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Abstract

Movie story analysis requires understanding characters’
emotions and mental states. Towards this goal, we for-
mulate emotion understanding as predicting a diverse and
multi-label set of emotions at the level of a movie scene
and for each character. We propose EmoTx, a multimodal
Transformer-based architecture that ingests videos, multi-
ple characters, and dialog utterances to make joint pre-
dictions. By leveraging annotations from the MovieGraphs
dataset [74], we aim to predict classic emotions (e.g. happy,
angry) and other mental states (e.g. honest, helpful). We
conduct experiments on the most frequently occurring 10
and 25 labels, and a mapping that clusters 181 labels to
26. Ablation studies and comparison against adapted state-
of-the-art emotion recognition approaches shows the effec-
tiveness of EmoTx. Analyzing EmoTx’s self-attention scores
reveals that expressive emotions often look at character to-
kens while other mental states rely on video and dialog cues.

1. Introduction
In the movie The Pursuit of Happyness, we see the pro-

tagonist experience a roller-coaster of emotions from the
lows of breakup and homelessness to the highs of getting
selected for a coveted job. Such heightened emotions are of-
ten useful to draw the audience in through relatable events
as one empathizes with the character(s). For machines to
understand such a movie (broadly, story), we argue that it
is paramount to track how characters’ emotions and men-
tal states evolve over time. Towards this goal, we lever-
age annotations from MovieGraphs [74] and train models
to watch the video, read the dialog, and predict the emo-
tions and mental states of characters in each movie scene.

Emotions are a deeply-studied topic. From ancient Rome
and Cicero’s 4-way classification [62], to modern brain re-
search [33], emotions have fascinated humanity. Psychol-
ogists use of Plutchik’s wheel [54] or the proposal of uni-
versality in facial expressions by Ekman [18], structure has
been provided to this field through various theories. Affec-
tive emotions are also grouped into mental (affective, be-

- And he's very bitter.

- And he's just gonna walk out the
door and never know why she's
just lying there on the couch...


- That's a chick's movie.
- I would say so.
- What kind of a person would write
to someone they heard on the radio?

- Stop it.
- Richard Jaeckel had on this shiny
helmet 'cause he was the M.P.
- No more. Oh, God, I love that movie.
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Figure 1. Multimodal models and multi-label emotions are neces-
sary for understanding the story. A: What character emotions can
we sense in this scene? Is a single label enough? B: Without the
dialog, can we try to guess the emotions of the Sergeant and the
Soldier. C: Is it possible to infer the emotions from the characters’
facial expressions (without subtitles and visual background) only?
Check the footnote below for the ground-truth emotion labels for
these scenes and Appendix A for an explanation of the story.

havioral, and cognitive) or bodily states [13].
A recent work on recognizing emotions with visual con-

text, Emotic [31] identifies 26 label clusters and proposes
a multi-label setup wherein an image may exhibit multiple
emotions (e.g. peace, engagement). An alternative to the
categorical space, valence, arousal, and dominance are also
used as three continuous dimensions [31].

Predicting a rich set of emotions requires analyzing mul-
tiple contextual modalities [31, 34, 45]. Popular directions
in multimodal emotion recognition are Emotion Recogni-
tion in Conversations (ERC) that classifies the emotion for
every dialog utterance [42, 55, 85]; or predicting a single
valence-activity score for short ∼10s movie clips [4, 46].

We operate at the level of a movie scene: a set of shots
telling a sub-story, typically at one location, among a de-
fined cast, and in a short time span of 30-60s. Thus, scenes
are considerably longer than single dialogs [55] or movie

Ground-truth emotions and mental states portrayed in movie scenes
in Fig. 1: A: excited, curious, confused, annoyed, alarmed; B: shocked,
confident; C: happy, excited, amused, shocked, confident, nervous.
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clips in [4]. We predict emotions and mental states for all
characters in the scene and also by accumulating labels at
the scene level. Estimation on a larger time window nat-
urally lends itself to multi-label classification as characters
may portray multiple emotions simultaneously (e.g. curious
and confused) or have transitions due to interactions with
other characters (e.g. worried to calm).

