
Instruction-driven history-aware policies
for robotic manipulations

Pierre-Louis Guhur1, Shizhe Chen1, Ricardo Garcia1,
Makarand Tapaswi2, Ivan Laptev1, Cordelia Schmid1

1Inria, École normale supérieure, CNRS, PSL Research University 2IIIT Hyderabad
https://guhur.github.io/hiveformer/

Abstract: In human environments, robots are expected to accomplish a variety
of manipulation tasks given simple natural language instructions. Yet, robotic
manipulation is extremely challenging as it requires fine-grained motor control,
long-term memory as well as generalization to previously unseen tasks and envi-
ronments. To address these challenges, we propose a unified transformer-based
approach that takes into account multiple inputs. In particular, our transformer
architecture integrates (i) natural language instructions and (ii) multi-view scene
observations while (iii) keeping track of the full history of observations and ac-
tions. Such an approach enables learning dependencies between history and in-
structions and improves manipulation precision using multiple views. We evaluate
our method on the challenging RLBench benchmark and on a real-world robot.
Notably, our approach scales to 74 diverse RLBench tasks and outperforms the
state of the art. We also address instruction-conditioned tasks and demonstrate
excellent generalization to previously unseen variations.

Keywords: Robotics Manipulation, Language Instruction, Transformer

1 Introduction

People can naturally follow language instructions and manipulate objects to accomplish a wide range
of tasks from cooking to assembly and repair. It is also easy to generalize to new tasks by building
upon skills learned from previously seen tasks. Hence, one of the long-term goals for robotics is to
create generic instruction-following agents that can generalize to multiple tasks and environments.

Thanks to significant advances in learning generic representations for vision and language [2, 3, 4,
5], recent work has made great progress towards this goal [6, 7, 8, 9, 10]. For example, CLIPort [9]
exploits CLIP models [5] to encode single-step visual observations and language instructions and to
learn a single policy for 10 simulated tasks. BC-Z [10] uses a pre-trained sentence encoder [11] to
generalize to multiple manipulation tasks. However, several challenges remain underexplored. One
important challenge is that sequential tasks require to track object states that may be hidden from
current observations, or to remember previously executed actions. This behaviour is hard to model
with recent methods that mainly rely on current observations [9, 10].

Another challenge concerns manipulation tasks that require precise control of the robot end-effector
to reach target locations. Such tasks can be difficult to solve with single-view approaches [12], es-
pecially in situations with visual occlusions and objects of different sizes, e.g. see put money in safe
Figure 1 (left). While several recent approaches combine views from multiple cameras by convert-
ing multi-view images into a unified 2D/3D space [13, 14] or through a late fusion of multi-view
predictions [15], learning representations for multiple camera views is an open research problem.
Furthermore, cross-modal alignment between vision, action, and text is challenging, in particular
when training and test tasks differ in terms of objects and the order of actions, see Figure 1 (right).
Most of existing methods [9, 10, 16, 17] condense instructions into a global vector to condition
policies [18] and are prone to lose fine-grained information about different objects.

To address the above challenges, we introduce Hiveformer - a History-aware instruction-conditioned
multi-view transformer. It converts instructions into language tokens given a pre-trained language
encoder [5], and combines visual tokens for both past and current visual observations and proprio-
ception. These tokens are concatenated and fed into a multimodal transformer which jointly models
dependencies between the current and past observations, spatial relations among views from multi-

ar
X

iv
:2

20
9.

04
89

9v
2

 [
cs

.R
O

]
 2

2
Se

p
20

22

Figure 1: Left: Hiveformer can adapt to perform 74 tasks from RLBench [19] given language
instructions. Right: Multiple variations of the push buttons task.

ple cameras, as well as fine-grained cross-modal alignment between vision and instruction. Based on
the output representations from our multimodal transformer, we predict 7-DoF actions, i.e., position,
rotation and state of the gripper, with a UNet [20] decoder.

We carry out extensive experiments on RLBench [19] in three setups: single-task learning, multi-
task learning, and multi-variation generalization1. Our Hiveformer significantly outperforms state-
of-the-art models for all three settings, demonstrating the effectiveness of encoding instruction, his-
tory and views from multiple cameras with the proposed transformer. Moreover, we evaluate our
model on 74 tasks of RLBench, which goes beyond the 10 tasks used by Liu et al. [15]. We manu-
ally group all the tasks into 9 categories according to their main challenges and analyze results per
category for a better understanding. Hiveformer not only excels in the multiple task setting with
seen instructions in training, but also enables generalization to new instructions that represent dif-
ferent variations of the task, even with human-written language instructions. Finally, we evaluate
our model deployed on a real robot and show excellent performance. Interestingly, pretraining the
model in the RLBench simulator results in significant performance gains when only a small number
of real robot demonstrations are available.

To summarize, our contributions are three-fold:
• We introduce a new model, Hiveformer, to solve various challenges in robotics tasks. It jointly

models an instruction, multiple views, and history via a multimodal transformer for action
prediction in robotic manipulation.

• We perform extensive ablations of our model on RLBench with 74 tasks grouped into 9 distinct
categories. The history improves long-term tasks and the multi-view setting is most helpful for
tasks requiring high precision or in the presence of visual occlusions.

• We demonstrate that Hiveformer outperforms the state of the art in three RLBench setups,
namely single-task, multi-task and multi-variation. A single Hiveformer trained with synthetic
instructions is able to solve multiple tasks and task variations, can generalize to unseen human-
written instructions and shows excellent performance on a real robot after finetuning.

Our code, pre-trained models and additional results are available on the project webpage [1].

2 Related Work

Vision-based robotic manipulation. While earlier methods for solving robotics tasks such as visual
servoing [21, 22] were designed manually, the need to cope with large variations of objects and en-
vironments led to the emergence of learning-based neural approaches [23, 24, 25, 26]. Deep neural
networks [27, 28] have achieved impressive results in manipulation for single tasks [29], and recently
led to more challenging setups such as multi-task learning [30, 31, 32, 33]. Different multi-task ap-
proaches are explored by discovering which tasks should be trained together [15, 34], determining

1We follow definitions in RLBench [19] for tasks and variations. A task can be composed of multiple
variations that share the same skills but differ in objects, attributes or order as shown in Figure 1 (right).

2

shared features across tasks [35, 36], meta-learning [37, 38, 39], goal-conditioned learning [40, 41],
or inverse reinforcement learning [42]. These approaches can be generally split in two categories
according to the training algorithm: reinforcement learning (RL) methods [43, 44, 45, 46] which
learn policies from rewards provided by environments and behavioral cloning methods [47, 48, 49]
that learn from demonstrations using supervised learning. Demonstrations can be obtained from hu-
mans [50], robots [23, 51] or play interactions [49]. The emergence of robotic simulators, such
as Gym [52], manipulaTHOR [53], dm control [54], Sapien [55], CausalWorld [56], and RL-
Bench [19], also greatly accelerated the development of manipulation methods. In this work, we
use behavioral cloning to train policies given scripted demonstrations from RLBench [19] which
covers many challenging manipulation tasks.
Instruction-driven vision-based robotic manipulation has received growing attention for manip-
ulations in 2D planar [57, 58] or recent 3D environments [8, 59, 60], and has been transferred to
the real world [9, 10]. As grounding the language in visual scenes is important, existing works
have focused on challenges in object grounding, such as localizing objects based on referring ex-
pressions [61, 62, 63] and grounding spatial relationships [7, 64, 65]. Since language describes
high-level actions, several works [60, 66, 67] consider a hierarchical approach to decompose a task
into sub-goals. Because natural language is rich and diverse, while training resources are limited,
further works learn from collected offline data with instructions [10, 17] or leverage pre-trained
vision-language models [4, 5] for action prediction [9, 68]. To further improve the precision of ma-
nipulation skills, Mees et al. [8] align instructions with multiple cameras by fusing input images with
known camera parameters. Most of these works [6, 8, 9, 10] are stateless, since they only employ
current observations to predict next actions. Instead, our work proposes to jointly model language
instructions, history, and multi-view observations.
Transformers [69] have led to significant gains in natural language processing [2], computer vi-
sion [70] and related fields [4, 5, 71]. They have also been used in the context of supervised re-
inforcement learning, such as Decision Transformer [72] or Trajectory Transformer [73]. Recent
works in Vision-and-Language Navigation (VLN) [74, 75, 76] further demonstrate that the Trans-
former allows to better leverage previous observations to improve multi-modal action prediction.
Transformers are also used to build a multi-modal, multi-task, multi-embodiment generalist agent,
GATO [77]. Inspired by the success of transformers, we explore the transformer architecture for
instruction-driven and history-aware robotic manipulation.

3 Problem Definition

Our goal is to train a policy π
(
at+1|{xl}n

l=1,{oi}t
i=1,{ai}t

i=1
)

for robotic manipulation conditioned
on a natural language instruction {xl}n

l=1, visual observations {oi}t
i=1, and previous actions {ai}t

i=1
where n is the number of words in the instruction and t is the current step. For robotic control,
we use macro steps [12] – key turning points in action trajectories where the gripper changes its
state (open/close) or velocities of joints are close to zero. We employ an inverse-kinematics based
controller to find a trajectory between macro-steps. In this way, the sequence length of an episode is
significantly reduced from hundreds of small steps to typically less than 10 macro steps.
The observation ot at step t consists of RGB images It and point clouds Pt aligned with the RGB
images. It is composed of {Ik

t }K
k=1 RGB images from K cameras, with each Ik

t being of size H ×
W × 3 (height, width, 3 channels). Following [15], we use K = 3 with cameras on the wrist, left
shoulder and right shoulder of the agent, and H = W = 128. Similarly, Pt represents point clouds
{Pk

t }K
k=1 from K = 3 cameras. A point cloud Pk

t ∈RH×W×3 is obtained by projecting a single channel
depth image H×W from the k-th camera in world coordinates using known camera intrinsics and
extrinsics. Each point in Pk

t has thus 3D coordinates and is aligned with a pixel in Ik
t .

