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Abstract— We aim to teach robots to perform simple object
manipulation tasks by watching a single video demonstration.
Towards this goal, we propose an optimization approach that
outputs a coarse and temporally evolving 3D scene to mimic
the action demonstrated in the input video. Similar to previous
work, a differentiable renderer ensures perceptual fidelity
between the 3D scene and the 2D video. Our key novelty lies
in the inclusion of a differentiable approach to solve a set
of Ordinary Differential Equations (ODEs) that allows us to
approximately model laws of physics such as gravity, friction,
and hand-object or object-object interactions. This not only
enables us to dramatically improve the quality of estimated
hand and object states, but also produces physically admissible
trajectories that can be directly translated to a robot without
the need for costly reinforcement learning. We evaluate our
approach on a 3D reconstruction task that consists of 54 video
demonstrations sourced from 9 actions such as pull something
from right to left or put something in front of something. Our
approach improves over previous state-of-the-art by almost
30%, demonstrating superior quality on especially challenging
actions involving physical interactions of two objects such as
put something onto something. Finally, we showcase the learned
skills on a Franka Emika Panda robot.

I. INTRODUCTION

Learning from Demonstrations (LfD) uses manual demon-
strations in a target domain to teach a robot new skills [1].
The learning signal in LfD is different from classic reinforce-
ment learning (RL) that often involves an engineer designing
and fine-tuning a separate reward function for each robot
skill or task such that the reward guides the learning process
towards the desired solution [2], [3].

In LfD, the demonstrations are usually obtained by robot
teleoperation [4] or direct manual guiding [5]. While this
may be easier than tweaking a reward function, depend-
ing on the environment, capturing demonstrations at scale
can be a cumbersome process. Drawing inspiration from
instructional videos on Youtube [6] or educational videos
on learning platforms that help humans learn and acquire
new skills at scale1, recent works have proposed methods to
leverage video demonstrations to teach robots simple object
manipulation skills [7], [8], [9]. Contrary to robot guiding
or teleoperation that requires special infrastructure, learning
from videos relies on human demonstrations recorded at
homes or other environments of daily activity.
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Fig. 1. By watching the first two frames, can you guess whether
the person puts the green object on top of or behind the blue object?
We illustrate three frames of two video demonstrations, in which a front-
view camera looks at a hand (in orange) and two objects: a static object
placed on the ground (in blue) and a manipulated object (in green). The
red curve visualizes the motion of the hand as time flows from left to
right. In both the videos, the hand moves the green object from free space
(first frame) to what appears like above the blue object in a 2D camera
projection (middle frame). However, without seeing the last frame, it is
impossible to tell if the green object is behind the blue object or if they
are at the same distance. Once the hand releases the object (third frame),
we can estimate their relative positions by using basic physics properties
such as gravity and contact interactions. Note that modeling these physics
properties allows distinguishing between the two cases as the green object
can no longer float in the air. For example, in video 1, we see that the green
object stays above the blue object indicating that it depicts the action on
top of, while in video 2, the green object falls and is occluded by the blue
object (shown as a dashed line) indicating the put behind action. The depth
ambiguity can thus be reduced by incorporating basic laws of physics.

A recent work, Real2Sim [9], shows that it is possible to
learn simple object manipulation skills from a single video
using a two stage approach. A first stage reconstructs coarse
3D hand and object state trajectories using a differentiable
renderer that produces object and hand silhouettes to closely
resemble the video segmentation masks; while the second
stage uses RL to learn a robot policy to mimic these
trajectories. However, they also introduce multiple hard-
coded priors to lift the 2D videos to 3D reconstructed scenes
such as assumptions about the object being attached to the
ground. We build upon [9] and remove the need for such
hard-coded prior knowledge by introducing a physics-based
regularization that also results in improved performance for
reconstructing trajectories. In fact, we hypothesize that mod-
eling physics is not only convenient, but also necessary to
reduce ambiguities in perception. We motivate our hypothesis
through Fig. 1 that illustrates an example of visual ambiguity
in putting something behind or on top of something.

