test, with
classes CTrain, CV al, and CTest from domains DTrain,
DV al, and DTest. Train is for model training, V al for hy-
perparameter tuning, and Test for evaluating the model. In
MetaL context, tasks (episodes) denoted as T involve ran-
domly sampling classes from CTrain, CV al, or CTest based
on a task distribution P (T ). Each task (episode) Ti is an N -
way K-shot learning challenge, with N being the number of
classes and K the instances per class. Each task includes a
support set Si with samples from classes CSi ∈ CTrain and
a query set Qi with different samples from the same classes,
i.e., CQi = CSi .

2.1. GenCDML-FSL Framework

In a typical meta-learning paradigm, the train (CTrain), and
test classes (CTest) are mutually exclusive. However, in chest
X-rays datasets, labels from the training set such as the NIH
dataset [4] (e.g. Cardiomegaly, Atelectasis) may be present in
test datasets like CheXpert [5]. We refer to the setup that al-
lows overlap between classes as Generalized-FSL (G-FSL).
Furthermore, domain disparity, e.g. arising from the coun-
try of data collection, between the train (e.g. NIH) and test
(e.g. CheXpert) set is characterized as Cross-domain FSL
(CD-FSL). Different from multi-class FSL, our formulation



allows images to be associated with multiple labels, introduc-
ing the Multi-Label FSL (ML-FSL) paradigm. All together,
GenCDML-FSL integrates G-FSL, CD-FSL, and ML-FSL.

Definition 1 We define GenCDML-FSL as a setup where:
(i) train and validation have the same classes CTrain =
CV al; (ii) train and test may have some overlapping labels
CTrain∩CTest ̸= ∅ and (iii) domains are assumed different:
DTrain ̸= DV al ̸= DTest. The paired samples in the train set
are Train = {xi,yi}|Train|

i=1 . Each chest X-ray image xi may
be associated with one or more labels: yi = {yci }

|CTrain|
c=1 ,

where yci ∈ {0, 1} indicates absence or presence of the label
c in xi. |CTrain| denotes the number of classes and |Train|
is the number of samples in the train set. Similar multi-label
definition can be adopted for the validation and test sets.

Multi-label episodic training. To support multi-label train-
ing, we relax the constraint of exactly K shots per class while
keeping N fixed. For each task, N classes (CS) are randomly
selected from the available pool (e.g. CTrain). Each selected
class has at least K samples, with the total ranging from K
to N×K, based on label occurrences in other samples. This
framework supports a multi-label setup, allowing an image to
be selected for different classes across tasks.

3. GENERALIZED EPISODIC TRAINING (GenET)

To adapt episodic training to a generalized label space with
partially overlapping classes and to address train-test do-
main disparities, we introduce a novel pipeline: Generalized
Episodic Training (GenET). The GenET procedure organizes
each training episode (or task), denoted as Ti, into three dis-
tinct sets: (i) support set Si = {(xk,y

s
k)

K
k=1}Ns=1 to train

the model; (ii) a new fine-tune set Fi = {(xp,y
f
p )

P
p=1}Nf=1)

for fine-tuning the model; and (iii) query set Qi =
{(xr,y

q
r)

R
r=1}Nq=1) for evaluating the model’s performance.

We use ys
k to denote the multi-label vector yk where category

s is present, i.e. ysk = 1, and others may or may not be 1. Sim-
ilar nomenclature applies to yf

p and yq
r . N represents classes

in a task, and K, P , and R represent the minimum number
of samples belonging to each class in the support, fine-tune,
and query sets, respectively. During GenET, for a given task,
classes within the support and query set may be partly over-
lapping (i.e. CSi

?
= CFi−may or may not be true). However,

the fine-tune and query sets have identical labels (i.e. CFi =
CQi ), but with distinct images.