The action space at consists of the gripper pose and its state following the standard setup in RL-
Bench [12]. The gripper pose is composed of the Cartesian coordinates pt = (xt ,yt ,zt) and its
rotation described by a quaternion qt = (q0

t ,q
1
t ,q

2
t ,q

3
t) relative to the base frame. The gripper’s state

ct is boolean and indicates whether the gripper is open or closed. An object is grasped when it is
located in between the gripper’s two fingers and the gripper is closing its grasp. The execution of an
action is achieved by a motion planner in RLBench.

3

Te
xt

St
ep

 1
St

ep
 t Rotation

State

Po
si

ti
on

UNet

UNet

UNet

CNN

Prediction

C3

C2

C1

c

...
...

...

Use the broom to brush the
dirt into the dustpan

C1 C2 C3

C3C2C1

Inputs

V

Fe
ed

-F
or

w
ar

d

QQ

KK

Se
lf

-A
tt

en
ti

on

Cr
os

s-
At

te
nt

io
n

V

transformer

Language

UNet

RGBD & Proprioception

UNet

RGBD & Proprioception

Encoder

dustpan

use
...

St
ep

1 C
1

C
3

C
2 ...

St
ep

 t

...

C
1

C
3

C
2

Figure 2: Hiveformer jointly models instructions, views from multiple cameras, and past actions
and observations with a multimodal transformer for robotic manipulation.

4 Our Model: Hiveformer
We propose a unified architecture for robotic tasks called Hiveformer (History-aware instruction-
conditioned multi-view transformer), see Figure 2 for an overview. It consists of three mod-
ules: feature encoding, multimodal transformer and action prediction. The feature encoding mod-
ule (Sec. 4.1) generates token embeddings for instructions {xl}n

l=1, visual observations {oi}t
i=1 and

previous actions {ai}t
i=1. Then, the multimodal transformer (Sec. 4.2) learns relationships between

the instruction, current multi-camera observations and history. Finally, the action prediction module
(Sec. 4.3) utilizes a convolutional network (CNN) to predict the next rotation qt+1 and gripper state
ct+1, and adopts a UNet decoder [20] to predict the next position pt+1.

4.1 Feature Encoding
We encode the instruction, visual observations, and actions as a sequence of tokens.
Instructions. We employ a pre-trained language encoder to tokenize and encode the sentence in-
struction. Specifically, we use the language encoder in the CLIP model [5]. Thanks to its vision-and-
language pre-training, it is better at differentiating vision-related semantics such as colors compared
to pure language-only pre-trained models like BERT [2], see Table 7 in the appendix. We freeze the
pre-trained language encoder and use a linear layer on top of it to obtain embeddings x̂l ∈ Rd for
each word token:

x̂l = LN(Wxx̃l)+Ex
T , (1)

with x̃l the l-th embedding output by the language encoder, LN layer normalization [78], Wx a pro-
jection matrix, and Ex

T a type embedding which differentiates instructions from visual observations.

Observations and Proprioception. We encode the RGB image Ik
t , point clouds Pk

t , and propriocep-
tion Ak

t for each camera k separately. Ak
t ∈ {0,1}H×W is a binary attention map used to encode the

position of the gripper pt . It takes value one at the location of the gripper center and zero elsewhere.
We concatenate Ik

t and Ak
t in the channel dimension and use a UNet encoder to obtain a feature map

F̂k
t ∈ RHv×W v×dv , where Hv,W v,dv are the height, width, and number of channels of the feature

map. More details about the CNN architecture are presented in Section A of the appendix. Next,
we concatenate F̂k

t with point cloud representations in the channel dimension to indicate the spatial
location of each patch in the feature map. To match the size of Pk

t and F̂k
t , we apply mean-pooling

to Pk
t . The final encoded feature map Fk

t ∈ RHv×W v×(dv+3) is computed as follows:

Fk
t =

[
CNN([Ik

t ;Ak
t]); MeanPool(Pk

t)
]
. (2)

We use patches f k
t,h,w ∈ Fk

t ,h∈ [1,Hv],w∈ [1,W v] as separate visual tokens. We further encode f k
t,h,w

using embeddings of the camera id Ek
C, of the step id Et

S, and of the patch location Eh,w
L as well as an

embedding to indicate the visual nature of the tokens Ev
T as follows:

gk
t,h,w = LN(Wf f k

t,h,w)+Ek
C +Et

S +Eh,w
L +Ev

T . (3)

The encoded visual tokens of the k-th camera at step t are denoted as Gk
t = {gk

t,h,w}
Hv,W v

h=1,w=1 ∈
RHv×W v×d . We concatenate the encoded tokens for all cameras as Gt = (G1

t , · · · ,GK
t).

4

4.2 Multimodal transformer
Given the encoded tokens at the current macro step t, the multimodal transformer aims to obtain
a contextualized representation for Gt conditioned on the encoded instruction {x̂l}n

l=1 and history
{Gi}t−1

i=1 . This enables learning relationships among views from multiple cameras, the current ob-
servations and instructions, and between the current observations and history for action prediction.
We use the transformer’s attention mechanism [79] to learn such relationships:

Attn(Q,K,V) = Softmax
(

WQQ(WKK)T
√

d

)
WVV, (4)

where WQ,WK ,WV are learnable parameters. Unlike previous work [75] that uses self-attention
layers to capture all relationships, we employ different attention layers to capture different types
of relationships, in order to reinforce the importance of the context. First, we use a cross-attention
layer to learn the inter-modal relationships between Gt and its conditioned contexts Ct consisting of
tokens in the instruction {x̂l}n

l=1 and history {Gi}t−1
i=1 , which is:

G̃t = CA(Gt ,Ct) = Attn(Gt ,Ct ,Ct) . (5)

Then we learn the intra-modal relationships among patch tokens obtained from the views from
multiple cameras through a self-attention layer, i.e. SA(G̃t) = Attn(G̃t , G̃t , G̃t). Finally, a feed-
forward network consisting of two linear layers W1 and W2 is applied as follows:

Ĝt = LN
(
W2 GeLU

(
W1 SA(G̃t)

))
. (6)

4.3 Action Prediction
We concatenate the output embeddings of the transformer Ĝt in Eq (6) and the original encoded
visual representations F̂t in Sec. 4.1 in the channel dimension and reshape the flattened sequence
into a feature map Ht ∈ RK×Hv×W v×(d+dv) to predict the next action at+1 = [pt+1;qt+1;ct+1]. As
some RLBench tasks require accurate fine-grained positioning, different from the rotation qt+1 and
gripper state ct+1, the position pt+1 is predicted through a separate module that uses point clouds Pt .

Rotation and gripper’s state. We transform Ht into RHv×W v×K(d+dv) and feed it into a CNN de-
coder, described in Section A of the appendix. We then apply average pooling across spatial dimen-
sions and employ a linear layer to regress a 5-dimension vector [qt+1;ct+1].
Position. The prediction of the gripper position pt+1 is decomposed into an expected point on point
clouds pe

t+1 and an offset po
t+1, i.e. pt+1 = pe

t+1+ po
t+1. The offset allows us to predict a virtual point

outside the convex hull of the point cloud, e.g. when a robotic arm reaches first above the object and
then touch the object. For each camera k, a CNN with an upsampling layer predicts an attention
map Bk

t ∈ RH×W over the point clouds Pk
t . Each value Bk

t,h,w ∈ Bk
t corresponds to the probability of

reaching the point Pk
t,h,w ∈Pk

t . Therefore, we compute pe
t+1 as the expected position over all cameras:

pe
t+1 = ∑

k,h,w

(
Bk

t,h,w ·Pk
t,h,w

)
. (7)

The offset po
t+1 is computed from the instruction and the current step id. Let EO ∈ RNτ×T×3 be a

learnable embedding, where Nτ is the number of tasks and T is the maximum length of episodes.
We predict the task id from the instruction: Pr(m) = Softmax

(
Wm

1
n ∑n

l=1 x̃l
)
, where Pr(m)∈ [0,1]Nτ ,

and we obtain the offset as: po
t+1 = ∑m Pr(m) ·EO(m, t, :).

4.4 Training and Inference

Losses. We use behavioral cloning to train the models. In RLBench, we generate D, a collection of
N successful demonstrations for each task. Each demonstration δ ∈ D is composed of a sequence
of (maximum) T macro-steps with observations {oδ

i }T
i=1, actions {a∗i }T

i=1, task m∗ and instruction
{xl}n

l=1. We minimize a loss function L over a batch of demonstrations B = {δ j}|B|j=1 ⊂ D. The
loss function is the sum of two losses: a mean-square error (MSE) on the gripper’s action and a
cross-entropy (CE) over the task classification:

L =
1
|B| ∑

δ∈B

[
∑
t≤T

MSE(at ,a∗t)+CE(Pr(m),m∗)

]
. (8)

5

Table 1: Success rate on the single-task setting. We report mean and variance for unseen episodes.
Inputs Transformer Training

SRVisual
Tokens

Point
Clouds

Gripper
Position

Multi-
View History Attn Mask

Obs

R1 × × × × × × × 72.9±4.1
R2 Channel × × X × Self × 73.1±4.5
R3 Channel X × X × Self × 77.1±5.8
R4 Channel X X X × Self × 78.1±5.8
R5 Channel X X X X Self × 81.8±5.2
R6 Channel X X X X Self X 82.3±5.3
R7 Patch X X X X Self X 84.4±6.4
R8 Patch X X X X Cross X 88.4±4.9

Masking current observation. To ensure that the model uses past information {oi}t−1
i=1,{ai}t−1

i=1
instead of only relying on the current observation ot , we randomly mask the current observation
with a probability of 0.1. The masking zeros out randomly selected patch features in the current
observation. Therefore, even if the unmasked current observations contain sufficient information,
the model still requires to complete the masked observations from the history for action prediction.

