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Abstract

We address the problem of recognizing situations in im-
ages. Given an image, the task is to predict the most
salient verb (action), and fill its semantic roles such as
who is performing the action, what is the source and tar-
get of the action, etc. Different verbs have different roles
(e.g. attacking has weapon), and each role can take on
many possible values (nouns). We propose a model based
on Graph Neural Networks that allows us to efficiently
capture joint dependencies between roles using neural net-
works defined on a graph. Experiments with different graph
connectivities show that our approach that propagates in-
formation between roles significantly outperforms existing
work, as well as multiple baselines. We obtain roughly 3-
5% improvement over previous work in predicting the full
situation. We also provide a thorough qualitative analysis
of our model and influence of different roles in the verbs.

1. Introduction
Object [14, 33, 36], action [35, 40], and scene classifi-

cation [50, 51] have come a long way, with performance
in some of these tasks almost reaching human agreement.
However, in many real world applications such as robotics
we need a much more detailed understanding of the scene.
For example, knowing that an image depicts a repairing
action is not sufficient to understand what is really happen-
ing in the scene. We thus need additional information such
as the person repairing the house, and the tool that is used.

Several datasets have recently been collected for such
detailed understanding [22, 27, 47]. In [22], the Visual
Genome dataset was built containing detailed relationships
between objects. A subset of the scenes were further anno-
tated with scene graphs [17] to capture both unary (e.g. at-
tributes) and pairwise (e.g. relative spatial info) object re-
lationships. Recently, Yatskar et al. [47] extended this idea
to actions by labeling action frames where a frame consists
of a fixed set of roles that define the action. Fig. 1 shows a
frame for action repairing. The challenge then consists
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Figure 1. Understanding an image involves more than just predict-
ing the most salient action. We need to know who is performing
this action, what tools (s)he may be using, etc. Situation recog-
nition is a structured prediction task that aims to predict the verb
and its frame that consists of multiple role-noun pairs. The figure
shows a glimpse of our model that uses a graph to model depen-
dencies between the verb and its roles.

of assigning values (nouns) to these roles based on the im-
age content. The number of different role types, their possi-
ble values, as well as the number of actions are very large,
making it a very challenging prediction task. As shown in
Fig. 2, the same verb can appear in very different image
contexts, and nouns that fill the roles are vastly different.

In [47], the authors proposed a Conditional Random
Field (CRF) to model dependencies between verb-role-
noun pairs. In particular, a neural network was trained in
an end-to-end fashion to both, predict the unary potentials
for verbs and nouns, and to perform inference in the CRF.
While their model captured the dependency between the
verb and role-noun pairs, dependencies between the roles
were not modeled explicitly.

In this paper, we aim to jointly reason about verbs and
their roles using a Graph Neural Network (GNN), a gener-
alization of graphical models to neural networks. A GNN
defines observation and output at each node in the graph,
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Figure 2. Images corresponding to the same verb can be quite dif-
ferent in their content involving verb roles. This makes situation
recognition difficult.

and propagates messages along the edges in a recurrent
manner. In particular, we exploit the GNNs to also model
dependencies between roles and predict a consistent struc-
tured output. We explore different connectivity structures
among the role nodes, and show that our approach signifi-
cantly improves performance over existing work. In addi-
tion, we compare with strong baseline methods using Re-
current Neural Networks (RNNs) that have been shown to
work well on joint prediction tasks, such as semantic [49]
and object instance [3] segmentation, as well as on group
activity recognition [8]. We also visualize the learned mod-
els to further investigate dependencies between roles.

2. Related Work
Situation recognition generalizes action recognition to

include actors, objects, and location in the activity. There
has been work to combine activity recognition with scene
or object labels [7, 12, 44, 45]. In [13, 31], visual semantic
role labeling tasks were proposed where datasets are built to
study action along with localization of people and objects.
In another line of work, Yatskar et al. [47] created the imSitu
dataset that uses linguistic resources from FrameNet [10]
and WordNet [29] to associate images not only with verbs,
but also with specific role-noun pairs that describe the verb
with more details. As a baseline approach, in [47], a Con-
ditional Random Field (CRF) jointly models prediction of
the verb and verb-role-noun triplets. Further, considering
that the large output space and sparse training data could be
problematic, a tensor composition function was used [46]
to share nouns across different roles. The authors also pro-
posed to augment the training data by searching images us-
ing query phrases built from the structured situation.

