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Abstract—We study the connection between audio-visual obser-
vations and the underlying physics of a mundane yet intriguing
everyday activity: pouring liquids. Given only the sound of liquid
pouring into a container, our objective is to automatically infer
physical properties such as the liquid level, the shape and size
of the container, the pouring rate, and the time to fill. To
this end, we: (i) show in theory that these properties can be
determined from the fundamental frequency (pitch); (ii) train
a pitch detection model with supervision from simulated data
and visual data with a physics-inspired objective; (iii) introduce
a new large dataset of real pouring videos for a systematic
study; (iv) show that the trained model can indeed infer these
physical properties for real data; and finally, (v) we demonstrate
strong generalization to various container shapes, other datasets,
and in-the-wild YouTube videos. Our work presents a keen
understanding of a narrow yet rich problem at the intersection
of acoustics, physics, and learning. It opens up applications to
enhance multisensory perception in robotic pouring.

Index Terms—Audiovisual, physical estimation, liquid pouring.

”The blind man of Puisaux judges of his nearness to the fire by the
degrees of heat; of the fulness of vessels by the sound made by liquids
which pour into them; of the proximity of bodies by the action of the
air on his face.”

– Denis Diderot, Letter on the Blind (1749)

I. INTRODUCTION

What can possibly be scientifically interesting about such a
mundane chore as pouring a liquid into a glass? We perform
this action all the time but barely realise that we effortlessly
learn to infer several useful physical properties in the process.
For example, evidence in psychoacoustics suggests that hu-
mans can accurately infer the liquid level, the time to fill [1],
the size of the container [2], and even the temperature of the
liquid [3], merely from the sound of pouring. Such inference
(e.g., time to fill) allows us to adaptively control our actions
(e.g., stopping pouring to prevent spillage) conforming to the
affordance theory by Gibson [4]. In this work, we study the
physical phenomenon involved in liquid pouring and explore
how it can be used to train machines to infer useful physical
properties from sound alone as illustrated in Fig. 1.

Despite its mundaneness, liquid pouring has rich physics
underpinning it and has been studied for more than a cen-
tury [5]. The crux of this exploration is summarized well
by Berg and Stork [6]: “as the liquid (e.g., water) is filled,
a sound consisting of an increasing pitch and some (odd)
harmonics superimposed with whooshing, gurgling is ob-
served”. This pitch and the harmonics are a function of the
physical properties, e.g., trajectory of the pitch depends on
the container shape [7], the range of the pitch depends on the
container dimensions [1], and slope of pitch depends on the
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Fig. 1: An overview of the objective and method. We train a pitch
detector without any manual supervision and rely on physics to
estimate physical properties merely from the sound of water.

flow rate [1]. Thus, automatically inferring physical properties
from the sound of pouring necessitates two stages: (i) detecting
pitch from the raw audio signal, and (ii) recovering these
physical properties from the pitch. However, there are several
challenges in training machines to do this purely from sound.

First, such a task requires fine-grained time-sensitive audio
modeling, while contemporary audio models focus more on
coarse tasks like classification [8]. Second, the underlying
physics of such a niche activity as pouring is not fully
developed for general container-liquid setups, unlike, say,
Newtonian mechanics studied analogously in [9]. Third, there
is a lack of a large, clean, controlled dataset which is necessary
to study physical property estimation. Fourth, supervision
either in the form of pitch annotation or the actual physical
properties is difficult to obtain and use directly in training.

To enable a systematic study, we collect a clean, large
dataset of 805 videos of pouring across 50 diverse containers.
For training, we select a subset of containers shaped like
cylinders such that we can approximate the underlying physics
with that of a cylinder [1]. We design an audio network
for pitch detection based on wav2vec2 [10] pre-trained on
speech data that has characteristic pitch dynamics [11]. As
pitch annotations are hard and ambiguous to obtain at scale,
we use supervision from simulated data and visual data. We
pre-train the network on simulated sounds of liquid pouring.
On real data, we fine-tune the network by visual co-supervision
with a physics-inspired objective. We demonstrate that the co-
supervised audio model is able to predict pitch, and hence
estimate physical properties, with a performance far exceeding
that of multiple previous methods.