5 Experiments
In this section we present experiments on RLBench [19] tasks to demonstrate the effectiveness of our
Hiveformer model in three settings: single-task, multi-task, and multi-variation. In the single-task
setup, a separate model is trained and tested for each task with no variations of the task. Multi-task
refers to a setting where one model is trained for multiple tasks (but each task has a unique variation).
In the multi-variation case we train a single model to solve multiple variations of a single task and
test it on new variations of the task unseen during training.

5.1 Experimental Setup

Dataset setups. RLBench [19] is a benchmark of robotic tasks. To compare our method with
previous work [15], we use the same 10 tasks with 100 demonstrations for training unless stated
otherwise. We further evaluate our model on 74 tasks for which RLBench provides successful
demonstrations. We manually group these tasks into 9 categories according to their challenges.
More details on the split of the tasks are given in Section B of the Appendix. We evaluate models
by measuring the per task success rate for 500 unseen episodes.
Implementation details. We use the Adam optimizer with a learning rate of 5×10−5. Each batch
consists of 32 demonstrations. Models were trained for 100,000 iterations. We apply data augmen-
tation in training including jitter over RGB images Ik

t , and a random crop of Ik
t , Pk

t , and Ak
t while

keeping them aligned. Models are trained on one NVIDIA Tesla V100 SXM2 GPU using a Singu-
larity container with headless rendering. Auto-λ [15] uses a UNet network and applies late fusion
to predictions from multiple views.

5.2 Ablations
To demonstrate the effectiveness of the proposed model architecture, we ablate the impact of its
components in Table 1. The model in R1 (row 1) is a UNet architecture similar to Auto-λ [15]
except that it is conditioned on instructions rather than task ids. This baseline only uses visual
observations at the current step and already achieves promising results with a success rate of 73.2%.
On top of R1’s architecture, a multimodal transformer with self-attention is added in R2 to improve
the modeling of multi-view images. Visual tokens {Gi

t}K
i=1 are different channels in the feature map

instead of spatial patches used in our final model. In R3 and R4, we further add point clouds Pt and
gripper position At in the feature encoding, which leads to 3% improvement in total. The impact
of history, i.e. the use of observations from previous steps, ({Gi

j}K,t−1
i=1, j=1) is studied in R5 and R6.

The history information brings 4.5% absolute gains and the masking of observations during training
further improves the performance by 0.5%. In R7, we replace the tokenization of feature maps from
channels gk

t,c to patches gk
t,h,w, and obtain another 2.2% gain. This improvement can be attributed

6

Table 2: Comparison with state-of-the-art methods on 10 tasks. We report success rate (%).
Pick &

Lift
Pick-Up

Cup
Push

Button
Put

Knife
Put

Money
Reach
Target

Slide
Block

Stack
Wine

Take
Money

Take
Umbrella Avg.

Single-task learning

ARM [12] 70 80 - - - 100 - 70 - 70 -
Auto-λ [15] 82 72 95 36 31 100 36 23 38 37 55.0
Ours 92.2 77.1 99.6 69.7 96.2 100.0 95.4 81.9 82.1 90.1 88.4

Multi-task learning

Auto-λ [15] 87 78 95 31 62 100 77 19 64 80 69.3
Ours (w/o inst) 83.8 13.9 97.0 41.9 54.3 98.9 36.2 68.5 74.1 73.0 64.2
Ours 88.9 92.9 100.0 75.3 58.2 100.0 78.7 71.2 79.1 89.2 83.3

Table 3: Comparison with the state of the art on 74 RLBench tasks grouped into 9 categories.
We report success rate (%) for the single-task setting. ∗The performance of Auto-λ is obtained by
running their code.

Planning Tools Long
Term

Rot.
Invar.

Motion
Planning Screw Multi

Modal Precision Visual
Occlusion Avg

Num. of tasks 9 11 4 7 9 4 5 11 14 74

Auto-λ [15]∗ 58.9 20.0 2.3 73.1 66.7 48.2 47.6 34.6 40.6 44.0
Ours (w/o hist) 78.9 46.7 10.0 84.6 73.3 72.6 60.0 63.8 57.9 60.9
Ours (one view) 57.7 23.2 12.3 57.8 63.2 35.6 40.7 33.7 37.1 40.1
Ours 81.6 53.0 16.9 84.2 72.7 80.9 67.1 64.7 60.2 65.4

to patch tokens that help encode fine-grained spatial information. Finally, we use cross-attention
instead of self-attention (Eq. 5) to condition on the instruction and history context. It further boosts
the performance with a 3.8% gain.

5.3 Comparison with State of the Art

Single-task evaluation. The upper block in Table 2 presents results of different models on 10 single
tasks in RLBench. We compare our model with ARM [12] and Auto-λ [15], two state-of-the-art
methods on RLBench and observe a consistent improvement for all tasks.
Extending tasks in a single-task evaluation setup. In Table 3, we further compare Auto-λ and
Hiveformer’s variants across 74 RLBench tasks grouped into 9 categories. The variant without his-
tory removes the history tokens in Hiveformer, while the variant with one view only uses one camera
at each step (we take the best among the 3 cameras for each task). The full Hiveformer achieves
consistently better performance compared to Auto-λ [15] on all types of tasks. Among them, the
Long-term, Tools and Planning task groups assess the use of history, where our model brings im-
proves significantly over the variant without history. Compared to the one view variant, our full
model performs significantly better on tasks requiring fine-grained control or with large occlusions
such as Screw, Precision and Visual Occlusion categories. Yet, our method performs relatively
poorly for Long-term tasks with more than 10 steps, such as “take shoes out of box”. As Long-term
tasks have an average number of steps 2-4 times higher than others, they are more prone to distri-
bution shift issues and accumulated errors. Hierarchical modeling or better training algorithms such
as reinforcement learning and dagger [80] could be helpful, but are left as future work.
Multi-task evaluation. The lower half in Table 2 shows the results in a multi-task setting. Notably,
Auto-λ uses a training algorithm which dynamically adjusts the weights of different tasks, while our
model simply treats all tasks with equal weights. Nevertheless, our model outperforms Auto-λ by
14%, demonstrating the improvements due to our architecture. We further compare our model with
a variant without instructions in the input sequence (since po

t+1 is predicted from instructions, we
modify the model such as it is predicted from Hk

t). The results show that instructions are important
in the multi-task setting.
Moreover, the performance of our single model trained for all tasks is only slightly worse than the
performance of individual models for each task.

7

Table 4: Success rate (%) in the multi-variation setting for seen or unseen variations and synthetic
or human-written instructions.

Demos
Per

Variation

Push Buttons Tower
Seen var. Unseen var. Seen Unseen var.
Synthetic Synthetic Human Synthetic Synthetic Human

10 96.8 73.1 65.1 71.7 50.1 19.4
50 99.6 83.3 70.6 74.1 52.3 20.7

100 100 86.4 74.0 76.2 56.4 24.2

Generalization to multi-variations. Table 4 shows results of Hiveformer trained on different vari-
ations of the two tasks Tower and Push Buttons. The Tower (resp. Push Buttons) task requires the
robot to sequentially stack colored cubes (resp. push colored buttons) using the order specified in the
instruction, see Figure 1 (right). We use 100 variations in training and test models for both the 100
seen variations and 100 unseen variations. In this setting, instructions are necessary to generalize to
unseen variations (e.g. it is impossible to distinguish the order of pushing buttons red-green-blue vs.
blue-red-green by only looking at the scene). We compare the models trained with different numbers
of demonstrations per variation. Even in the most challenging case where only 10 demonstrations
are available per variation, Hiveformer achieves a success rate of 71.1% for the push buttons task and
49.8% for the tower task in unseen variations. Furthermore, besides tests on synthetic instructions
(Synt), we also test the generalization to real instructions. Despite being only trained on synthetic
instructions with limited vocabulary and diversity, our model performs well on instructions gener-
ated by humans (Real). Finetuning Hiveformer on human instructions [75] is expected to result in
further improvements. Details of human-generated instructions are presented in Section C of the
Appendix.

5.4 Real-robot Experiments

Setup. We conduct real-robot experiments for the push buttons task on a 6-DoF UR5 robotic arm
equipped with a 2-finger Robotiq RG2 gripper and two cameras on each side of the scene. As
there exists a large difference between simulated and real environments, we finetune the simulator-
trained policy on real-robot demonstrations. We use 10 variations of the task and 10 real-robot
demonstrations per variation. More details are presented in Section E of the Appendix.

Table 5: Success rate of push but-
tons task on real robots.

Pretrain Seen Vars Unseen Vars

- 86.7 13.3
X 92.2 85.7

Results. We report success rates for real-robot experiments in
Table 5 on the “push buttons” task using synthetic instructions.
The models are tested on 10 seen and 10 unseen variations. We
compare two models: one trained from scratch using real-robot
demonstrations; and the other pretrained on RLBench and then
finetuned using real-robot demonstrations. As shown in Ta-
ble 5, the pretraining significantly improves the performance
especially for unseen variations. The model without pretraining
is prone to overfitting on seen variations. Although the domain
gap between the real robot and RLBench environments is large, our model benefits from pretraining
in the simulator. More analysis and examples are presented in Section E of the Appendix.