Different from these methods, our work focuses on ex-
plicitly modeling dependencies between roles for each verb
through the use of different neural architectures.

Understanding Images. There is a surge of interest in
joint vision and language tasks in recent years. Visual Ques-
tion Answering in images and videos [1, 38] aims to answer

questions related to image or video content. In image cap-
tioning [19, 39, 42, 26], a natural language sentence is gen-
erated to describe the image. Approaches for these tasks
often use the CNN-RNN pipelines to provide a caption, or
a correct answer to a specific question. Dependencies be-
tween verbs and nouns are typically being implicitly learned
with the RNN. An alternative is to list all important objects
with their attributes and relationships. Johnson et al. [17]
created scene graphs, which are being used for visual re-
lationship detection [27, 30, 48] tasks. In [25], the authors
exploit scene graphs to generate image captions.

In Natural Language Processing (NLP), semantic role
labeling [11, 18, 20, 32, 43, 52] involves annotating a
sentence with thematic or semantic roles. Building upon
resources from NLP, and leveraging collections such as
FrameNet [10] and WordNet [29], visual semantic role la-
beling, or situation recognition, aims to interpret details for
one particular action with verb-role-noun pairs.

Graph Neural Networks. There are a few different ways
for applying neural networks to graph-structured data. We
divide them into two categories. The first group defines con-
volutions on graphs. Approaches like [2, 6, 21] utilized the
graph Laplacian and applied CNNs to spectral domain. Dif-
ferently, Duvenaud et al. [9] designed a special hash func-
tion such that a CNN can be used on the original graphs.

The second group applies feed-forward neural networks
to every node of the graph recurrently. Information is prop-
agated through the network by dynamically updating the
hidden state of each node based on their history and incom-
ing messages from their neighborhood. The Graph Neural
Network (GNN) proposed by [34] utilized multi-layer per-
ceptrons (MLP) to update the hidden state. However, their
learning algorithm is restrictive due to the contraction map
assumption. In the following work, the Gated Graph Neural
Network (GGNN) [23] used a recurrent gating function [4]
to perform the update, and effectively learned model param-
eters using back-propagation through time (BPTT).

Other work [24, 37] designed special update functions
based on the LSTM [16] cell and applied the model to tree-
structured or general graph data. In [28], knowledge graphs
and GGNNs are used for image classification. Here we use
GGNNs for situation recognition.

3. Graph-based Neural Models for Situation
Recognition

Task Definition. Situation recognition as per the imSitu
dataset [47] assumes a discrete set of verbs V , nouns N ,
roles R, and frames F . The verb and its corresponding
frame that contains roles are obtained from FrameNet [10],
while nouns come from WordNet [29]. Each verb v ∈ V is
associated with a frame f ∈ F that contains a set of seman-
tic roles Ef . Each role e ∈ Ef is paired with a noun value
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Figure 3. The architecture of fully-connected roles GGNN. The
undirected edges between all roles of a verb-frame allows to fully
capture the dependencies between them.

ne ∈ N ∪{∅}. Here, ∅ indicates that the noun is unknown
or not applicable. A set of semantic roles and their nouns is
called a realized frame, denoted as Rf = {(e, ne) : e ∈ Ef},
where each role is with a noun.

Given an image, the task is to predict the structured
situation S = (v,Rf ), specified by a verb v ∈ V and
its corresponding realized frame Rf . For example, as
shown on the right of Fig. 2, the verb riding is as-
sociated with three role-noun pairs, i.e., {agent:dog,
vehicle:surfboard, place:sidewalk}.

3.1. Graph Neural Network

The verb and semantic roles of a situation depend on
each other. For example, in the verb carrying, the roles
agent and agent-part are tightly linked with the item
being carried. Small items can be carried by hand, while
heavy items may be carried on the back. We propose mod-
eling these dependencies through a graph G = (A,B). The
nodes in our graph a ∈ A are of two types of verb or role,
and take unique values of V or N , respectively. Since each
image in the dataset is associated with one unique verb,
every graph has a single verb node. Edges in the graph
b = (a′, a) encode dependencies between role-role or verb-
role pairs, and can be directed or undirected. Fig. 1 shows
an example of such a graph where verb and role nodes are
connected to each other.