Learning procedure: Handling overlapping and non-
overlapping labels. The model parameters θt at iteration t
are adapted U times on the support set Si through standard
gradient descent on the support loss Ls, with a learning rate
α. We denote the adapted model as

ϕUi ← θt − α∇θtLs(Si; θ
t) . (1)

The adapted model ϕUi is fine-tuned V times on Fi using
a learning rate β and fine-tune loss Lf :

ψV
i ← ϕUi − β∇ϕU

i
Lf (Fi;ϕ

U
i ) . (2)

The fine-tuned model ψV
i is subsequently evaluated on the

query set Qi to obtain the query loss Lq . The query loss, to-
gether with a learning rate γ for all episodes in a batch of size
B, is utilized to update the meta-model θ:

θt+1 ← θt − γ∇θt

B∑
i=1

Lq(Qi;ψ
V
i ) . (3)

To support the multi-label classification paradigm, we use
binary cross-entropy loss over all samples and classes:

L = −
∑
k

C∑
j=1

yjk log(ŷ
j
k) + (1− yjk) log(1− ŷ

j
k) , (4)

where, L stands for Ls, Lf , Lq while C corresponds to
CS , CF , CQ, the classes in the support, fine-tune and query
set for the specific task. yjk denotes the true label for class
j of sample xk and ŷjk is the label probability predicted by
the model. Adapting model on the support set Si and fine-
tuning it on the fine-tune set Fi trains the model for varying
sets of classes. Evaluating and fine-tuning the meta-model on
the query set Qi makes the meta-model learn how to improve
predictions on both overlapping and non-overlapping classes.
Handling domain shift. To address domain shift between
train and test data, we simulate shifts during training with
augmentations like Horizontal Flip, Vertical Flip, Random
Resized Crop, etc. (ref Sec. 4.1). For task Ti, the augmen-
tations for Si, Fi, and Qi may differ. Minimizing loss on Qi

(per Eq. 3) helps the model generalize across various augmen-
tations, enhancing robustness in both in-domain and cross-
domain scenarios. Similar augmentations are applied to base-
lines for a fair comparison.

4. EXPERIMENTS

We conduct experiments on the GenCDML-FSL paradigm
using four popular chest X-ray datasets: NIH [4], PadCh-
est [6], CheXpert [5], and MIMIC [7]. We selected NIH and
MIMIC as source datasets because they represent extremes
in sample size, with NIH having the lowest and MIMIC
the highest. We perform training on one dataset followed
by fine-tuning or adaptation using few samples (N=240) of
the test dataset in all experiments. We train on NIH (or
MIMIC) and evaluate on PadChest, CheXpert, and MIMIC
(or NIH). We augment labels with a Normal category to in-
dicate the absence of all abnormalities. GenET is compared
against multiple baselines: (i) standard transfer learning (TL),
(ii) heterogenous transfer learning (HTL) [8], (iii) multi-label
MAML (MMAML) [9], and (iv) state-of-the-art multi-label
meta-learning algorithm (ML-MetaL) [10].



Methods Source: NIH Source: MIMIC
CX PC MIMIC CX PC NIH

TL 0.2956 0.1871 0.2867 0.3658 0.1895 0.2040
HTL 0.5616 0.5312 0.5331 0.6443 0.5108 0.5615
ML-metaL 0.4278 0.3438 0.4324 0.4353 0.3648 0.3898
MMAML 0.5332 0.5104 0.5175 0.6072 0.4871 0.4849

GenET 0.5773 0.5340 0.5354 0.5687 0.5366 0.6985

Table 1. Comparing all baselines against GenET using mean
Average Precision (mAP). CX: CheXpert, PC: PadChest.
GenET achieves highest score in 5 of 6 cases.

4.1. Implementation Details

Learning rates (LR). We set the learning rate (LR) to 10−4

for TL based on optimal validation performance. For HTL, we
use an LR of 10−4 for training and adaptation on the meta-test
fine-tune set, following [11]. For MMAML and GenET, the
support LR is 0.01 and the query LR is 0.001. All LRs were
chosen via grid search in the range [10−6, 10−2] and remain
fixed across all methods and datasets. The support and fine-
tune LRs in meta-train and meta-test sets are same in GenET.