6 Conclusion
We introduced Hiveformer, a multimodal transformer that jointly models instructions, views from
multiple cameras, and history for instruction-driven robotics manipulation. We evaluated the model
on RLBench in three settings: single-task learning, multi-task learning, and multi-variation gener-
alization and demonstrated its effectiveness outperforming state-of-the-art. We deployed our model
on a real robot which is able to generalize to unseen variations and human-written instructions.
Limitations. The computational cost quadratically increases with the input sequence length due to
the transformer. Furthermore, our model is trained with behavioral cloning, which may suffer from
exposure bias. Future works could improve the efficiency for long-term tasks with hierarchical mod-
els and also incorporate reinforcement learning. Moreover, our model is trained on only synthetic
instructions and performs worse on the human-written instructions. Training on human-written au-
tomatically generated instructions could help improve the performance.

8

Acknowledgments
This work was granted access to the HPC resources of IDRIS under the allocation 101002 made
by GENCI. This work is funded in part by the French government under management of Agence
Nationale de la Recherche as part of the “Investissements d’avenir” program, reference ANR19-
P3IA-0001 (PRAIRIE 3IA Institute), the ANR project VideoPredict (ANR-21-FAI1-0002-01) and
by Louis Vuitton ENS Chair on Artificial Intelligence.

References
[1] Project webpage. https://guhur.github.io/hiveformer/.

[2] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. BERT: Pre-training of deep bidirectional
transformers for language understanding. In NAACL-HLT, 2019.

[3] K. He, H. Fan, Y. Wu, S. Xie, and R. Girshick. Momentum contrast for unsupervised visual
representation learning. In CVPR, 2020.

[4] J. Lu, D. Batra, D. Parikh, and S. Lee. ViLBERT: Pretraining task-agnostic visiolinguistic
representations for vision-and-language tasks. In NeurIPS, 2019.

[5] A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal, G. Sastry, A. Askell,
P. Mishkin, J. Clark, et al. Learning transferable visual models from natural language supervi-
sion. In ICML, pages 8748–8763. PMLR, 2021.

[6] C. Lynch and P. Sermanet. Language conditioned imitation learning over unstructured data.
RSS, 2021.

[7] O. Mees and W. Burgard. Composing pick-and-place tasks by grounding language. In ISER,
2021.

[8] O. Mees, L. Hermann, E. Rosete-Beas, and W. Burgard. CALVIN: A benchmark for language-
conditioned policy learning for long-horizon robot manipulation tasks. RA-L, 2022.

[9] M. Shridhar, L. Manuelli, and D. Fox. CLIPort: What and where pathways for robotic manip-
ulation. In CoRL, pages 894–906. PMLR, 2022.

[10] E. Jang, A. Irpan, M. Khansari, D. Kappler, F. Ebert, C. Lynch, S. Levine, and C. Finn. BC-
Z: Zero-shot task generalization with robotic imitation learning. In CoRL, pages 991–1002.
PMLR, 2022.

[11] Y. Yang, D. Cer, A. Ahmad, M. Guo, J. Law, N. Constant, G. H. Abrego, S. Yuan, C. Tar, Y.-H.
Sung, et al. Multilingual universal sentence encoder for semantic retrieval. In ACL, pages
87–94, 2020.

[12] S. James and A. J. Davison. Q-Attention: Enabling efficient learning for vision-based robotic
manipulation. RA-L, 2022.

[13] A. Zeng, P. Florence, J. Tompson, S. Welker, J. Chien, M. Attarian, T. Armstrong, I. Krasin,
D. Duong, V. Sindhwani, et al. Transporter networks: Rearranging the visual world for robotic
manipulation. In CoRL, pages 726–747. PMLR, 2021.

[14] S. James, K. Wada, T. Laidlow, and A. J. Davison. Coarse-to-fine Q-Attention: Efficient
learning for visual robotic manipulation via discretisation. In CVPR, 2022.

[15] S. Liu, S. James, A. J. Davison, and E. Johns. Auto-Lambda: Disentangling dynamic task
relationships. TMLR, 2022.

[16] L. Shao, T. Migimatsu, Q. Zhang, K. Yang, and J. Bohg. Concept2robot: Learning manip-
ulation concepts from instructions and human demonstrations. The International Journal of
Robotics Research, 40(12-14):1419–1434, 2021.

[17] S. Nair, E. Mitchell, K. Chen, S. Savarese, C. Finn, et al. Learning language-conditioned robot
behavior from offline data and crowd-sourced annotation. In CoRL, pages 1303–1315. PMLR,
2022.

9

[18] E. Perez, F. Strub, H. De Vries, V. Dumoulin, and A. Courville. FiLM: Visual reasoning with
a general conditioning layer. In AAAI, 2018.

[19] S. James, Z. Ma, D. R. Arrojo, and A. J. Davison. RLBench: The robot learning benchmark &
learning environment. RA-L, 5(2):3019–3026, 2020.

[20] O. Ronneberger, P. Fischer, and T. Brox. UNet: Convolutional networks for biomedical im-
age segmentation. In International Conference on Medical image computing and computer-
assisted intervention, pages 234–241. Springer, 2015.

[21] J. Hill. Real time control of a robot with a mobile camera. In 9th Int. Symp. on Industrial
Robots, 1979, pages 233–246, 1979.

[22] F. Chaumette and S. Hutchinson. Visual servo control. i. basic approaches. IEEE Robotics &
Automation Magazine, 13(4):82–90, 2006.

[23] R. Strudel, A. Pashevich, I. Kalevatykh, I. Laptev, and C. Schmid. Learning to combine prim-
itive skills: A step towards versatile robotic manipulation. In ICRA, pages 4637–4643. IEEE,
2020.

[24] A. X. Lee, S. Levine, and P. Abbeel. Learning visual servoing with deep features and fitted
q-iteration. In ICLR, 2017.

[25] Q. Bateux, E. Marchand, J. Leitner, F. Chaumette, and P. Corke. Training deep neural networks
for visual servoing. In ICRA, pages 1–8. IEEE, 2018.

[26] P. Florence, C. Lynch, A. Zeng, O. A. Ramirez, A. Wahid, L. Downs, A. Wong, J. Lee, I. Mor-
datch, and J. Tompson. Implicit behavioral cloning. In CoRL, pages 158–168. PMLR, 2022.

[27] A. I. Károly, P. Galambos, J. Kuti, and I. J. Rudas. Deep learning in robotics: Survey on
model structures and training strategies. IEEE Transactions on Systems, Man, and Cybernetics:
Systems, 51(1):266–279, 2020.

[28] Y. Labbe, J. Carpentier, M. Aubry, and J. Sivic. Cosypose: Consistent multi-view multi-object
6d pose estimation. In ECCV, 2020.

[29] I. Akkaya, M. Andrychowicz, M. Chociej, M. Litwin, B. McGrew, A. Petron, A. Paino,
M. Plappert, G. Powell, R. Ribas, et al. Solving rubik’s cube with a robot hand. arXiv preprint
arXiv:1910.07113, 2019.

[30] R. Caruana. Learning many related tasks at the same time with backpropagation. NeurIPS, 7,
1994.

[31] H. B. Ammar, E. Eaton, P. Ruvolo, and M. Taylor. Online multi-task learning for policy
gradient methods. In ICML, pages 1206–1214. PMLR, 2014.

[32] C. Devin, A. Gupta, T. Darrell, P. Abbeel, and S. Levine. Learning modular neural network
policies for multi-task and multi-robot transfer. In ICRA, pages 2169–2176. IEEE, 2017.

[33] S. Sodhani, A. Zhang, and J. Pineau. Multi-task reinforcement learning with context-based
representations. In International Conference on Machine Learning, pages 9767–9779. PMLR,
2021.

[34] T. Standley, A. Zamir, D. Chen, L. Guibas, J. Malik, and S. Savarese. Which tasks should be
learned together in multi-task learning? In International Conference on Machine Learning,
pages 9120–9132. PMLR, 2020.

[35] S. Thrun and J. O’Sullivan. Discovering structure in multiple learning tasks: The TC algorithm.
In ICML, volume 96, pages 489–497, 1996.

[36] B. Chen, A. Sax, G. Lewis, I. Armeni, S. Savarese, A. Zamir, J. Malik, and L. Pinto. Ro-
bust policies via mid-level visual representations: An experimental study in manipulation and
navigation. CoRL, 2020.

10

[37] C. Finn and S. Levine. Deep visual foresight for planning robot motion. In ICRA, pages
2786–2793. IEEE, 2017.

[38] T. Yu, C. Finn, A. Xie, S. Dasari, T. Zhang, P. Abbeel, and S. Levine. One-shot imitation from
observing humans via domain-adaptive meta-learning. RSS, 2018.

[39] T. Yu, D. Quillen, Z. He, R. Julian, K. Hausman, C. Finn, and S. Levine. Meta-world: A
benchmark and evaluation for multi-task and meta reinforcement learning. In CoRL, pages
1094–1100. PMLR, 2020.

[40] C. Finn, T. Yu, T. Zhang, P. Abbeel, and S. Levine. One-shot visual imitation learning via
meta-learning. In CoRL, pages 357–368. PMLR, 2017.

[41] D. Kalashnikov, J. Varley, Y. Chebotar, B. Swanson, R. Jonschkowski, C. Finn, S. Levine, and
K. Hausman. MT-Opt: Continuous multi-task robotic reinforcement learning at scale. arXiv
preprint arXiv:2104.08212, 2021.