Background. Modeling structure and learning represen-
tation on graphs have prior work. Gated Graph Neural Net-
works (GGNNs) [23] is one approach that learns the rep-
resentation of a graph, which is then used to predict node-
or graph-level output. Each node of a GGNN is associated
with a hidden state vector that is updated in a recurrent fash-
ion. At each time step, the hidden state of a node is updated
based on its history and incoming messages from its neigh-
bors. These updates are applied simultaneously to all nodes
in the graph at each propagation step. The hidden states af-
ter T propagation steps are used to predict the output. In
contrast, a standard unrolled RNN only moves information
in one direction and updates one “node” per time step.

GGNN for Situation Recognition. We adopt the GGNN
framework to recognize situations in images. Each image i

is associated with one verb v that corresponds to a frame f
with a set of roles Ef . We instantiate a graph Gf for each
image that consists of one verb node, and |Ef | (number of
roles associated with the frame) role nodes. To capture the
dependency between roles to the full extent, we propose cre-
ating undirected edges between all pairs of roles. Fig. 3
shows two example graph structures of this type. We ex-
plore other edge configurations in the evaluation.

To initialize the hidden states for each node, we use fea-
tures derived from the image. In particular, for every image
i, we compute representations φv(i) and φn(i) using the
penultimate fully-connected layer of two convolutional neu-
ral network (CNN) pre-trained to predict verbs and nouns,
respectively. We initialize the hidden states h ∈ RD of the
verb node av and role node ae as

h0av
= g(Wivφv(i)) (1)

h0ae
= g(Winφn(i)�Wee�Wv v̂) , (2)

where v̂ ∈ {0, 1}|V| corresponds to a one-hot encoding of
the predicted verb and e ∈ {0, 1}|R| is a one-hot encoding
of the role that the node ae corresponds to. Wv ∈ RD×|V|

is the verb embedding matrix, and We ∈ RD×|R| is the
role embedding matrix. Wiv and Win are parameters that
transform image features to the space of hidden repre-
sentations. � corresponds to element-wise multiplication,
and g(·) is a non-linear function such as tanh(·) or ReLU
(g(x) = max(0, x)). We normalize the initialized hidden
states to unit-norm prior to propagation.

For any node a, at each time step, the aggregation of
incoming messages at time t is determined by the hidden
states of its neighbors a′:

xta =
∑

(a′,a)∈B

Wph
t−1
a′ + bp . (3)

Note that we use a shared linear layer of weights Wp and
biases bp to compute incoming messages across all nodes.

After aggregating the messages, the hidden state of the
node is updated through a gating mechanism similar to the
Gated Recurrent Unit [4, 23] as follows:

zta = σ(Wzx
t
a + Uzh

t−1
a + bz) ,

rta = σ(Wrx
t
a + Urh

t−1
a + br) ,

h̃ta = tanh(Whx
(t)
a + Uh(r

t
a � ht−1a ) + bh) ,

hta = (1− zta)� ht−1a + zta � h̃ta . (4)

This allows each node to softly combine the influence of the
aggregated incoming message and its own memory. Wz ,
Uz , bz , Wr, Ur, br, Wh, Uh, and bh are the weights and
biases of the update function.

Output and Learning. We run T propagation steps. Af-
ter propagation, we extract node-level outputs from GGNN
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Figure 4. The architecture of chain RNN for verb riding. The
time-steps at which different roles are predicted needs to be de-
cided manually, and has an influence on the performance.

to predict the verb and nouns. Specifically, for each image,
we predict the verb and a set of nouns for each role associ-
ated with the verb frame using a softmax layer:

pv = σ(Whvhav
+ bhv) (5)

pe:n = σ(Whnhae + bhn) . (6)

Note that the softmax function σ is applied across the class
space for verbs V and nouns N . pe:n can be treated as the
probability of assigning noun n to role e.