The goal of our work is to teach robots simple object
manipulation skills from a single video. To do this effec-
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tively, we propose to incorporate differentiable physics into
the optimization process. We show that modeling physical
laws such as gravity and inter-object interactions (including
hand/gripper and object) reduces the depth ambiguity prob-
lem leading to faithful reconstructions. Similar to [9], we use
simple geometric shapes to represent the hand and the objects
as a coarse approximation of the video scene and show that
such a representation is sufficient to reconstruct actions with
a high accuracy. We evaluate our approach on a benchmark
consisting of 9 actions and focus on hand and object state
trajectory reconstruction from a single video. Incorporating
the proposed physics-based regularization increases model
performance by almost 30% and also provides physically ad-
missible hand/gripper motions that can be directly translated
to a robot environment, mitigating the need for RL.
Contributions. We summarize our contributions as follows.
(i) We propose a differentiable, physics based regularization,
that is combined with motion optimization to learn robotic
skills from videos; (ii) Our approach is suitable for learning
from a single video demonstration and in fact produces
physically admissible trajectories that afford re-targeting to
a robot environment without costly reinforcement learning;
and (iii) Our approach results in a dramatic performance
improvement over the baseline, especially on actions involv-
ing physical interactions between two-objects such as put
something onto something. We will make the code and data
publicly available2.

II. RELATED WORK

We briefly review recent work in modeling hand-object
interactions, differentiable physics, and learning from video
demonstrations.
Modeling of hand-object interactions. Accurate 3D mod-
eling of hand-object interactions has gained significant atten-
tion owing to the development of MANO [10], an articulated
deformable model of the hand, whose shape and pose pa-
rameters can be estimated reliably at a high frame-rate [11].
This model is used to train a robust, image-based estimator of
hand-object interactions [12] that not only predicts bounding
boxes of the hand and the object but also estimates their
contact status. We use these contact estimates to optimize
the hand/gripper grasping signal.

Given an input image/video, estimation of the hand pose
together with a 3D mesh for an unknown object is explored
in [13]. An object-hand penetration loss is introduced as a
physics-based regularization. Other approaches in the same
direction jointly optimize the hand’s shape and pose and
a known object’s pose and scale [14], [15]. Collision and
interaction losses are used here for regularization. Note that
the above works attempt to estimate accurate hand poses
from an image/video, which remains challenging especially
for low quality images or occluded hands or objects.

As our goal is to teach robots simple manipulation skills,
we focus on the temporal evolution of the hand and objects

2https://github.com/petrikvladimir/video_skills_
learning_with_aprox_physics

and are able to model them with coarse geometric primitives.
We also replace the modeling of accurate hand-object inter-
actions (e.g. finger contacts [13]) with an approximate grasp
signal without requiring to actually model hand grasps.
Differentiable physics. A differentiable physics model en-
ables computation of gradients for some physical simulation
(forward process). This gradient can be used for optimiza-
tion of latent physical properties such as mass or friction
coefficients [16], [17], [18]. Various works have explored
differentiable physics in context of multi-body systems [19],
articulated bodies [20], or soft-multi body systems [21].
Differentiable physics has also been applied to learn ma-
nipulation skills such as cutting [22] or throwing [23]. In the
proposed work, we encode basic laws of physics through
equations of motion represented by Ordinary Differential
Equations (ODEs). We use a neural ODE solver [24] that
allows us to compute the gradient of the forward simulation
similar to recent differentiable physics engines [16]. In
addition, we also introduce a control signal based on whether
the hand is grasping an object as an event that modifies the
equations of motion for the object.
Learning from demonstrations. Using demonstrations to
guide optimization in RL [1], [25], [26] is a viable alter-
native to cumbersome and task-specific reward shaping. The
demonstrations are usually obtained by teleoperation or man-
ual guiding [4], [5] and consist of robot motions performed
in the target environment. Learning from video mitigates
the need for demonstrations in the target environment and
instead leverages video representations to guide the learning
through reward estimation (i.e. inverse reinforcement learn-
ing) methods [27], [28], [29], [30], human to robot domain
translation [31], [32], [33], or a task classifier used as a
reward function [8]. Different from the above works, our
optimization approach uses differentiable physics to produce
physically admissible trajectories that can be re-targeted to
a robot without the need for RL.