Why is this important, though? First, as far as we know,
this is the first work to demonstrate human-like capabilities
(or better) in predicting physical properties from sound alone;
in fact, we achieve an accuracy of ±0.60 cm in predicting the
air column height for cylinders. Second, although the model is
trained on cylinders, we show that the pitch estimation (and the
model in general) is applicable beyond cylinders, e.g., it can
be used to predict container shape with convincing accuracy.
Third, the model generalizes well to videos from other datasets
and to in-the-wild YouTube videos. Our dataset, code and
models are released on the Project page.



II. RELATED WORK

Pouring in the literature. Pouring occurs surprisingly often
in the literature. It has been studied by roboticists to train
robots to pour [12–15]. In computer vision, there has been
work on visually perceiving liquids either in a static set-
ting [16–18], or during pouring [19, 20]. For example, [16, 21]
detect the amount of liquid in a container and [19, 20] track
the stream of pouring liquid. Likewise, there has been work on
estimating the dynamic states (e.g., height or mass of liquid at
a given time) from multi-modal (vision, audition, haptics, etc.)
inputs [22, 23]. Most of these use additional sensory data (e.g.,
force, torque, hand trajectory, inertia) with vision or audio
or both. Such measurements require sophisticated recording
equipment. In contrast, our aim is to predict physical properties
from sound recorded using regular smartphones instead of
bespoke equipment. Closest to our work is that of Wilson
et al. [22] where a CNN is supervised to predict the mass of
liquid poured at a given time, given instantaneous video and
audio clips. Methodologically, our work differs from [22] by
incorporating the underlying physics directly in the learning
process. By design, our method can estimate several physical
properties without supervision and not just liquid mass. We
also evaluate our model by linear probing of the co-supervised
features on the dataset of [22] and report superior performance.
Audio-visual learning. The natural audio-visual correspon-
dence in videos coupled with large-scale video datasets [8, 24]
has led to a variety of work on self-supervised representa-
tion learning. These approaches can be broadly categorized
as contrastive [25, 26], generative [27, 28], paired sample
discriminative [29, 30], clustering [31, 32], and distillation-
based [33, 34]. These approaches and tasks ignore fine time-
dependent structures in sounds and rely on short and coarse
correspondences. In contrast, liquid pouring requires modeling
of fine-grained characteristics over time (e.g., pitch).

III. THE PHYSICS OF LIQUID POURING

As an example, consider a simple cylindrical vessel of
radius R, height H as shown in Fig. 2 (left). At time t, suppose
that the vessel is filled such that the length of the air column is
l(t). We hear a mix of pitch and odd harmonics that correlate
with the length of the air column at a given time. We term
this resonance as axial resonance. This is visible as the blue
curve on the spectrogram in Fig. 2 (right).
Pitch in axial resonance. As the liquid fills up, it pushes
air out of the air column creating a frequency pattern that
resembles blowing air in an organ pipe closed at one end. As
the water level increases, the vacant space for air molecules to
vibrate reduces and hence the frequency increases. At time t,
the fundamental frequency f(t) is given by f(t) = c/(4l(t)),
where c is the speed of sound in air. This expression arises
from a standing wave of wavelength λ(t) = 4l(t) where the
amplitude is zero at the water surface and maximum at the top
of the vessel. Rayleigh [5] and others studied this and found
an experimental end-correction that depends on the radius:
f(t) = c/4. (l(t) + βR) , where β is the end-correction factor
generally agreed to be 0.62 [35, 36]. A spectrogram of the
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Fig. 2: Demonstration of axial resonance in liquid pouring.
As liquid is poured in the container (left), theoretical estimates
of the resonant frequencies are shown (right) overlaid on a
MelSpectrogram. Blue circles show the pitch (fundamental
frequency) and green crosses show the first harmonic. Note,
the fainter curve starting at around 3s due to radial resonance,
a different kind of resonance caused by the radial vibration of
the container rim which decreases over time. We defer its study
to future work.

sound of pouring in a sample container is shown in Fig. 2
(right) with pitch f(t) (blue circles) and first harmonic (green
crosses) marked. To avoid working with an inverse relation,
we look at this equation in terms of wavelength λ(t),

λ(t) =
c

f(t)
= 4 (l(t) + βR) . (1)

All these quantities are in metric units. The LHS is observable
from audio while the RHS is observable from the video of
liquid pouring (up to a scale factor). This implies that the
audio is effectively a metric ruler for objects in the video.
Physical properties from pitch. We categorize the physical
properties of the container and liquid in two sets. (i) Static:
these are inherent to the container-liquid system (e.g., con-
tainer size) and do not vary over time. (ii) Dynamic: these
vary over time (e.g., air column length). We first derive the
air column length and later compute other properties from that.