Each image i in the imSitu dataset comes with three sets
of annotations (from three annotators) for the nouns. During
training, we accumulate the cross-entropy loss at verb and
noun nodes for every annotation as

L =
∑
i

3∑
j=1

(
yv log(pv) +

1

|Ef |
∑
e

ye:n log(pe:n)
)
, (7)

where yv and ye:n correspond to the ground-truth verb for
image i and the ground-truth noun for role e of the image,
respectively. Different to the Soft-OR loss in [47], we en-
courage the model to predict all three annotations for each
image. We use back-propagation through time (BPTT) [41]
to train the model.

Inference. At test time, our approach first predicts the
verb v̂ = arg maxv pv to choose a corresponding frame
f and obtain the set of associated roles Ef . We then prop-
agate information among role nodes and choose the highest
scoring noun n̂e = arg maxn pe:n for each role. Thus our
predicted situation is

Ŝ = (v̂, {(e, n̂e) : e ∈ Ef}) . (8)

To reduce reliance on the quality of verb prediction, we ex-
plore beam search over verbs as discussed in Experiments.

3.2. Simpler Graph Architectures

An alternative to model dependencies between nodes is
to use recurrent neural networks (RNN). Here, situation
recognition can be considered as a sequential prediction
problem of choosing the verb and corresponding noun-role
pairs. The hidden state of the RNN carries information
across the verb and noun-role pairs, and the input at each
time-step dictates what the RNN should predict.
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Figure 5. The architecture of tree-structured RNN. Like the Chain
RNN, verb prediction is at the root of the tree, and semantic roles
agent-like and place are parents of all other roles.

Chain RNN. An unrolled RNN can be seen as a special
case of a GGNN, where nodes form a chain with directed
edges between them. However, there are a few notable dif-
ferences, wherein the nodes receive information only once
from their (left) neighbor. In addition, the nodes do not per-
form T steps of propagation among each other and predict
output immediately after the information arrives.

In the standard chain structure of a RNN, we need to
manually specify the order of the verb and roles. As the
choice of the verb dictates the set of roles in the frame, we
predict the verb at the first time step. We observe that the
imSitu dataset and any verb-frame in general, commonly
consist of place and agent-like roles (e.g. semantic role
teacher can be considered as the agent for the verb
teaching). We thus predict place and agent roles
as the second and third roles in the chain 1. We make all
other roles for the frame to follow subsequently in descend-
ing order of the number of times they occur across all verb-
frames. Fig. 4 shows an example of such a model.

For a fair comparison to the fully connected roles
GGNN, we employ the GRU update in our RNN. The in-
put to the hidden states matches node initialization (Eqs. 1
and 2). We follow the same scheme for predicting the out-
put (linear layer with softmax), and train the model with the
same cross-entropy loss.

Tree-structured RNN. As mentioned above, the place
and agent semantic roles occur more frequently. We pro-
pose a structure where they have a larger chance to influ-
ence prediction of other roles. In particular, we create a
tree-structured RNN [37] where the hidden states first pre-
dict the verb, followed by agent and place, and all other
roles. Fig. 5 shows examples of resulting structures.

The tree-structured RNN can be deemed as a special case
of GGNN, where nodes have the following directed edges:

B = {(av, a
′) : a′ ∈ Z} ∪ {(a′, a) : a′ ∈ Z, a ∈ Ef\Z} , (9)

where Z = {agent,place}, and Ef\Z represents all
roles in that frame other than agent and place. Similar
to the chain RNN, we use GRU update and follow the same
learning and inference procedures.

1Predicting place requires a more global view of the image compared
to agent. Changing the order to verb → agent → place → . . .
results in 1.9% drop of performance.



Method
top-1 predicted verb top-5 predicted verbs ground truth verbs

verb value value-all verb value value-all value value-all mean

1 Unaries 36.32 23.74 13.86 61.51 38.57 20.76 58.32 27.57 35.08
2 Unaries, BS=10 36.39 23.74 14.01 61.65 38.64 20.96 58.32 27.57 35.16

3 FC Graph, T=1 36.25 25.99 17.02 61.60 42.91 26.44 64.87 35.52 38.83
4 FC Graph, T=2 36.43 26.08 17.22 61.52 42.86 26.38 65.31 35.86 38.96
5 FC Graph, T=4 36.46 26.26 17.48 61.42 43.06 26.74 65.73 36.43 39.19
6 FC Graph, T=4, BS=10 36.70 26.52 17.70 61.63 43.34 27.09 65.73 36.43 39.39
7 FC Graph, T=4, BS=10, vOH 36.93 27.52 19.15 61.80 45.23 29.98 68.89 41.07 41.32
8 FC Graph, T=4, BS=10, vOH, g=ReLU 36.26 27.22 19.10 62.14 45.59 30.32 69.35 41.71 41.46
9 FC Graph, T=4, BS=10, vOH, Soft-OR 36.75 27.33 18.94 61.69 44.91 29.41 68.29 40.25 40.95