Perhaps closest to our work is the learning from videos
approach proposed in [9] that estimates a coarse temporally
evolving state from the video and uses it as a reward signal
for RL. While our work is similar in spirit, we are able to
circumvent some of the hard-coded prior knowledge in [9]
by modeling simple physics laws like gravity and contact
interactions. This not only leads to physically admissible
trajectories that mitigate the need for RL, but also results in
a large improvement in the quality of estimated trajectories.

III. LEARNING FROM VIDEO VIA APPROXIMATE PHYSICS

The goal of our work is to teach robots simple object
manipulation skills from a single video demonstration. We
split the learning approach into three steps: (i) Video pre-
processing extracts hand and object segmentation masks and
estimates if the hand is in contact with the object; (ii)
Optimization leads to estimation of physically admissible
hand and object state trajectories that perceptually resemble
the video demonstration; and (iii) Re-targeting maps the
estimated motion onto the robot. The whole pipeline with
intermediate results is visualized in Fig. 2.
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Fig. 2. Our proposed pipeline is illustrated for four keyframes of a video demonstration corresponding to the action put something next to something. The
pipeline consists of: (i) a video preprocessing step which extracts segmentation masks and information about the hand-object contact; (ii) a physics-based
optimization step that solves physics equations of motion (ODEs), renders the states via a differentiable renderer and computes and minimizes losses based
on perceptual similarity to the video demonstration. In the figure panel, the curves represent trajectories and dots are the discrete timesteps at which loss
is computed; and (iii) a re-targeting step which computes the robot trajectory from optimized Cartesian trajectories.

A. Notation and problem formulation

Video demonstration. The video consists of N frames that
are denoted by Ik, k ∈ {1, . . . , N}. The subscript k denotes
discrete time-steps corresponding to the frames of the video.
The video demonstration shows a person (observed as a
hand due to an ego-centric view) performing some action
consisting of a simple object manipulation.

Simulated scene. We find approximate but physically consis-
tent state trajectories for the hand and objects that resemble
the action demonstrated in the input video. To this end,
we approximate the hand with a fixed sized cylinder of
length 40 cm and radius 4 cm. The shape and dimensions
are chosen to approximate an adult human hand. The hand
position and orientation are denoted by symbols xh

t ∈ R3

and Rh
t ∈ SO(3), for t ∈ [0, T ], where T is duration of the

video demonstration. Different from the discrete time-steps
k, the symbol t is used for continuous time and we operate
in the continuous time range [0, T ] for the optimization.

The objects in the scene are approximated by cuboids
and their sizes are estimated by the optimization. To model
the actions chosen from our data, we assume that there
is one manipulated object in the scene and optionally one
immovable or static object. However, note that the proposed
approach can be extended to an arbitrary number of static
objects. The manipulated object’s position, orientation, and
size are denoted by xo

t ∈ R3, Ro
t ∈ SO(3), and so ∈ R3

respectively. Note that size so is independent of time.
The optional immovable object is not directly acted upon

in the demonstration video and in fact can be thought of
as being part of the scene layout. However, the manipulated
object may collide with it. We refer to this object as the
collision-aware object and use superscript c. Its position,
orientation, and size are denoted by xc ∈ R3, Rc ∈ SO(3),
and sc ∈ R3 and are all independent of time.

The complete state of the scene at any time t is denoted
by zt =

(
xh
t , R

h
t , x

o
t , R

o
t , s

o, xc, Rc, sc
)
, i.e. it consists

of the hand pose at time t, the manipulated object’s pose at
time t and its size, and the static object’s pose and size.