1) Length of air column: We want to estimate l(t) given λ(t)
at a given time t. Using the boundary condition l(T ) = 0
in Eq. (1), where T is the total pouring duration, we get:

l(t) =
1

4
[λ(t)− λ(T )] ,∀t ∈ [0, T ]. (2)

2) Container size: Container height and radius are directly
obtained from the boundary conditions: H = l(0) = (λ(0)−
λ(T ))/4; and R = λ(T )/4β.

3) Volume flow rate: For volume flow rate Q(t), suppose the
volume at time t is V (t) = πR2(H − l(t)). Then, Q(t) =
dV
dt = − 1

4πR
2 dλ
dt , where the derivative can be numerically

approximated using the estimated λ(t).
4) Time to fill: Here, we assume a constant flow rate (since

otherwise, one could pause pouring midway leading to an
ill-defined time to fill). Also, we do not know the true
duration T and are only given a partial audio, i.e., the first t
seconds. Here, following Cabe and Pittenger [1], we make
an additional assumption that the end-correction term βR
is small at the start of pouring (βR ≪ H). Thus, in a short
interval at the start of pouring t′ ∈ (0, δ), we have

τ(t′) =

[
l(t′)

− dl
dt

]
=

[
λ(t′)/4− βR

− 1
4
dλ
dt

]
≈ −λ(t′)

dλ
dt

, (3)



Then, we can use the property of τ to get time to fill: τ(t) =
T − t = (T − t′) + t′ − t = τ(t′) − (t − t′), for some
t′ ∈ (0, δ), δ ≪ t. Note that this needs reliable estimates of
λ and its derivative at the start of the audio.

IV. NETWORK AND TRAINING

Our objective is to predict physical properties (e.g., length
of the air column) from the sound of pouring. Our approach
is formulated in two stages: (i) detect the pitch from the raw
audio signal, and (ii) recover physical properties from the pitch
as previously described. To detect pitch, we train an audio
network, first with supervision from synthetic audio of pouring
water; and then with real videos using the visual stream to
provide the supervision on pitch.
Audio network. The network takes in raw audio samples
and outputs wavelength (pitch) estimates at each time step.
The architecture is based on wav2vec2 [10] adapted for
pitch detection on pouring sounds. Note that we predict the
fundamental wavelength as opposed to frequency because
wavelength varies linearly with length of air column and we
want to bake in this linearity in the learned features. The
input waveform is resampled at a rate of 16 kHz. First, the
waveform is tokenized using a 1D CNN encoder that takes in
windows of 25ms with a hop length of 20ms. Moreover, we
add sinusoidal position embeddings to the tokens to enhance
temporal information. These are then passed through a Trans-
former network with 12 blocks (dmodel=768, nheads=8). This
is followed by a prediction head, a linear regressor that maps
from R768 → RK , where K=64 is the number of wavelength
bins followed by a softmax to obtain a distribution.
Pre-training with synthetic data. Since it is hard to ob-
tain pitch annotations on real samples, we first pre-train the
network on synthetic samples. To generate synthetic data, we
train a Differentiable Digital Signal Processing (DDSP) [37]
autoencoder with independent control over pitch and ampli-
tude. It is an encoder-decoder model capable of generating
pouring sounds given a specific pitch and loudness profile. The
encoder consists of three modules: a loudness encoder, a pitch
encoder, and a residual latent encoder. The residual encodes
background noise and room reverberation. The decoder is
composed of synthesizers based on classical signal processing
techniques. Loudness and residual are conditioned on a real
audio sample while the pitch can be arbitrary. This enables us
to provide arbitrary pitch f(t),∀t and the model generates a
waveform with this pitch. To generate a sample, we randomly
sample radius R, height H , compute l(t)=(−H/T )t+H and
f(t) from Eq. (1) and pass it to the decoder. In total, we
generate 10K samples and pre-train the pitch detection part of
our network using the KL divergence loss. We train only the
penultimate K=8 layers of the Transformer and the prediction
head, keeping the rest of the network frozen. The 1D CNN
and Transformer are initialized from pre-trained wav2vec2.
Fine-tuning with visual co-supervision. We fine-tune the
network on a small number of real samples to overcome the
sim2real gap [38]. Since it is hard to annotate pitch precisely
on real data, we use video as a source of weak supervision.
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Fig. 3: Visual co-supervision for pitch detection. Video co-
supervisor provides air column length and radius (in px) which
supervises the audio network that predicts wavelength (in cm).