Table 1. Situation prediction results on the development set. We compare several variants of our fully-connected roles model to show the
improvements achieved at every step. T refers to the number of time-steps of propagation in the fully connected roles GGNN (FC Graph).
BS=10 indicates the use of beam-search with beam-width of 10. vOH (verb, one-hot) is included when the embedding of the predicted
verb is used to initialize the hidden state of the role nodes. g=ReLU refers to the non-linear function used after initialization. All other
rows use g=tanh(·). Finally, Soft-OR refers to the loss function used in [47]. Best performance is in bold and second-best is italicized.

4. Evaluation
We evaluate our methods on the imSitu dataset [47] and

use the standard splits with 75k, 25k, and 25k images for
the train, development, and test subsets, respectively. Each
image in imSitu is associated with one verb and three anno-
tations for the role-noun pairs.

We follow [46] and report three metrics: (i) verb: the
verb prediction performance; (ii) value: the semantic verb-
role-value tuple prediction performance that is considered
to be correct if it matches any of the three ground truth an-
notators; and (iii) value-all: the performance when the en-
tire situation is correct and all the semantic verb-role-value
pairs match at least one ground truth annotation.

4.1. Implementation Details
Image Representations. We adopt two pre-trained VGG-
16 CNNs [36] for extracting image features by removing the
last fully-connected and softmax layers, and fine-tuning all
weights. The first CNN (φv(i)) is trained to predict verbs,
and second CNN (φn(i)) predicts the top K most frequent
nouns (K = 2000 cover about 95% of nouns) in the dataset.

Unaries. Creating a graph with no edges, or equivalently
with T = 0 steps of propagation corresponds to using the
initialized features to perform prediction. We refer to this
approach as Unaries, which will be used as the simplest
baseline to showcase the benefit of modeling dependencies
between the roles.

Learning. We implement the proposed models in
Torch [5]. The network is trained using RMSProp [15] with
mini-batches of 256 samples. We choose the hidden state
dimension D = 1024, and train image (Wiv,Win), verb
(Wv) and role (We) embeddings. The image features are
extracted before training the GGNN or RNN models.

The initial learning rate is 10−3 and starts to decay after
10 epochs by a factor of 0.85. We use dropout with a prob-

ability of 0.5 on the output prediction layer (c.f . Eqs. 5 and
6) and clip the gradients to range (−1, 1).
Mapping agent Roles. The imSitu dataset [47] has sit-
uations for 504 verbs. Among them, we notice that 19
verbs do not have the semantic role agent but instead with
roles of similar meaning (e.g. verb educating has role
teacher). We map these alternative roles to agentwhen
determining their position in the RNN architecture. Such a
mapping is not used for the fully connected GGNN model.

Variable Number of Roles. A verb has a maximum of 6
roles associated with it. We implement our proposed model
with fixed-size graphs involving 7 nodes. To deal with verbs
with less than 6 roles, we zero the hidden states at each
time-step of propagation, making them not receive or send
any information.

4.2. Results

We first present a quantitative analysis comparing differ-
ent variants of our proposed model. We then evaluate the
performance of different architectures, and compare results
with state-of-the-art approaches.

Ablative Analysis A detailed study of the GGNN model
with fully connected roles (referred to as FC Graph) is
shown in Table 1. An important hyper-parameter for the
GGNN model is the number of propagation steps T . We
found that the performance increases by a small amount
when increasing T , and saturates soon (in rows 3, 4, and 5).
We believe that this is due to the use of a fully-connected
graph, and all nodes sharing most of the information at
the first-step propagation. Nevertheless, the propagation is
important, as revealed in the comparison between Unaries
(T = 0) from row 1 and T = 1 in row 3. We obtain a mean
improvement of 3.8% in all metrics.