Problem formulation. Given camera parameters c, the state

of the scene can be rendered into an image via differentiable
rendering [34], [35]. We denote the rendering process as a
function frender(zt, c), where c describes both the intrinsic
and extrinsic camera parameters. As mentioned earlier, our
reconstructed scene is an approximation of the video and
the rendered images are not directly comparable to the RGB
pixels of the video demonstration. Instead, we extract binary
masks for the hand Mh

k , the manipulated object Mo
k , and

the static object M c
k from the input video. Similar to [9],

we define the perceptual distance at the level of rendered
silhouettes and segmentation masks.

We formulate our goal as an optimization problem to find
a joint solution for all time-evolving states of the scene and
the static camera parameters such that the scene rendering
resembles the video demonstration while respecting some
simple laws of physics:

z∗t , c
∗ = argmin

zt∈Z,c
L(zt, frender(zk, c),M

h
k ,M

o
k ,M

c, τk) ,

(1)

where z∗t and c∗ represent the optimal solution of time-
evolving states of the scene and camera parameters, zk
represents the state at a discrete time-step corresponding
to the video frames, τk is the hand-object contact signal
estimated from the video and used to guide the optimization,
L is the loss function to minimize, and Z represents the set of
all physically admissible trajectories. The details of the loss
function are discussed in subsequent sub-sections. The main
difficulty in optimizing Eq. (1) is generation of physically
admissible trajectories zt – we solve this locally by adopting
advances in neural ordinary differential equation (ODE)
solvers [24].

B. Differentiable physics

Prior to describing the equations of motion that are used
as part of the ODE solvers, we briefly touch upon the physics
approximations.
Approximate physics. The approximation adopted by our
proposed method is threefold: (i) We use coarse geometric
models for the hand and the objects which allows us to com-
pute the signed distance function in a differentiable manner.
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(ii) We use an elastic collision model which approximates
the real-world contacts and results in a small penetration of
the objects in contact; and (iii) we approximate real-world
friction with a tangential velocity reduction that depends
linearly on the object velocity. The real-world friction cone
is therefore not modeled.

Hand ODE. We consider the hand cylinder as a control
entity that can use one of its ends (tip) to grasp and release
the object. The motion of the hand/gripper is driven by an
active entity and is therefore not directly governed by the
same physical constraints as that of objects (for example, the
gravity does not affect hand). We approximate the continuous
motion of the hand and represent the time derivatives of the
hand position, orientation, and grasp signal using a spline
that acts as a regularizer:

vh
t , ω

h
t , ġ

h
t = fspline(t) , (2)

where vh
t is the linear velocity of the hand, ωh

t is the
spatial angular velocity, and ght ∈ R is the grasp signal that
represents the hand’s ability to hold the object. If the grasp
signal is positive and the hand is in contact with the object
(i.e. the hand tip is inside the object), the object is grasped
by the hand and can be released only when the grasp signal
becomes negative. The differential equations describing the
hand motion are:

ẋh
t = vh

t , Ṙh
t = (ωh

t )
∧Rh

t , (3)

where the hat operator ∧ is used to construct a skew-
symmetric matrix from a given vector [36] (see Eq. 2.4)
such that a× b = (a)∧b.

Object ODE. Contrary to the hand, the state trajectory of the
manipulated object from its starting position is determined
either by the hand or by laws of physics such as gravity and
collision interactions. For brevity we will omit t.