To use visual co-supervision, we train a visual network to
estimate the length of air column l(t) and container radius R
(in pixels) to compute the RHS in Eq. (1). These then supervise
the audio network to predict λ(t), the LHS in Eq. (1). A
schematic diagram is presented in Fig. 3. The visual network
takes in the video as input and outputs container radius R,
and l(t),∀t. Estimating R is trivial using a segmentation mask
obtained by SAM [39]. To estimate l(t), we design a network
based on DINO [40]. DINO’s dense spatial feature maps for
a frame sequence are passed through a Transformer to model
temporal dependencies. This is followed by a prediction head
that regresses a 1D bounding box spanning the air column. We
train this network with MSE loss using pseudo-labels obtained
from temporal difference of frames. We use a temporal context
of N=20 frames (4 FPS), the Transformer has one block
(d=512, nheads=4). To account for the unknown scale factor
between the metric audio outputs to pixel video outputs, we
estimate the scale factor for each video by simply computing
the ratio of wavelength from audio to the pixel lengths from
video. Then, we fix the scale factors and the video network
and fine-tune the audio network to improve predictions of λ.

V. EXPERIMENTS

In this section, we present various experiments to demon-
strate physical understanding from sounds of liquid pouring.
LiquidPouring50 Dataset. Our data consists of videos that
show a human hand pouring liquid in a container with a fixed
camera facing the container. Across videos, we randomly vary
the flow rate but keep it constant within a single video. In
total, we collect 805 videos across 50 containers (4 shapes, 5
materials) and 2 liquids (hot and normal water). The shapes
are cylindrical, semiconical, bottleneck and hemispherical. The
materials include glass, plastics, ceramics, steel and cardboard.
Each container is annotated with its shape, material and basic
measurements. The mean container height is 11.5 cm, (base)
radius is 3.1 cm and video duration is 10.5 s. We carefully
create splits with multiple test sets described in Table I.
Comparison with baselines. We compare our models with
standard pitch detection baselines [41–43] in estimating l(t).
We obtain ground-truth assuming constant flow rate as l(t) =
(−H/T ).t + H . The models predict pitch λ(t), and l(t)
is computed using Eq. (2). As reported in Table II, our
models comprehensively beat all baselines with the best model
achieving an MAE of 0.6 cm.



Split Opacity Container shapes Containers Videos

Transparent Opaque Cyl. Sem. Bot.

Train ✓ ✗ ✓ ✓ ✗ 18 195
Test I ✓ ✗ ✓ ✓ ✗ 13 54
Test II ✗ ✓ ✓ ✓ ✗ 19 327
Test III ✓ ✓ ✓ ✓ ✓ 25 434

TABLE I: Splits in LiquidPouring50. Train, Test I and II all have
cylinder-like containers and are disjoint in terms of videos. The
containers in Test I are a subset of those in Train, while Test II has
novel containers. Test III is used for shape classification and overlaps
only with Test II in terms of containers. This adds up to 18+25=43
containers, and 195 + 54 + 434=683 videos. The remaining 122
videos (out of a total of 805) are of hemispherical/freeform containers
only used for qualitative analysis. Here, Cyl., Sem., and Bot. denote
cylindrical, semiconical and bottleneck respectively.

Method Test set I
seen containers ↓

Test set II
unseen containers ↓

Baselines
Yin [41] 30.80 27.30
PESTO [42] 11.70 10.60
CREPE [43] 7.61 9.40
Argmax on spectrogram 4.60 5.11
Ours

Audio-only 0.78 0.82
Co-supervised 0.60 0.71

TABLE II: Comparison with baselines in estimating length of air
column. Mean absolute error (in cm) in estimating l(t) on the two
test sets (cylinder-like containers). Our models comfortably beat all
the pitch detection baselines. Generally, performance on Test set II
is poorer as it consists of containers not seen during training.