During test we have the option of using beam search,
where we hold B best verb predictions and compute the



top-1 predicted verb top-5 predicted verbs ground truth verbs
verb value value-all verb value value-all value value-all mean

1 Unaries 36.39 23.74 14.01 61.65 38.64 20.96 58.32 27.57 35.16
2 Chain RNN 34.62 24.67 17.94 61.09 41.67 27.80 62.58 36.57 38.36
3 Tree-structured RNN 34.62 24.24 16.04 58.86 39.15 23.65 60.44 30.91 35.98

4 Chain GGNN, T=8 36.63 27.27 19.03 61.88 44.97 29.44 68.20 40.21 40.95
5 Tree-structured GGNN, T=6 36.78 27.48 19.54 61.75 45.12 30.11 68.54 41.01 41.29
6 Fully-connected GGNN, T=4 36.93 27.52 19.15 61.80 45.23 29.98 68.89 41.07 41.32

Table 2. Situtation prediction results on the development set for models with different graph structures. All models use beam search,
predicted verb embedding, and g = tanh(·). Best performance is highlighted in bold, and second-best in each table section is italicized.

top-1 predicted verb top-5 predicted verbs ground truth verbs
verb value value-all verb value value-all value value-all mean

de
v

CNN+CRF [47] 32.25 24.56 14.28 58.64 42.68 22.75 65.90 29.50 36.32
Tensor Composition [46] 32.91 25.39 14.87 59.92 44.50 24.04 69.39 33.17 38.02
Tensor Composition + DataAug [46] 34.20 26.56 15.61 62.21 46.72 25.66 70.80 34.82 39.57
Chain RNN 34.62 24.67 17.94 61.09 41.67 27.80 62.58 36.57 38.36
Fully-connected Graph 36.93 27.52 19.15 61.80 45.23 29.98 68.89 41.07 41.32

te
st

CNN+CRF [47] 32.34 24.64 14.19 58.88 42.76 22.55 65.66 28.96 36.25
Tensor Composition [46] 32.96 25.32 14.57 60.12 44.64 24.00 69.20 32.97 37.97
Tensor Composition + DataAug [46] 34.12 26.45 15.51 62.59 46.88 25.46 70.44 34.38 39.48
Chain RNN 34.63 24.65 17.89 61.06 41.73 28.15 62.94 37.32 38.54
Fully-connected Graph 36.72 27.52 19.25 61.90 45.39 29.96 69.16 41.36 41.40

Table 3. We compare situation prediction results on the development and test sets against state-of-the-art models. Each model was run on
the test set only once. Our model shows significant improvement in the top-1 prediction on all metrics, and performs better than a baseline
that uses data augmentation. The performance improvement on the value-all metric is important for applications, such as captioning and
QA. Best performance is highlighted in bold, and second-best is italicized.

role-noun predictions for each of the corresponding graphs
(frames). Finally, we select the top prediction using the
highest log-probability across allB options. We use a beam
width ofB = 10 in our experiments, which yields small im-
provement. Rows 1 and 2 of Table 1 show the improvement
using beam search on a graph without propagation. Rows 5
and 6 show the benefit after multiple steps of propagation.

Rows 6 and 7 of Table 1 demonstrate the impact of us-
ing embeddings of the predicted verb (vOH) to initialize
the role nodes’ hidden states in Eq. (2). Notable improve-
ment is obtained when using the ground-truth verb (3-4%).
The value-all for the top-1 predicted verb increases from
17.70% to 19.15%. We also tested different non-linear func-
tions for initialization, i.e., tanh (row 7) or ReLU (row 8),
however, the impact is almost negligible. We thus use tanh
for all experiments.

Finally, comparing rows 7 and 9 of Table 1 reveals that
our loss function to predict all annotations in Eq. (7) per-
forms slightly better than the Soft-OR loss that aims to fit at
least one of the annotations [47].

Baseline RNNs. Table 2 summarizes the results with dif-
ferent structures on the dev set. As expected, Unaries per-
form consistently worse than models with information prop-

SPRINKLING

AGENT PLACE ITEM SOURCE DEST.