[42] A. S. Chen, S. Nair, and C. Finn. Learning generalizable robotic reward functions from ”in-
the-wild” human videos. RSS, 2021.

[43] R. S. Sutton and A. G. Barto. Reinforcement learning: An introduction. MIT press, 2018.

[44] T. Haarnoja, A. Zhou, K. Hartikainen, G. Tucker, S. Ha, J. Tan, V. Kumar, H. Zhu, A. Gupta,
and P. Abbeel. Soft actor-critic algorithms and applications. arXiv preprint arXiv:1812.05905,
2018.

[45] J. Peters, S. Vijayakumar, and S. Schaal. Reinforcement learning for humanoid robotics. In
Proceedings of the third IEEE-RAS international conference on humanoid robots, pages 1–20,
2003.

[46] A. Pashevich, D. Hafner, J. Davidson, R. Sukthankar, and C. Schmid. Modulated policy hier-
archies. NeurIPS Deep RL Workshop, 2018.

[47] F. Torabi, G. Warnell, and P. Stone. Behavioral cloning from observation. In Proceedings of
the 27th International Joint Conference on Artificial Intelligence, pages 4950–4957, 2018.

[48] J. Ho and S. Ermon. Generative adversarial imitation learning. Advances in neural information
processing systems, 29, 2016.

[49] C. Lynch, M. Khansari, T. Xiao, V. Kumar, J. Tompson, S. Levine, and P. Sermanet. Learning
latent plans from play. In CoRL, pages 1113–1132. PMLR, 2020.

[50] V. Petrı́k, M. Tapaswi, I. Laptev, and J. Sivic. Learning object manipulation skills via approxi-
mate state estimation from real videos. In CoRL, 2020.

[51] Y. Hristov, D. Angelov, M. Burke, A. Lascarides, and S. Ramamoorthy. Disentangled relational
representations for explaining and learning from demonstration. In CoRL, 2019.

[52] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang, and W. Zaremba.
OpenAI Gym. arXiv preprint arXiv:1606.01540, 2016.

[53] K. Ehsani, W. Han, A. Herrasti, E. VanderBilt, L. Weihs, E. Kolve, A. Kembhavi, and R. Mot-
taghi. ManipulaTHOR: A framework for visual object manipulation. In CVPR, pages 4497–
4506, 2021.

[54] S. Tunyasuvunakool, A. Muldal, Y. Doron, S. Liu, S. Bohez, J. Merel, T. Erez, T. Lillicrap,
N. Heess, and Y. Tassa. dm control: Software and tasks for continuous control. Software
Impacts, 6:100022, 2020.

[55] F. Xiang, Y. Qin, K. Mo, Y. Xia, H. Zhu, F. Liu, M. Liu, H. Jiang, Y. Yuan, H. Wang, et al.
Sapien: A simulated part-based interactive environment. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 11097–11107, 2020.

11

[56] O. Ahmed, F. Träuble, A. Goyal, A. Neitz, Y. Bengio, B. Schölkopf, M. Wüthrich, and
S. Bauer. CausalWorld: A robotic manipulation benchmark for causal structure and transfer
learning. arXiv preprint arXiv:2010.04296, 2020.

[57] D. Misra, J. Langford, and Y. Artzi. Mapping instructions and visual observations to actions
with reinforcement learning. ACL, 2017.

[58] E. Stengel-Eskin, A. Hundt, Z. He, A. Murali, N. Gopalan, M. Gombolay, and G. Hager.
Guiding multi-step rearrangement tasks with natural language instructions. In Conference on
Robot Learning, pages 1486–1501. PMLR, 2021.

[59] K. M. Hermann, F. Hill, S. Green, F. Wang, R. Faulkner, H. Soyer, D. Szepesvari, W. M.
Czarnecki, M. Jaderberg, D. Teplyashin, M. Wainwright, C. Apps, D. Hassabis, and P. Blunso.
Grounded language learning in a simulated 3D world. NeurIPS Workshop, 2017.

[60] D. I. A. Team, J. Abramson, A. Ahuja, A. Brussee, F. Carnevale, M. Cassin, F. Fischer,
P. Georgiev, A. Goldin, T. Harley, et al. Creating multimodal interactive agents with imita-
tion and self-supervised learning. arXiv preprint arXiv:2112.03763, 2021.

[61] R. Paul, J. Arkin, N. Roy, and T. M Howard. Efficient grounding of abstract spatial concepts
for natural language interaction with robot manipulators. In Robotics: Science and Systems
Foundation, 2016.

[62] T. Nguyen, N. Gopalan, R. Patel, M. Corsaro, E. Pavlick, and S. Tellex. Robot object retrieval
with contextual natural language queries. RSS, 2020.

[63] W. Goodwin, S. Vaze, I. Havoutis, and I. Posner. Semantically grounded object matching for
robust robotic scene rearrangement. ICRA, 2021.

[64] S. Tellex, T. Kollar, S. Dickerson, M. R. Walter, A. G. Banerjee, S. Teller, and N. Roy. Un-
derstanding natural language commands for robotic navigation and mobile manipulation. In
Twenty-Fifth AAAI Conference on Artificial Intelligence, 2011.

[65] W. Liu, C. Paxton, T. Hermans, and D. Fox. StructFormer: Learning spatial structure for
language-guided semantic rearrangement of novel objects. ICRA, 2021.

[66] W. Huang, P. Abbeel, D. Pathak, and I. Mordatch. Language models as zero-shot planners: Ex-
tracting actionable knowledge for embodied agents. arXiv preprint arXiv:2201.07207, 2022.

[67] D. Garg, S. Vaidyanath, K. Kim, J. Song, and S. Ermon. LISA: Learning interpretable skill
abstractions from language. arXiv preprint arXiv:2203.00054, 2022.

[68] A. Khandelwal, L. Weihs, R. Mottaghi, and A. Kembhavi. Simple but effective: Clip embed-
dings for embodied ai. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 14829–14838, 2022.

[69] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and I. Polo-
sukhin. Attention is all you need. Advances in neural information processing systems, 30,
2017.

[70] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, M. De-
hghani, M. Minderer, G. Heigold, S. Gelly, et al. An image is worth 16x16 words: Transform-
ers for image recognition at scale. ICLR, 2020.

[71] H. Tan and M. Bansal. Lxmert: Learning cross-modality encoder representations from trans-
formers. In EMNLP, 2019.

[72] L. Chen, K. Lu, A. Rajeswaran, K. Lee, A. Grover, M. Laskin, P. Abbeel, A. Srinivas,
and I. Mordatch. Decision transformer: Reinforcement learning via sequence modeling. In
NeurIPS, 2021.

[73] A. L. Putterman, K. Lu, I. Mordatch, and P. Abbeel. Pretraining for language conditioned
imitation with transformers. In NeurIPS, 2021.

12

[74] S. Chen, P.-L. Guhur, C. Schmid, and I. Laptev. History aware multimodal transformer for
vision-and-language navigation. Advances in Neural Information Processing Systems, 34,
2021.

[75] A. Pashevich, C. Schmid, and C. Sun. Episodic transformer for vision-and-language naviga-
tion. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pages
15942–15952, 2021.

[76] P.-L. Guhur, M. Tapaswi, S. Chen, I. Laptev, and C. Schmid. Airbert: In-domain pretraining for
vision-and-language navigation. In Proceedings of the IEEE/CVF International Conference on
Computer Vision, pages 1634–1643, 2021.

[77] S. Reed, K. Zolna, E. Parisotto, S. G. Colmenarejo, A. Novikov, G. Barth-Maron, M. Gimenez,
Y. Sulsky, J. Kay, J. T. Springenberg, et al. A generalist agent. arXiv preprint
arXiv:2205.06175, 2022.

[78] J. L. Ba, J. R. Kiros, and G. E. Hinton. Layer normalization. arXiv preprint arXiv:1607.06450,
2016.

[79] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and I. Polo-
sukhin. Attention is all you need. NeurIPS, 2017.

[80] S. Ross, G. Gordon, and D. Bagnell. A reduction of imitation learning and structured predic-
tion to no-regret online learning. In Proceedings of the fourteenth international conference
on artificial intelligence and statistics, pages 627–635. JMLR Workshop and Conference Pro-
ceedings, 2011.

[81] S. James and P. Abbeel. Coarse-to-fine Q-Attention with learned path ranking. arXiv preprint
arXiv:2204.01571, 2022.

[82] A. Silva, N. Moorman, W. Silva, Z. Zaidi, N. Gopalan, and M. Gombolay. Lancon-learn:
Learning with language to enable generalization in multi-task manipulation. IEEE Robotics
and Automation Letters, 7(2):1635–1642, 2021.

[83] E. Olson. Apriltag: A robust and flexible visual fiducial system. In ICRA, 2011.

13

Appendix
In this appendix we first present details about the model architecture in Section A. Then we describe
our categorization for RLBench tasks in Section B and experimental details in Section C. We further
provide additional ablations in Section D. Finally, we conduct real robot experiments in Section E
and present both quantitative and qualitative results on the real robot.

A Model Architecture

UNet encoder for image encoding. The CNN in Eq (2) of the main paper is composed of 6 con-
volutional layers. The first two layers use kernels of size 3x3, strides of size 1 and output channels
of sizes 8 and 16 respectively with LeakyReLU activation function. The remaining four layers use
3x3 kernels, strides of size 2 and output channels of size 16 followed by group normalization and
LeakyReLU activation function. Therefore, an image of size H×W ×3 is encoded by a feature map
of size H

16 × W
16 ×16.