The object’s equations of motion are captured as 4 com-
ponents. The linear velocity ẋo is influenced by the hand’s
linear and angular velocities when grasped. The linear ac-
celeration v̇o consists primarily of interaction impulses due
to collisions jv , or acceleration due to gravity g when not
grasped. Similarly, the angular velocity Ṙo sums up contri-
butions of the individual hand and object velocities when
grasped and the angular acceleration ω̇o models impulses
due to collisions jω:

ẋo =

{
vh + ωh × (xo − xh) + vo, if object grasped,
vo, otherwise,

(4)

v̇o =

{
−kj,vvo + jv, if object grasped,
−g + jv, otherwise,

(5)

Ṙo =

{(
ωh + ωo

)∧
Ro, if object grasped,

(ωo)∧Ro, otherwise,
(6)

ω̇o =

{
−kj,ωωo + jω, if object grasped,
jω, otherwise,

(7)

where kj,v and kj,ω are positive constants that control how
quickly the collision impulse decays for grasped objects.
Object impulses. We first compute the impulse experienced
at each of the P sampled points on the manipulated object’s
boundary when it collides with some object (or ground) O.
Let xi and vi be the position and velocity of a point on the
boundary, and n be the normal at a point on the surface of
O closest to xi. The magnitude of the impulse mi at point
i is proportional to the penetration distance of a point xi

inside the collision object O and to the colliding velocity,
i.e. the velocity that would result in collision if integrated
over time. The impulse at each point on the boundary ji
combines the surface normal vector with an approximation
of friction through a tangential velocity that is present only
for non-zero magnitudes:

mi = max {−kpd(xi,O)− kv min {vi · n, 0} , 0} , (8)

ji = min− 1(mi)µv
tangential
i , (9)

where kp and kv are positive scalar constants controlling the
stiffness of the collision, and µ is a non-negative scalar that
acts like a coefficient of friction, and 1(mi) is one for non-
zero mi and zero otherwise. The term vi · n represents the
velocity in the contact’s normal direction, which is clamped
by the min operator to generate impulses only for colliding
velocities.

The linear and angular impulses are combined over the
individual sampled points as:

jv =

P∑
i=1

ji, jw =

P∑
i=1

qi × ji , (10)

where qi is a vector pointing from the center of the object to
the point xi. In our setup, recall that the manipulated object
may only collide with either the ground plane z = 0 or an
optional immovable object.
Discrete events. The object’s equations of motion depend on
a discrete variable that indicates if the object is grasped by
the hand or not (see Eqs. (4-7)). We define an event function
and capture this discrete variable through a change in sign
as follows:

fevent = max{dhand-object, −gh} , (11)

where dhand-object represents the signed distance function
between the hand tip and the manipulated object’s boundary
and gh is the estimated hand grasp signal. The object is
grasped if and only if the hand grasp signal is positive and
the signed distance is negative, indicating that the hand tip
is inside (in contact with) the object. The recent advances
in differentiable ODE solvers [37] allow us to automatically
detect the zero-crossings of fevent and update the discrete
object grasp status accordingly in a differentiable way.
Integrating the equations of motion. Equations (3-11)
describe the ODEs that can be integrated over time given
the initial state of the manipulated and static objects and
a known hand velocity specified by the controlling spline.
The physically consistent state is therefore computed based
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on the equations of motion and this state can be used as a
constraint in the optimization objective of Eq. (1).

C. Optimization

As stated in Eq. (1) we optimize the loss over state trajec-
tories and camera parameters. The trajectory is computed by
integrating the ODE based on the start state and hand motion
that are being optimized. However, not all parameters are
well conditioned in our tasks. For example, the rotation about
the hand axis can take arbitrary values (when it is not in touch
with the manipulated object) owing to the rotation symmetry
of the cylinder that represents the hand. We constrain some
of the ill-conditioned parameters by a regularization loss or
by removing corresponding degrees of freedom from the
optimized parameters as discussed next.

Optimization state space. For all rotation matrices, we use a
6D representation [38]. We optimize the following hand pa-
rameters: velocities (vh,ωh, ġh) ∈ R7 at the control points
of the spline, and the initial state of the hand (xh

0 , R
h
0 , g

h
0 ) ∈

R10. Thus, the hand is parameterized by 7Nspline+10 degrees
of freedom (DOF), where Nspline represents the number of
spline control points.