Unaries PERSON KITCHEN MEAT HAND HAND

RNN PERSON KITCHEN FOOD FINGER PIZZA

FC Graph PERSON KITCHEN CHEESE HAND PIZZA

FISHING

AGENT PLACE SOURCE TOOL

Unaries MAN RIVER - FISHING

RNN MAN OUTDOORS BODY FISHING

FC Graph MAN RIVER RIVER FISHING

Figure 6. Example images with their predictions listed from all
methods. Roles are marked with a blue background, and predicted
nouns are in green boxes when correct, and red when wrong. Us-
ing the FC Graph corrects mistakes made by the Unaries or Chain
RNN prediction models.

agation between nodes on the value and value-all metrics.
The Tree-structured RNN provides a 2% boost in value-all
for top-1 predicted verb, while the Chain RNN provides a
3.9% improvement. Owing to the better connectivity be-
tween the roles in a Chain RNN (especially place and
agent), we observe better performance compared to the



Tree-structured RNN. Note that as the RNNs are trained
jointly to predict both verbs and nouns, and as the noun
gradients dominate, the verb prediction takes a hit.

Different Graph Structures. We can also use chain or
tree-structured graphs in GGNN. Along with the FC graph
in row 6 of Table 2, rows 4 and 5 present the results for
different GGNN structures. They show that connecting
roles with each other is critical and sharing information
helps. Interestingly, the Chain GGNN needs more propa-
gation steps (T=8), as it takes time for the left-most and
right-most nodes to share information. Smaller values of
T are possible when nodes are well-connected as in Tree-
structured (T=6) or FC Graph (T=4). Fig. 6 presents pre-
diction from all models for two images. The FC Graph is
able to reason about associating cheese and pizza rather
than sprinkling meat or food on it.

Comparison with State-of-the-art. We compare the per-
formance of our models against state-of-the-art on both the
dev and test sets in Table 3. Our CNN predicts the verb
well. Beam search leads to even better performance (2-4%
higher) in verb prediction. We note that Tensor Composition
+ DataAug actually uses more data to train models. Nev-
ertheless, we achieve the best performance on all metrics
when using the top-1 predicted verb.

Another advantage of our model is in improvement for
the value-all metric. It yields +8% when using the ground-
truth verb, +6% with top-5 predicted verbs, and +4.5% with
top-1 predicted verb, compared with the baseline without
data augmentation. Interestingly, even with data augmen-
tation, we outperform [46] by 3-4% in value-all for top-1
predicted verb. This property attributes to information shar-
ing between role nodes, which helps in correcting errors and
better predicts frames. Note that value-all is an important
metric to measure a full understanding of the image. Mod-
els with higher value-all will likely lead to better captioning
or question-answering results.

4.3. Further Discussion

We delve deeper into our model and discuss why the FC
Graph outperforms baselines.

Learned Structure. A key emphasis of this model is
on information propagation between roles. In Fig. 7, we
present the norms of the propagation matrices. Each el-
ement in the matrix P (a′, a) is the norm of the incom-
ing message from role a′ to a averaged across all images
(in dev set) at the first time-step, i.e., ‖xt=1

(a′,a)‖ regarding
Eq. (3). In this example, tool is important for the verb
fastening and influences all other roles, while agent
and obstacle influence roles in jumping.

Wrong Verb Predictions. We present a few examples of
top scoring results where the verb prediction is wrong in
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Figure 7. We present the “amount” of information that is propa-
gated between roles for two verbs along with sample images. Blue
corresponds to high, and green to zero. Each element of the ma-
trix corresponds to the norm of the incoming message from differ-
ent roles (normalized column sum to 1). Left: verb fastening
needs to pay attention to the tool used. Right: important com-
ponents to describe jumping are the agent and obstacles
along the path.

GT: FISHING

AGENT PLACE TOOL SOURCE

MAN BOAT FISHING LAKE

PRED: CATCHING

AGENT PLACE TOOL CAUGHTITEM

MAN BOAT BODY FISHING

GT: SLOUCHING

AGENT PLACE CONTACT

WOMAN OFFICE CHAIR

PRED: SITTING

AGENT PLACE CONTACT

WOMAN OFFICE CHAIR

GT: SHELVING

AGENT PLACE ITEM DESTINATION

WOMAN LIBRARY BOOK BOOKSHELF

PRED: BROWSING

AGENT PLACE GOALITEM

WOMAN LIBRARY BOOK

Figure 8. Images with ground-truth and top-1 predictions from
the development set. Roles are marked with blue background.
Ground-truth (GT) nouns are in yellow and predicted (PRED)
nouns with green when correct, or red when wrong. Although the
predicted verb is different from the ground-truth, it is very plausi-
ble. Some of the verbs refer to the same frame (e.g. sitting and
slouching), and contain the same set of roles, which our model
is able to correctly infer.