UNet decoder for position prediction. The decoder uses a sequence of convolutional and upsam-
pling layers to generate a heatmap on the point clouds. Specifically, the convolutional layer is fed
with the output from the previous layer and the residual connection from corresponding layer in the
UNet encoder. Its output channel size is 16, kernel size is 3 and stride size is 1. The upsampling
layer uses scale factor of 2 and bilinear sampling. We stack 4 blocks of the layers to recover the
original image size H×W .
CNN for rotation and gripper. The CNN is composed of two convolutional layers, each with a
3x3 kernel, a stride of 2 and an output channel of size 64 followed by the group normalization and a
LeakyReLU activation function. Then we apply average pooling and feed the flattened vector into a
feedforward network to regress a 5-dimensional vector composed of 4-dimensional quaternion qt+1
and 1-dimensional gripper state ct+1.

B Categorization of RLBench Tasks

We evaluate on 74 available RLBench tasks. Although RLBench2 currently contains 106 supported
tasks, we had difficulties to produce demonstrations for 32 of them due to issues with the scripts and
the motion planner. To analyze the performance of our model applied to different types of tasks, we
manually group 74 tasks into 9 categories according to their key challenges. The 9 task groups are
defined as follows:

• The Planning group contains tasks with multiple sub-goals (e.g. picking a basket ball and then
throwing the ball). The included tasks are: basketball in hoop, put rubbish in bin, meat off grill,
meat on grill, change channel, tv on, tower3, push buttons, stack wine.

• The Tools group is a special case of planning where a robot must grasp an object to interact
with the target object. The included tasks are: slide block to target, reach and drag, take frame
off hanger, water plants, hang frame on hanger, scoop with spatula, place hanger on rack, move
hanger, sweep to dustpan, take plate off colored dish rack, screw nail.

• The Long term group requires more than 10 macro-steps to be completed. The included tasks
are: wipe desk, stack blocks, take shoes out of box, slide cabinet open and place cups.

• The Rotation-invariant group can be solved without changes in the gripper rotation. The
included tasks are: reach target, push button, lamp on, lamp off, push buttons, pick and lift,
take lid off saucepan.

• The Motion planner group requires precise grasping. As observed in [81] such tasks often fail
due to the motion planner. The included tasks are: toilet seat down, close laptop lid, open box,
open drawer, close drawer, close box, phone on base, toilet seat up, put books on bookshelf.

• The Multimodal group can have multiple possible trajectories to solve a task due to a large
affordance area of the target object (e.g. the edge of a cup). The included tasks are: pick up
cup, turn tap, lift numbered block, beat the buzz, stack cups.

• The Precision group involves precise object manipulation. The included tasks are: take usb
out of computer, play jenga, insert onto square peg, take umbrella out of umbrella stand, insert

2https://github.com/stepjam/RLBench/tree/master/rlbench/tasks

14

Figure 3: The tasks used in multi-variation setting. Left: push buttons task. Right: tower task.

usb in computer, straighten rope, pick and lift small, put knife on chopping board, place shape
in shape sorter, take toilet roll off stand, put umbrella in umbrella stand, setup checkers.

• The Screw group requires screwing an object. The included tasks are: turn oven on, change
clock, open window, open wine bottle.

• The Visual Occlusion group involves tasks with large objects and thus there are occlusions
from certain views. The included tasks are: close microwave, close fridge, close grill, open
grill, unplug charger, press switch, take money out safe, open microwave, put money in safe,
open door, close door, open fridge, open oven, plug charger in power supply.

C Experimental Details

Motion Planner. We modified the default motion planner in RLBench, as it sometimes fails to reach
a target pose even though there exist successful trajectories in the 3D space. To reduce the impact
of the imperfect motion planner, we run the motion planner with different seeds up to 10 times until
it finds a trajectory to the target.
Task Setup in Multi-variation Setting. For the multi-variation setting we choose tasks with as
many variations as possible. We hence select the push buttons and tower tasks, for which we can
easily construct new variations, as illustrated in Figure 3. For each of these tasks we use 100 varia-
tions for training and 100 different variations for testing.

• The Push Buttons task has three buttons with unique colors in the scene. The robot should
press some or all of the buttons according to the order in an instruction. Variations of the
task are defined by the different order and different colors of buttons. RLBench provides three
sentence templates to generate synthetic instructions with changing button colors such as “push
the red button, and then push the cyan one”.

• The Tower task is inspired by the “stack block” task. The robot must stack some of the three
colored cubes at a target location following the color order provided by the instruction. We
generate synthetic instructions for each variation, such as “Stack the red, blue, green blocks”,
or “Stack the yellow block. Stack the purple block on top of it, then add the cyan cube”.

Collection of human-written instructions. In addition to synthetic instructions used for training,
we collect human-written natural language instructions for testing. We collect 162 human-written
instructions and measure the success rate for each instruction on 10 episodes with random object
locations. 8 native English speakers participated in the dataset collection, leading to 63 instructions
of 51 testing variations for the push buttons task, and 99 instructions for 99 testing variations for
the tower task. Human-written instructions are more varied than the synthetic ones. They contain
unseen verbs (e.g. “Tap on the green button, then the grey button and end up pressing the pink
button”), unseen formulations (e.g. “Press the green, cyan and pink buttons in that order”), longer
sentences (e.g. “Press the white button and then you go to green button and press it and finally press
the black button”) or unseen color references (e.g. “Press the darker blue button, then the gray one
and finally the lighter blue button.”).

15

Table 6: Comparison with LanCon-Learn [82] on 10 tasks.

Hist. Pick &
Lift

Pick-Up
Cup

Push
Button

Put
Knife

Put
Money

Reach
Target

Slide
Block

Stack
Wine

Take
Money

Take
Umbrella Avg.

Single-task learning

LanCon-Learn - 20.2 25.2 96.2 57.8 91.4 99.6 60.2 57.0 58.4 73.0 63.9
LanCon-Learn X 64.8 56.8 96.4 59.4 90.6 98.7 63.4 56.6 67.8 74.8 72.9
Ours X 92.2 77.1 99.6 69.7 96.2 100.0 95.4 81.9 82.1 90.1 88.4

Multi-task learning

LanCon-Learn - 18.2 23.2 80.2 28.8 59.6 100.0 38.8 25.2 58.2 45.6 47.8
LanCon-Learn X 52.6 44.2 81.5 32.2 75.6 100.0 42.2 24.6 70.2 50.8 57.4
Ours X 88.9 92.9 100.0 75.3 58.2 100.0 78.7 71.2 79.1 89.2 83.3

Table 7: Comparison with LanCon-Learn [82] and ablation of the instruction encoding in the multi-
variation setting for seen or unseen variations and synthetic, corrupted or real instructions.

Method Hist.
Instructions Visual

Emb.
Ev

T

Push buttons Tower

Format Encoder Emb.
Ex

T

Seen Unseen Seen Unseen
Synt. Synt. Corr. Real Synt. Synt. Corr. Real

LanCon-Learn No Cat. GloVe - - 25.6 12.1 0.3 0.1 21.3 9.1 0.1 0.0
LanCon-Learn Yes Cat. GloVe - - 37.8 16.7 1.6 0.9 34.9 14.2 1.2 0.8

Ours No Seq. CLIP X X 8.6 3.6 0.3 0.1 7.1 4.5 0.2 0.0
Ours Yes Avg. CLIP X X 9.1 1.1 0.0 0.0 5.3 0.2 0.0 0.0
Ours Yes Seq. CLIP - X 100 83.2 81.1 71.3 77.1 53.2 51.3 21.3
Ours Yes Seq. CLIP - - 86.2 65.2 56.4 49.8 54.9 34.8 29.8 24.7
Ours Yes Seq. BERT X X 54.6 40.2 15.6 21.8 42.9 28.9 8.2 10.2
Ours Yes Seq. OHE X X 100 3.1 0.1 0.0 96.8 3.8 0.4 0.0
Ours Yes Seq. CLIP X X 100 86.3 85.6 74.2 77.4 56.2 53.6 24.1

D Experiments on the simulator RLBench
We conducted further ablation studies to confirm our approach.

D.1 Comparison with Additional State-of-the-Art Approach
LanCon-Learn [82] is a recent instruction-conditioned multi-task approach. It takes as input the
gripper state and the object state, namely the ground truth pose of each object in the scene, instead of
raw visual observations as ours. It encodes instructions with GloVe embeddings and a bi-directional
LSTM. It predicts the next pose of the gripper based on a modular architecture conditioned on
encoded text features. We run experiments on RLBench with the code provided by the authors.
Since some RLBench tasks require identifying the colors of an object, we modify their object state
to include a RGB reference of each object. Moreover, we complete their method with a history
mechanism, where the gripper state is concatenated with the gripper state from the previous step.
As described in Table 6, we obtained an average success rate of 63.9% with their original method
(vs. 72.9% with history vs. 88.3% for our approach) in our single-task setting and 47.8% (vs. 57.4%
with history vs. 83.8% for our approach) in our multi-task setting.

D.2 Additional Ablations on Multi-variation Setting
In the multi-variation setting in Table 7, the gap between LanCon-Learn and our approach is more
significant than in Table 6, since GloVe embeddings differentiate poorly colors: for the “push but-
tons” task on unseen variations and synthetic instructions, the performance reaches only 1.7% (vs.
86.3% with our approach). This also happens when replacing CLIP embeddings with BERT in our
model (40.2%).
The important role of history for long-term planning tasks such as “pushing buttons” is confirmed
when comparing LanCon-Learn or our model with and without history in the Table 7. The model
without history can only use its current observation to predict the next action. Therefore, it is
hard to infer which buttons have been pressed and which button is the next target, leading to poor
performance on the task.