Episodic training details. We use ResNet50 for all experi-
ments, resizing images to 128×128. For GenET, MMAML,
and ML-MetaL, the support adaptation steps are set to U=5,
with V=2 fine-tune steps for GenET. Adaptation steps re-
main consistent during meta-training and meta-testing across
all episodic experiments, with a 0.3 overlap between support
and query/fine-tune classes.

Batch size, Episode size, epochs. We use a batch size of 24
for non-episodic training and 1 for episodic training to reduce
computational burden [12]. The episodic batch corresponds
to multiple tasks and cannot be directly compared to the non-
episodic batch, which consists of individual samples. We set
the number of epochs for non-episodic training to 40 owing
to convergence. To ensure fairness in data exposure, the num-
ber of episodic epochs is calculated as 40 × Total samples

B×Episode Size ,
where B=1 is the episodic batch size. The episode size is
N × (K+P+R), with N=4 (classes per task), K=1, P=2,
and R=10 (shots for support, fine-tune, and query sets, re-
spectively). During evaluation, P=1.

Augmentations. We use Horizontal Flip (p: 0.5), Vertical Flip
(p: 0.2), Random Resized Crop (p: 0.5, 128×128), Crop and
Pad (p: 0.8, percent: [-0.3, 0.3]), and Rotation (p: 0.5) from
the Albumentations library. Variations in strength and proba-
bility of selection (p) introduce stochasticity for each sample.
To ensure fairness, similar augmentations are applied across
all methods (TL, HTL, ML-metaL, MMAML, GenET).

Meta-test fine-tune split. To ensure fairness, we use 240 an-
notated samples from the test set for fine-tuning, meta-testing,
or transfer learning for all methods. The fine-tune split is de-
signed to maximize label representation in the test set. From
100 random splits, we select the split that minimizes label
distribution distance for the fine-tune and test set.

4.2. GenET vs. Baselines

mAP evaluation. Table 1 shows GenET outperforms all base-
lines on mAP with NIH dataset as the source. We observe
small, but consistent improvements of 2-4% on all three
datasets. Interestingly, transfer from MIMIC is more im-
balanced, and GenET performs best in 2 of 3 cases. From
MIMIC to CX, the high score for HTL may be due to both
datasets having same label space.

Evaluation at oracle threshold is presented in Table 2, that
reports standard classification metrics and F1 scores. Here,
GenET outperforms 5/6 baselines on F1 score when using or-
acle threshold, and is a close second on MIMIC to CheXpert.

Evaluation at 0.5 threshold. Analyzing the F1 score, GenET
outperforms all baselines with the MIMIC dataset as source,
and closely follows MMAML when source dataset is NIH.

Impact of overlapping classes. Next, we analyze GenET’s
performance across overlapping and non-overlapping classes
separately. Fig. 1 shows that GenET outperforms baselines
in 6 of 10 instances each with overlapping labels and non-
overlapping labels. In particular, MIMIC to NIH shows large
improvements with GenET both on overlapping and non-
overlapping labels. Also, non-overlapping classes have per-
formance comparable to overlapping classes for GenET. This
suggests that GenET enables the model to learn representa-
tions that are invariant to classes, validating our hypothesis
that incorporating testing conditions into the training process
through the fine-tune set enhances generalization.

Comparison with SotA ML-metaL. Results presented in Ta-
ble 1 and Table 2 show that GenET outperforms ML-metaL
on all datasets and metrics. The diminished performance of
ML-metaL stems from its inability to manage domain dis-
crepancies and a shared label space.

Ablation Studies. The fine-tune set is important to address
the GenCDML-FSL problem as demonstrated by the compar-
ison between GenET vs. MMAML. Table 1 shows GenET
outperforms MMAML on the mAP metric. In Table 2, F1
scores based on oracle threshold indicate that GenET outper-
forms MMAML in 5 of 6 cases, while at 0.5 threshold, the
two approaches are closer.