Improvement by co-supervision. We show benefits of co-
supervision in estimating other physical properties. Ground
truth for H,R and time to fill are available while flow rate
is estimated as the ratio of volume to duration. Predictions
are obtained following the steps in Section III. As reported
in Table III, visual co-supervision usually improves over the
synthetic-trained model. On height estimation, co-supervision
suffers a meagre drop (≤ 0.8mm). We attribute this to possibly
imprecise start and end annotated timestamps of pouring.
Container shape recognition. While we train on cylinders,
we evaluate if our models generalize to other container shapes
and to other data sources. On the Test III split, we check if
container shape (cylindrical, semiconical, or bottleneck) can be
inferred from features learned by co-supervision. Concretely,
we compute features z(t),∀t from the last layer of the co-
supervised wav2vec2. Then, we construct features h :=
concat(E[z(t)], z(t/4), z(t/2), z(3t/4)), and train and evalu-
ate a linear probe on these features. This achieves a sample
accuracy of 90.91% and a mean class accuracy of 92.47%. In
comparison, features without co-supervision achieve 88.63%
and 89.44%. This shows: (i) a model trained to detect pitch
implicitly encodes container shape, and (ii) co-supervision
further improves shape recognition.
Liquid mass estimation. On the dataset by Wilson et al.
[22], we evaluate the estimation of the liquid mass from the
pouring sounds. Note, in this dataset the pouring conditions,
liquid types, and environmental conditions differ from those of
our LiquidPouring50 dataset. We attach a regressor to the co-

Property Units Test set I Test set II

Synthetic ↓ Co-supervised ↓ Synthetic ↓ Co-supervised ↓

Static properties
Height cm 2.23 2.27 2.77 2.85
Radius cm 1.62 1.39 2.24 1.88

Dynamic properties
Flow rate ml/s 25.2 22.5 45.7 40.4

s 3.96 4.16 4.39 4.10
s 1.62 1.49 3.44 2.99Time to fill
s 1.53 1.07 2.66 2.21

TABLE III: Co-supervision improves physical property estima-
tion. Mean absolute error in estimating various physical properties.
Visually co-supervised model generally improves over the synthetic-
trained model in estimating physical properties from pitch. We
observe noticeable improvements in estimating radius and flow rate.
This suggests co-supervision particularly improves estimation of pitch
towards the end of the audio as well as the slope of pitch generally.

(a) Generalization to different container shapes/materials

(b) Generalization to in-the-wild YouTube videos

Fig. 4: Qualitative results. Predicted pitch is shown in cyan. We
show generalization across (a) container shapes, (b) to in-the-wild
videos. Despite visual variations in (b), accurate pitch helps infer
precise container size.

supervised features z(t) to predict the liquid mass m(t). We
report results on the same splits as [22]. Averaging across six
containers, our model achieves MAE of 1.20 oz outperforming
the best audio model from [22], a fully supervised CNN that
achieves MAE of 1.35 oz.
Generalization and failure cases. Qualitatively, we also find
that our model generalizes to different container shapes and
to in-the-wild YouTube videos (Fig. 4). Finally, we report
some failure cases in estimating the pitch in our preprint on
arXiv [44]. These are likely due to a limitation of our model:
it is trained to pick only the fundamental frequency while
ignoring higher harmonics and other kinds of resonance [45].

VI. CONCLUSION

We have shown early evidence that machines, like humans,
can be trained to infer physical properties from pouring
sounds. On cylinder-like containers, we demonstrated precise
estimation of physical properties such as container size, flow
rate and time to fill. Furthermore, we showed our model is
more generally applicable beyond cylinders and can be used
to estimate container shape and liquid mass. It generalizes
well to other shapes and to in-the-wild YouTube videos. Our
work strengthens multimodal perception in robotic pouring
and opens up possibilities to infer even subtler properties like
liquid temperature, viscosity, and container material, merely
from pouring sounds. We hope that our work also prompts
similar studies for physical understanding from the sound of
other mundane activities.
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