Fig. 8. Note that in fact these predicted verbs are plausi-
ble options for the given images. The metric value treats
them as wrong, and yet we can correctly predict the role-
noun pairs. One example is the middle one of slouching
vs. sitting. Fig. 8 (bottom) shows that choosing a dif-
ferent verb might lead to the selection of different roles
(goalitem vs. item, destination). Nevertheless,
predicting book for browsing is a good choice.



DYEING

AGENT PERSON

PLACE OUTDOORS

MATERIAL FABRIC

DYE RED

LEAKING

SUBSTANCE WATER

PLACE OUTSIDE

SOURCE PIPE

DESTINATION LAND

DRUMMING

AGENT MAN

PLACE ROOM

TOOL DRUMSTICK

ITEM DRUM

DOUSING

AGENT MAN

PLACE OUTDOORS

LIQUID WATER

UNDERGOER MAN

MILKING

AGENT FARMER

PLACE OUTDOORS

TOOL COW

SOURCE COW

DESTINATION BUCKET

CLINGING

AGENT MONKEY

PLACE OUTDOORS

CLUNGTO MONKEY

CAMPING

AGENT PEOPLE

PLACE FOREST

SHELTER TENT

OVERFLOWING

AGENT RUBBISH

PLACE OUTDOORS

SOURCE ASHCAN

PAWING

AGENT CAT

PLACE OUTDOORS

AGENTPART PAW

PAWEDITEM FENCE

PICKING

AGENT WOMAN

PLACE OUTDOORS

CROP APPLE

SOURCE TREE

HUGGING

AGENT MAN

PLACE OUTDOORS

HUGGED MAN

AGENTPART ARM

TAXIING

AGENT AIRPLANE

PLACE AIRPORT

GROUND RUNWAY

Figure 9. Images with top-1 predictions from the development set. For all samples, the predicted verb is correct, shown below the image
in bold. Roles are marked with a blue background, and predicted nouns are in green when correct, and red when wrong. Top row: We are
able to correctly predict the situation (verb and all role-noun pairs) for all samples. Bottom row: The first three samples contain errors in
prediction (e.g. the agent for the verb pawing is clearly a dog). However, the latter three samples are in fact correct predictions that are
not found in the ground-truth annotations (e.g. people are in fact camping in the forest).

Predictions with Correct Verb. Fig. 9 shows several ex-
amples of prediction obtained by FC Graph, where the pre-
dicted verb matches the ground-truth one. The top row
corresponds to samples where the metric value-all scores
correctly as all role-noun pairs are correct. Note that the
roles are closely related (e.g. (agent, clungto) and
(material, dye)) and help each other choose the cor-
rect nouns. In the bottom row, we show some failure
cases in predicting role-noun pairs. First, the model fa-
vors predicting place as outdoor (a majority of place is
outdoor in the training set). Second, for the sample with
verb picking, we predict the crop as apple, which
appears 79 times in the dataset compared with cotton
that appears 14 times. Providing more training samples
(e.g. [46]) could help remedy such issues.

In the latter three samples of the bottom row, although
the model makes reasonable predictions, they do not match
the ground-truth. For example, the ground-truth annotation
for the verb taxiing is agent:jet and for the verb
camping is agent:persons. Therefore, even though
each image comes with three annotations, synonymous

nouns and verbs make the task still challenging.

5. Conclusion

We presented an approach for recognizing situations in
images that involves predicting the correct verb along with
its corresponding frame consisting of role-noun pairs. Our
Graph Neural Network (GNN) approach explicitly mod-
els dependencies between verb and roles, allowing nouns
to inform each other. On a benchmark dataset imSitu, we
achieved ∼4.5% accuracy improvement on a metric that
evaluates correctness of the entire frame (value-all). We
presented analysis of our model, demonstrating the need to
capture the dependencies between roles, and compared it
with RNN models and other related solutions.
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