5. CONCLUSION

We introduced a new few-shot learning problem appropriate
for predicting chest X-ray abnormalities. Generalized Cross-
domain Multi-label Few-shot learning (GenCDML-FSL) en-
compasses overlapping and non-overlapping classes, domain
disparities, and multi-label instances. To address these chal-
lenges, we proposed Generalized Episodic Training (GenET)
that simulates challenges of GenCDML-FSL during the train-
ing process. Through empirical validation, we demonstrated
that adopting GenET enhances the model’s ability to learn
class-invariant representations, outperforming transfer learn-



Th. Methods NIH → CheXpert NIH → PadChest NIH → MIMIC MIMIC → CheXpert MIMIC → PadChest MIMIC → NIH
F1 P R F1 P R F1 P R F1 P R F1 P R F1 P R

O
ra

cl
e

TL 0.3336 0.2599 0.5093 0.2126 0.1825 0.3120 0.3225 0.2559 0.4637 0.3846 0.3343 0.4991 0.2046 0.1588 0.3823 0.2131 0.2414 0.5881
HTL 0.5422 0.4838 0.7627 0.4746 0.4326 0.6651 0.5097 0.4389 0.7680 0.5727 0.5332 0.6828 0.4347 0.4298 0.6636 0.4928 0.4713 0.7092
ML-metaL 0.4965 0.3872 0.8384 0.1788 0.1481 0.2883 0.3375 0.2983 0.5026 0.5297 0.3812 0.9476 0.3454 0.3198 0.5193 0.2767 0.2918 0.3734
MMAML 0.5481 0.4452 0.8571 0.4897 0.3938 0.7593 0.5255 0.4137 0.8319 0.5850 0.4853 0.7805 0.4931 0.3660 0.8603 0.4932 0.3884 0.7807
GenET 0.5803 0.4590 0.8898 0.4997 0.4144 0.7356 0.5476 0.4509 0.8269 0.5733 0.4449 0.8922 0.4953 0.4074 0.7079 0.6363 0.6054 0.7092

0.
5

TL 0.1818 0.3815 0.1426 0.0926 0.3794 0.0887 0.1544 0.3790 0.1369 0.2930 0.5073 0.2575 0.1185 0.3107 0.1061 0.1611 0.2944 0.2930
HTL 0.3290 0.4417 0.3247 0.2345 0.4780 0.1882 0.3064 0.4984 0.2694 0.3196 0.5221 0.2749 0.3085 0.4931 0.2697 0.3526 0.5363 0.3016
ML-metaL 0.2082 0.2298 0.2667 0.0706 0.0752 0.1005 0.2126 0.2245 0.2738 0.1944 0.2128 0.2682 0.0466 0.0897 0.0712 0.0877 0.1555 0.1066
MMAML 0.4067 0.4600 0.4258 0.3683 0.4355 0.3549 0.3904 0.4851 0.3785 0.4151 0.5358 0.3934 0.2617 0.3412 0.2511 0.3162 0.4274 0.2931
GenET 0.3666 0.4766 0.3529 0.3327 0.4867 0.2885 0.3867 0.5152 0.3594 0.4203 0.5473 0.4020 0.3303 0.4789 0.2956 0.5394 0.6517 0.5033

Table 2. Comparing all baselines against GenET using threshold-based metrics such as F1, P: Precision, and R: Recall. We
report results for both thresholds: the best threshold denoted as Oracle (top) and 0.5 (bottom). Overall, GenET shows good
performance across all 6 setups, while achieving highest F1 score for 5 of 6 experiments with the oracle threshold.
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Fig. 1. Mean F1 scores for overlapping (Overlap) and non-overlapping (No Overlap) classes. Top: oracle threshold and
Bottom: 0.5 threshold. We ignore MIMIC → CheXpert as both datasets contain the same set of labels. GenET outperforms
baselines in majority of the cases and shows competitive performance with other meta-learning approaches.

ing and other meta-learning baselines in majority of the cases
across both overlapping and non-overlapping classes.
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