The manipulated object parameters include the object start
position, orientation and size (12 DOF). The initial object
velocity is set to zero. We assume that the immovable object
(cuboid) lies on the ground on one of its faces. Thus, it is
parameterized by a 2D position, rotation about the gravity
axis and its size (6 DOF).

The camera intrinsic parameters are determined by a
standard perspective camera [34]. The effect of intrinsic
focal length is not observable as it can be compensated
by simultaneously changing the position of the hand. As
we use a fixed size cylinder to represent the hand, for a
fixed focal length, we can estimate the pose of the hand.
We observe that the inaccuracy in estimating the camera
intrinsic parameters is not critical as it would either affect
the distance of the hand from the camera origin (influence
of focal length) or result in small perceptual distortions that
are negligible as compared to our coarse cuboid and cylinder
approximations (due to camera distortions). To estimate the
camera’s extrinsic parameters, we model the camera height
and the elevation angle and assume that the gravity vector
is perpendicular to the rows of the captured image, which
is often true for egocentric demonstrations. All other camera
pose DOF are compensated by offsetting the position of the
scene elements.

Loss. The loss function from Eq. (1) is divided into three
parts: (i) The perceptual loss ensures that the segmentation
mask Mk at frame k resembles the rendered silhouette
produced by the differentiable renderer frender(zk):

Lper =

N∑
k=1

∑
j∈{h,o,c}

wj
perJ (M

j
k , frender(zk)) , (12)

where j is used to sum over the hand, the manipulated
object, and the collision object with weights wh

per, w
o
per, w

c
per

respectively; and J represents the distance-Intersection-over-
Union loss (dIoU) adopted for segmentation masks from
work on bounding box regression [39]. The dIoU has a low
score when the two masks align well.

(ii) The regularization loss encourages a small hand and
object velocity and prevents needless motion. It also specifies
that the object should not move when it is not visible,
i.e. when 1(Mo

k ) is zero:

Lreg =

N∑
k=1

wo
reg(1− 1(Mo

k ))‖vo
k + ωo

k‖2 + wh
reg‖vh

k + ωh
k‖2 ,

(13)

where wo
reg, w

h
reg weight the norm of object and hand veloc-

ities.
(iii) Finally, the contact loss uses the hand-object grasping

status τk estimated from the demonstration to guide the
grasping signal ghk . Note that the loss is not applicable when
τk = 0.

Lcon = wd
con

N∑
k=1

1(τk) ‖max{dhand-object, 0}‖2 +

1(τk)
∥∥min{ghk , 0}

∥∥2 + (1− 1(τk))
∥∥max{ghk , 0}

∥∥2 , (14)

where wd
con weights the contact loss. The first term penalizes

a positive signed distance function dhand-object while the
second term penalizes a negative hand grasp signal for frames
where the hand is detected to be in contact (i.e. 1(τk) = 1).
The last term penalize positive grasp signal for frames not in
contact. In our experiments, we found that the contact loss
was necessary to guide the hand towards actual grasping.
Without it, the optimizer did not discover that grasping the
object leads to a lower perceptual loss as the local gradient
does not provide sufficient information.

Finally, the combined loss L = Lper + Lreg + Lcon is
minimized using the Adam optimizer [40].
Initialization. We observe that the optimization of the
Eq. (1) from a random initial state is quite challenging, per-
haps due to the presence of multiple local minima – several
learned trajectories ignored the object and only learned to
move the hand. Therefore, a decent initialization is necessary
to start the optimization.

We estimate the initial parameters by only optimizing the
perceptual loss and the distance term of the contact loss in the
camera frame of reference without any physics. Then, we use
optimization via physics to find an appropriate camera pose
and to further fine-tune the initialized trajectories. We show
via experiments that the initialization alone is insufficient
for finding physically consistent state trajectories, however,
it does provide a reasonable starting point for the optimizer.