16

Figure 4: The robot scene with two RGB-D cameras and a UR5 robotics arm with an RG2 gripper.

We found that removing Ex
T decreases the performance only by 3.1%, but removing both Ex

T and Ev
T

decreases the performance by 21.1%. Moreover, replacing the instructions with one-hot encoding
of the variation index increases the performance for seen variations (by 19.4% on the tower task),
but prevents the model from generalizing to unseen variations.
We performed ablations with corrupted instructions on unseen variations. Corrupted instructions
were created from synthetic instructions by replacing color references with synonyms that have not
been seen during training. For example, the color “azure” is replaced with “light blue”, and the color
“maroon” with “dark red”. Baselines using CLIP as a language encoder have a much smaller drop
of performance than any other encoder.
We also test our model with a global language embedding (average over word tokens) as in [9] and
observe a significant drop in performance. The main reason is that the averaged embeddings do not
represent well different action orders, e.g. we have obtained the average cosine similarity of 0.97 for
instructions corresponding to same actions in different orders.

E Experiments on Real-robot

Setup details. The cameras are Intel RealSense RGB-D cameras mounted on a fixed support as
illustrated in Figure 4. We adapt our model to use K = 2 cameras. The resolution of the captured
images is at a resolution of 1280×720, we apply center crop and downsampling to obtain images of
size 128×128, which is the input to our model. We use nearest approximation to downsample depth
images and bilinear approximation for RGB images. We use intrinsic parameters provided by Intel,
and perform extrinsic calibration between the camera and the robot base-frame using an AprilTag
marker [83]. We built 10 buttons using white cellulose foams: we manually cut them into 5×5 cm
squares and attached to each square a painted rounded foam. The button bases and buttons have an
average size of 4.95±0.1 cm and 3.18±0.22 cm respectively.
To collect demonstrations with the real robot, we design a script that automatically solves the task
provided ground truth locations of buttons and the correct sequence of actions. In each demonstra-
tion objects are placed at random locations on the workspace and actions are executed at 10 Hz. We
finetune the model for 8k iterations using the same training setup as that in the simulator.
Qualitative Results. Figure 5 shows a successful example from our real robot experiments. The
attention maps reveal that the robot correctly attends to the next buttons. Thanks to the history of
previous observations and actions, the model is confident to not press a button that has already been
pressed before (for example the cyan in the fourth column).
In Figure 6, we analyze the robustness of our model for to unseen variations in more challenging
situations. The instruction of the variation is written by human: “Press the yellow button and then
press the black button and finish with the white button”. Our model successfully pressed the buttons
in the correct order for all situations in Figure 6.

• Figure 6a: Since the foam buttons have low friction with the table, the gripper has acciden-
tally flipped the black button, providing two buttons looking white. However, thanks to its

17

Figure 5: The instruction is “Press the cyan button, and then press the rose one, and then press the
purple one”. Top row: sequence of observations from one of the two side cameras in the robot scene.
Bottom row: sequence of predicted attention maps by our model that indicate the gripper’s position
for the next step.

history component, the robot is able to successfully press the right white button instead of
the flipped button.

• Figure 6b: Two white buttons are present in the scene. This is a multi-modal example, in
which the robot might predict a mean position between the two white buttons, whereas our
robot can cope with this challenge.

• Figure 6c: We use a ruler to move the location the white button in the scene after the robot
pushed the yellow button. Although such perturbations have never been used in training
sequences, the robot remains robust to this dynamic environment.

• Figure 6d: We change the shape of the button by increasing the height of the yellow button.
• Figure 6e: We add occlusion to the gripper.
• Figure 6f: We change the appearance of the table. Our model is robust to the above visual

modifications.

More details and video demonstrations of our real-robot experiments are available from the project
webpage [1].

18

(a) Flipped button. (b) Multimodal. (c) Dynamic Environment.

(d) Unseen Button. (e) Unseen Gripper. (f) Unseen Table.

Figure 6: Robustness of the learned policy on an unseen variation: “Press the yellow button and
then press the black button and finish with the white button”.

19

Supplementary Material for
Instruction-driven history-aware policies

for robotic manipulations

Anonymous Author(s)
Affiliation
Address
email

Appendix1

In this appendix we first present details about the model architecture in Section 1. Then we describe2

our categorization for RLBench tasks in Section 2 and experimental details in Section 3. We further3

provide additional ablations in Section 4. Finally, we conduct real robot experiments in Section 54

and present both quantitative and qualitative results on the real robot.5

1 Model Architecture6

UNet encoder for image encoding. The CNN in Eq (2) of the main paper is composed of 6 con-7

volutional layers. The first two layers use kernels of size 3x3, strides of size 1 and output channels8

of sizes 8 and 16 respectively with LeakyReLU activation function. The remaining four layers use9

3x3 kernels, strides of size 2 and output channels of size 16 followed by group normalization and10

LeakyReLU activation function. Therefore, an image of size H×W ×3 is encoded by a feature map11

of size H
16 × W

16 ×16.12

UNet decoder for position prediction. The decoder uses a sequence of convolutional and upsam-13

pling layers to generate a heatmap on the point clouds. Specifically, the convolutional layer is fed14

with the output from the previous layer and the residual connection from corresponding layer in the15

UNet encoder. Its output channel size is 16, kernel size is 3 and stride size is 1. The upsampling16

layer uses scale factor of 2 and bilinear sampling. We stack 4 blocks of the layers to recover the17

original image size H ×W .18

CNN for rotation and gripper. The CNN is composed of two convolutional layers, each with a19

3x3 kernel, a stride of 2 and an output channel of size 64 followed by the group normalization and a20

LeakyReLU activation function. Then we apply average pooling and feed the flattened vector into a21

feedforward network to regress a 5-dimensional vector composed of 4-dimensional quaternion qt+122

and 1-dimensional gripper state ct+1.23

2 Categorization of RLBench Tasks24

We evaluate on 74 available RLBench tasks. Although RLBench1 currently contains 106 supported25

tasks, we had difficulties to produce demonstrations for 32 of them due to issues with the scripts and26

the motion planner. To analyze the performance of our model applied to different types of tasks, we27

manually group 74 tasks into 9 categories according to their key challenges. The 9 task groups are28

defined as follows:29

• The Planning group contains tasks with multiple sub-goals (e.g. picking a basket ball and then30

throwing the ball). The included tasks are: basketball in hoop, put rubbish in bin, meat off grill,31

meat on grill, change channel, tv on, tower3, push buttons, stack wine.32

1https://github.com/stepjam/RLBench/tree/master/rlbench/tasks

Submitted to the 6th Conference on Robot Learning (CoRL 2022). Do not distribute.

ar
X

iv
:2

20
9.

04
89

9v
2

 [
cs

.R
O

]
 2

2
Se

p
20

22

• The Tools group is a special case of planning where a robot must grasp an object to interact33

with the target object. The included tasks are: slide block to target, reach and drag, take frame34

off hanger, water plants, hang frame on hanger, scoop with spatula, place hanger on rack, move35

hanger, sweep to dustpan, take plate off colored dish rack, screw nail.36

• The Long term group requires more than 10 macro-steps to be completed. The included tasks37

are: wipe desk, stack blocks, take shoes out of box, slide cabinet open and place cups.38

• The Rotation-invariant group can be solved without changes in the gripper rotation. The39

included tasks are: reach target, push button, lamp on, lamp off, push buttons, pick and lift,40

take lid off saucepan.41

• The Motion planner group requires precise grasping. As observed in [?] such tasks often fail42

due to the motion planner. The included tasks are: toilet seat down, close laptop lid, open box,43

open drawer, close drawer, close box, phone on base, toilet seat up, put books on bookshelf.44

• The Multimodal group can have multiple possible trajectories to solve a task due to a large45

affordance area of the target object (e.g. the edge of a cup). The included tasks are: pick up46

cup, turn tap, lift numbered block, beat the buzz, stack cups.47

• The Precision group involves precise object manipulation. The included tasks are: take usb48

out of computer, play jenga, insert onto square peg, take umbrella out of umbrella stand, insert49

usb in computer, straighten rope, pick and lift small, put knife on chopping board, place shape50

in shape sorter, take toilet roll off stand, put umbrella in umbrella stand, setup checkers.51

• The Screw group requires screwing an object. The included tasks are: turn oven on, change52

clock, open window, open wine bottle.53

• The Visual Occlusion group involves tasks with large objects and thus there are occlusions54

from certain views. The included tasks are: close microwave, close fridge, close grill, open55

grill, unplug charger, press switch, take money out safe, open microwave, put money in safe,56

open door, close door, open fridge, open oven, plug charger in power supply.57

3 Experimental Details58

Motion Planner. We modified the default motion planner in RLBench, as it sometimes fails to reach59

a target pose even though there exist successful trajectories in the 3D space. To reduce the impact60

of the imperfect motion planner, we run the motion planner with different seeds up to 10 times until61

it finds a trajectory to the target.62

Task Setup in Multi-variation Setting. For the multi-variation setting we choose tasks with as63

many variations as possible. We hence select the push buttons and tower tasks, for which we can64

easily construct new variations, as illustrated in Figure 1. For each of these tasks we use 100 varia-65

tions for training and 100 different variations for testing.66

• The Push Buttons task has three buttons with unique colors in the scene. The robot should67

press some or all of the buttons according to the order in an instruction. Variations of the68

task are defined by the different order and different colors of buttons. RLBench provides three69

sentence templates to generate synthetic instructions with changing button colors such as “push70

the red button, and then push the cyan one”.71

• The Tower task is inspired by the “stack block” task. The robot must stack some of the three72

colored cubes at a target location following the color order provided by the instruction. We73

generate synthetic instructions for each variation, such as “Stack the red, blue, green blocks”,74

or “Stack the yellow block. Stack the purple block on top of it, then add the cyan cube”.75

Collection of human-written instructions. In addition to synthetic instructions used for training,76

we collect human-written natural language instructions for testing. We collect 162 human-written77

instructions and measure the success rate for each instruction on 10 episodes with random object78

locations. 8 native English speakers participated in the dataset collection, leading to 63 instructions79

of 51 testing variations for the push buttons task, and 99 instructions for 99 testing variations for80

the tower task. Human-written instructions are more varied than the synthetic ones. They contain81

unseen verbs (e.g. “Tap on the green button, then the grey button and end up pressing the pink82

button”), unseen formulations (e.g. “Press the green, cyan and pink buttons in that order”), longer83

sentences (e.g. “Press the white button and then you go to green button and press it and finally press84

2

Figure 1: The tasks used in multi-variation setting. Left: push buttons task. Right: tower task.