D. Re-targeting to the robot arm

The physics-based optimization has an advantage as it can
provide physically admissible trajectories of the hand, object,
and the contact state. For transferring the hand Cartesian
motion to the robot we optimize the trajectory of the robot’s
joints such that the robotic gripper follows the estimated hand

5



trajectory. The optimization takes into account the constraints
given by the robot and the environment, e.g. the joint limits
or the robot link collisions. We use contact change to enforce
the robotic gripper to grasp the object at one of the pre-
defined local grasp-poses or to release the object at a specific
time.

IV. EXPERIMENTS

We start this section with a brief overview of the video
demonstrations and the metrics that are used to evaluate
our approach. We then provide some implementation details,
followed by a quantitative evaluation.

A. Dataset and Metric

Something Something dataset. Following [9], we evaluate
the hand and object state trajectories on 9 actions and a total
of 54 video demonstrations (6 per action) from the Something
Something dataset [41]. An example of each action can be
seen in Fig. 3. Please refer to the supplementary video for
additional qualitative results.

Evaluation metric. We define a metric that captures various
properties of the hand and object states, such as the amount
of displacement for pull/push actions or the angle of the hand
to disambiguate between pull and push actions. For brevity,
we will only discuss additional requirements included in this
work, but encourage the reader to review Appendix B of [9]
for a quick visual overview of the metrics. One additional
criteria applicable to all actions and all timesteps is to verify
that the object is not below the ground.

Pull and push. For these single object actions, we require
that the object moves in the correct direction for at least 5 cm
with the hand in the proper orientation, i.e. in-front-of or
behind the object in the direction of motion respectively.
Our additional constraint applies to the object motion in the
gravity axis and requires the object to be lifted less than the
size of the object in that same axis. This verifies that object is
not lifted and placed but is actually pushed or pulled instead.
This was not required in [9] due to the hard-coded object
height during optimization.

Pick up. We require the object to be lifted above the
ground by at least 1 cm as in [9]. In addition, to ensure
that our proposed model does not cheat, we require that the
object is on the table before the action starts.

Put. For the put next to, put in front of, and put behind
actions we verify that the manipulated object is placed at the
appropriate side of the static object at the end of the motion.
We also require the manipulated object’s z-dimension at the
end of the motion to be below the static object’s height in
z. This ensures that the object is not held in the air. For the
put onto action, we verify that the center of the manipulated
object projected to the ground is inside the static object’s
boundary projected to the ground. Given a uniform density
and convex objects, this ensures that the manipulated object
will not topple over the static one. In addition, at the end of
the motion, we check that the manipulated object’s bottom
face is close to the static object’s top face.

B. Implementation details

Video segmentation. Many video segmentation methods re-
quire an initial annotated frame which they use to propagate
the labels [42], [43], [44]. We annotate polygon bounding
boxes for the hand and objects in just one frame where all
objects are visible. This happens to be the center frame of
the action part of the video (i.e. when the hand is touching
the object) for most videos (except a couple cases where the
object is occluded). We use an off-the-shelf pretrained Space-
Time Correspondence Network (STCN) [45] model, and
propagate the labels across the video (forward and backward
in time) starting from the central keyframe. Note that while
it is possible to replace the manual segmentation by an auto-
matic one (e.g. using MaskRCNN [46]), these models do not
discover blobs and may miss some of the household objects
used in our videos resulting in significant errors in trajectory
reconstruction. To provide a fair comparison against the
current state-of-the-art baseline [9], we re-evaluate [9] on our
improved segmentation masks. As a post-processing step we
keep only the largest connected component (blob) and filter
out spurious noise in the estimated segmentation masks.
Contact estimation. We use a hand-object detector
model [12] to estimate whether the hand is in contact with
an object. The method estimates a binary value (in contact
or not) for each frame of the video. Since the hand, or the
object, or both, may not be visible from the beginning or at
the end of the video, we design a simple but effective multi-
step filtering heuristic. (i) We first smooth the predictions
using a median filter. (ii) If the object is moving at the
beginning of the video (based on segmentation masks), we
say that the hand-object are in contact until the first negative
detection from [12]. A similar strategy is used at the end of
the video. (iii) Finally, we check if the release signal towards
the end of the video can be brought forward in time as the
contact estimation model makes errors when the hand is close
to the object. This too is achieved through median filtering.