Table 1: Comparison with LanCon-Learn [?] on 10 tasks.

Hist. Pick &
Lift

Pick-Up
Cup

Push
Button

Put
Knife

Put
Money

Reach
Target

Slide
Block

Stack
Wine

Take
Money

Take
Umbrella Avg.

Single-task learning

LanCon-Learn - 20.2 25.2 96.2 57.8 91.4 99.6 60.2 57.0 58.4 73.0 63.9
LanCon-Learn X 64.8 56.8 96.4 59.4 90.6 98.7 63.4 56.6 67.8 74.8 72.9
Ours X 92.2 77.1 99.6 69.7 96.2 100.0 95.4 81.9 82.1 90.1 88.4

Multi-task learning

LanCon-Learn - 18.2 23.2 80.2 28.8 59.6 100.0 38.8 25.2 58.2 45.6 47.8
LanCon-Learn X 52.6 44.2 81.5 32.2 75.6 100.0 42.2 24.6 70.2 50.8 57.4
Ours X 88.9 92.9 100.0 75.3 58.2 100.0 78.7 71.2 79.1 89.2 83.3

the black button”) or unseen color references (e.g. “Press the darker blue button, then the gray one85

and finally the lighter blue button.”).86

4 Experiments on the simulator RLBench87

We conducted further ablation studies to confirm our approach.88

4.1 Comparison with Additional State-of-the-Art Approach89

LanCon-Learn [?] is a recent instruction-conditioned multi-task approach. It takes as input the90

gripper state and the object state, namely the ground truth pose of each object in the scene, instead of91

raw visual observations as ours. It encodes instructions with GloVe embeddings and a bi-directional92

LSTM. It predicts the next pose of the gripper based on a modular architecture conditioned on93

encoded text features. We run experiments on RLBench with the code provided by the authors.94

Since some RLBench tasks require identifying the colors of an object, we modify their object state95

to include a RGB reference of each object. Moreover, we complete their method with a history96

mechanism, where the gripper state is concatenated with the gripper state from the previous step.97

As described in Table 1, we obtained an average success rate of 63.9% with their original method98

(vs. 72.9% with history vs. 88.3% for our approach) in our single-task setting and 47.8% (vs. 57.4%99

with history vs. 83.8% for our approach) in our multi-task setting.100

4.2 Additional Ablations on Multi-variation Setting101

In the multi-variation setting in Table 2, the gap between LanCon-Learn and our approach is more102

significant than in Table 1, since GloVe embeddings differentiate poorly colors: for the “push but-103

tons” task on unseen variations and synthetic instructions, the performance reaches only 1.7% (vs.104

86.3% with our approach). This also happens when replacing CLIP embeddings with BERT in our105

model (40.2%).106

The important role of history for long-term planning tasks such as “pushing buttons” is confirmed107

when comparing LanCon-Learn or our model with and without history in the Table 2. The model108

3

Table 2: Comparison with LanCon-Learn [?] and ablation of the instruction encoding in the multi-variation
setting for seen or unseen variations and synthetic, corrupted or real instructions.

Method Hist.
Instructions Visual

Emb.
Ev

T

Push buttons Tower

Format Encoder Emb.
Ex

T

Seen Unseen Seen Unseen
Synt. Synt. Corr. Real Synt. Synt. Corr. Real

LanCon-Learn No Cat. GloVe - - 25.6 12.1 0.3 0.1 21.3 9.1 0.1 0.0
LanCon-Learn Yes Cat. GloVe - - 37.8 16.7 1.6 0.9 34.9 14.2 1.2 0.8

Ours No Seq. CLIP X X 8.6 3.6 0.3 0.1 7.1 4.5 0.2 0.0
Ours Yes Avg. CLIP X X 9.1 1.1 0.0 0.0 5.3 0.2 0.0 0.0
Ours Yes Seq. CLIP - X 100 83.2 81.1 71.3 77.1 53.2 51.3 21.3
Ours Yes Seq. CLIP - - 86.2 65.2 56.4 49.8 54.9 34.8 29.8 24.7
Ours Yes Seq. BERT X X 54.6 40.2 15.6 21.8 42.9 28.9 8.2 10.2
Ours Yes Seq. OHE X X 100 3.1 0.1 0.0 96.8 3.8 0.4 0.0
Ours Yes Seq. CLIP X X 100 86.3 85.6 74.2 77.4 56.2 53.6 24.1

Figure 2: The robot scene with two RGB-D cameras and a UR5 robotics arm with an RG2 gripper.

without history can only use its current observation to predict the next action. Therefore, it is109

hard to infer which buttons have been pressed and which button is the next target, leading to poor110

performance on the task.111

We found that removing Ex
T decreases the performance only by 3.1%, but removing both Ex

T and Ev
T112

decreases the performance by 21.1%. Moreover, replacing the instructions with one-hot encoding113

of the variation index increases the performance for seen variations (by 19.4% on the tower task),114

but prevents the model from generalizing to unseen variations.115

We performed ablations with corrupted instructions on unseen variations. Corrupted instructions116

were created from synthetic instructions by replacing color references with synonyms that have not117

been seen during training. For example, the color “azure” is replaced with “light blue”, and the color118

“maroon” with “dark red”. Baselines using CLIP as a language encoder have a much smaller drop119

of performance than any other encoder.120

We also test our model with a global language embedding (average over word tokens) as in [?] and121

observe a significant drop in performance. The main reason is that the averaged embeddings do not122

represent well different action orders, e.g. we have obtained the average cosine similarity of 0.97 for123

instructions corresponding to same actions in different orders.124

5 Experiments on Real-robot125

Setup details. The cameras are Intel RealSense RGB-D cameras mounted on a fixed support as126

illustrated in Figure 2. We adapt our model to use K = 2 cameras. The resolution of the captured127

images is at a resolution of 1280×720, we apply center crop and downsampling to obtain images of128

size 128×128, which is the input to our model. We use nearest approximation to downsample depth129

images and bilinear approximation for RGB images. We use intrinsic parameters provided by Intel,130

and perform extrinsic calibration between the camera and the robot base-frame using an AprilTag131

4

Figure 3: The instruction is “Press the cyan button, and then press the rose one, and then press the purple one”.
Top row: sequence of observations from one of the two side cameras in the robot scene. Bottom row: sequence
of predicted attention maps by our model that indicate the gripper’s position for the next step.

marker [?]. We built 10 buttons using white cellulose foams: we manually cut them into 5×5 cm132

squares and attached to each square a painted rounded foam. The button bases and buttons have an133

average size of 4.95±0.1 cm and 3.18±0.22 cm respectively.134

To collect demonstrations with the real robot, we design a script that automatically solves the task135

provided ground truth locations of buttons and the correct sequence of actions. In each demonstra-136

tion objects are placed at random locations on the workspace and actions are executed at 10 Hz. We137

finetune the model for 8k iterations using the same training setup as that in the simulator.138

Qualitative Results. Figure 3 shows a successful example from our real robot experiments. The139

attention maps reveal that the robot correctly attends to the next buttons. Thanks to the history of140

previous observations and actions, the model is confident to not press a button that has already been141

pressed before (for example the cyan in the fourth column).142

In Figure 4, we analyze the robustness of our model for to unseen variations in more challenging143

situations. The instruction of the variation is written by human: “Press the yellow button and then144

press the black button and finish with the white button”. Our model successfully pressed the buttons145

in the correct order for all situations in Figure 4.146

• Figure 4a: Since the foam buttons have low friction with the table, the gripper has acciden-147

tally flipped the black button, providing two buttons looking white. However, thanks to its148

history component, the robot is able to successfully press the right white button instead of149

the flipped button.150

• Figure 4b: Two white buttons are present in the scene. This is a multi-modal example, in151

which the robot might predict a mean position between the two white buttons, whereas our152

robot can cope with this challenge.153

• Figure 4c: We use a ruler to move the location the white button in the scene after the robot154

pushed the yellow button. Although such perturbations have never been used in training155

sequences, the robot remains robust to this dynamic environment.156

• Figure 4d: We change the shape of the button by increasing the height of the yellow button.157

• Figure 4e: We add occlusion to the gripper.158

• Figure 4f: We change the appearance of the table. Our model is robust to the above visual159

modifications.160

More details and video demonstrations of our real-robot experiments are available from the project161

webpage [?].162

5

(a) Flipped button. (b) Multimodal. (c) Dynamic Environment.

(d) Unseen Button. (e) Unseen Gripper. (f) Unseen Table.

Figure 4: Robustness of the learned policy on an unseen variation: “Press the yellow button and then press the
black button and finish with the white button”.

6