C. Performance of trajectory estimation

We evaluate the proposed approach on the same set of 54
videos as used in [9]. We use the metric, designed in the
previous section to evaluate the trajectories generated by the
Real2Sim approach [9] and compare them to the proposed
physics-based optimization. The results are shown in Tab. I.
Impact of video segmentation. The first two rows of the
table evaluate the impact of improving segmentation masks.
Masks obtained through STCN used in this work are cleaner
and result in better overall performance compared to the
original masks from [9] (40% vs. 61%). Note that this comes
at the cost of drawing 2-3 polygon annotations per video
demonstration, which we think is negligible as compared to
actually performing the demonstration.
Impact of initialization. We see that the initialization
scheme is effective at obtaining rough trajectories (48%).
However, it is worse than Real2Sim [9] with the same masks
(61%). This is primarily due to the assumptions and priors
encoded in Real2Sim. Nevertheless, a decent initialization
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TABLE I
QUANTITATIVE COMPARISON OF THE ESTIMATED TRAJECTORIES.

Method Pull left
to right

Pull right
to left

Push left
to right

Push right
to left

Pick
up

Put
behind

Put in
front of

Put
next to

Put
onto Total Success

rate

Real2Sim [9] orig. masks 5/6 4/6 5/6 3/6 1/6 3/6 1/6 0/6 0/6 22/54 40%
Real2Sim [9] STCN masks 6/6 6/6 6/6 6/6 3/6 5/6 0/6 0/6 1/6 33/54 61%
Proposed initialization 3/6 4/6 2/6 2/6 0/6 5/6 5/6 5/6 0/6 26/54 48%
Proposed approach 6/6 6/6 6/6 6/6 4/6 6/6 6/6 6/6 3/6 49/54 90%

acts as a launchpad for our physics-based optimization
approach that achieves a 90% success rate. Our approach
is able to reconstruct valid trajectories for all videos of 7
actions, and only falters for 5 of 54 videos in two challenging
actions pick up and put onto.
Qualitative analysis. Fig. 3 presents examples of the video
frames, segmentation masks, and the rendered output of the
3D scene for a few frames of each demonstration. The first 9
panels (a)-(i) illustrate successful outputs, one for each of the
9 actions. The last three panels, (j)-(l) present failure cases
for the two actions mentioned above. We see that failures are
primarily due to fast hand motion or errors in segmentation.

D. Re-targeting to the robot arm

Even with an approximate physics-based regularization,
we are able to obtain trajectories that can be directly trans-
lated to the robot arm. Please refer to the supplementary
video for additional details of this experiment on our robot.

V. CONCLUSION

We proposed an approximate physics-based optimization
approach to reconstruct a temporally evolving 3D scene that
mimics a video demonstration. Our key contribution was to
include a differentiable solver for ODEs of hand and object
motion that are controlled by a grasp signal modeled as an
event. Together with a differentiable renderer, we presented
an approach to recover physically consistent trajectories that
were perceptually similar to the input video and can be also
directly re-targeted to a robot. Evaluation on 9 diverse single
and two-object actions showed large improvements in the
quality of estimated trajectories as compared against previous
state-of-the-art. We successfully transferred these skills to
our robot and include examples in the supplementary video.
Limitations. The main limitation of the proposed method
is the difficulty in propagating gradients to optimize the
contact/grasp signal making the approach sensitive to the
initialization of the grasp signal. However, the initialization
and refinement strategy presented in the implementation de-
tails allow us to achieve high performance. Other limitations
include requirement for manual annotation of a single-frame,
motion modeling for only one object, and inability to work
with fine actions that may require the full dexterity of the
hand due to the coarse cylinder approximation.
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