We perform experiments with multiple label sets: Top-
10 or 25 most frequently occurring emotion labels in
MovieGraphs [74] or a mapping to the 26 labels in the
Emotic space, created by [46]. While emotions can broadly
be considered as part of mental states, for this work, we con-
sider that expressed emotions are apparent by looking at the
character, e.g. surprise, sad, angry; and mental states are la-
tent and only evident through interactions or dialog, e.g. po-
lite, determined, confident, helpful1. We posit that classifi-
cation in a rich label space of emotions requires looking
at multimodal context as evident from masking context in
Fig. 1. To this end, we propose EmoTx that jointly models
video frames, dialog utterances, and character appearance.

We summarize our contributions as follows: (i) Building
on rich annotations from MovieGraphs [74], we formulate
scene and per-character emotion and mental state classifi-
cation as a multi-label problem. (ii) We propose a multi-
modal Transformer-based architecture EmoTx that predicts
emotions by ingesting all information relevant to the movie
scene. EmoTx is also able to capture label co-occurrence
and jointly predicts all labels. (iii) We adapt several pre-
vious works on emotion recognition for this task and show
that our approach outperforms them all. (iv) Through analy-
sis of the self-attention mechanism, we show that the model
learns to look at relevant modalities at the right time. Self-
attention scores also shed light on our model’s treatment of
expressive emotions vs. mental states.

2. Related Work
We first present work on movie understanding and

then dive into visual and multimodal emotion recogni-
tion. Movie understanding has evolved over the last
few years from person clustering and identification [6,
7, 19, 29, 47, 67] to analyzing the story. Scene detec-
tion [11, 56, 57, 59, 68], question-answering [35, 70, 79],
movie captioning [58, 80] with names [51], modeling inter-
actions and/or relationships [21, 32, 43], alignment of text
and video storylines [69, 78, 86] and even long-form video
understanding [77] have emerged as exciting areas. Much
progress has been made through datasets such as Condensed
Movies [3], MovieNet [27], VALUE benchmark (goes be-
yond movies) [37], and MovieGraphs [74]. Building on the

1Admittedly it is not always easy or possible to categorize a label as an
expressed emotion or a mental state, e.g. cheerful, upset. Using Clore et
al. [13]’s classification, expressed emotions refer to affective and bodily
states, while our mental states refer to behavioral and cognitive states.

annotations from MovieGraphs [74], we focus on another
pillar of story understanding complementary to the above
directions: identifying the emotions and mental states of
each character and the overall scene in a movie.

Visual emotion recognition has relied on face-based recog-
nition of Ekman’s 6 classic emotions [18], and was pop-
ularized through datasets such as MMI [50], CK and
CK+ [41, 72]. A decade ago, EmotiW [16], FER [24],
and AFEW [15] emerged as challenging in-the-wild bench-
marks. At the same time, approaches such as [38, 39] in-
troduced deep learning to expression recognition achiev-
ing good performance. Breaking away from the above pat-
tern, the Emotic dataset [31] introduced the use of 26 labels
for emotion understanding in images while highlighting the
importance of context. Combining face features and con-
text using two-stream CNNs [34] or person detections with
depth maps [45] were considered. Other directions in emo-
tion recognition include estimating valence-arousal (contin-
uous variables) from faces with limited context [71], learn-
ing representations through webly supervised data to over-
come biases [49] or improving them further through a joint
text-vision embedding space [75]. Different from the above,
our work focuses on multi-label emotions and mental states
recognition in movies exploiting multimodal context both
at the scene- and character-level.

Multimodal datasets for emotion recognition have seen
recent adoption. Acted Facial Expressions in the Wild [15]
aims to predict emotions from faces, but does not pro-
vide any context. The Stanford Emotional Narratives
Dataset [48] contains participant shared narratives of pos-
itive/negative events in their lives. While multimodal,
these are quite different from edited movies and stories
that are our focus. The Multimodal EmotionLines Dataset
(MELD) [55] is an example of Emotion Recognition in
Conversations (ERC) and attempts to estimate the emotion
for every dialog utterance in TV episodes from Friends.
Different from MELD, we operate at the time-scale of a
cohesive story unit, a movie scene. Finally, closest to our
work, Annotated Creative Commons Emotional DatabasE
(LIRIS-ACCEDE) [4] obtains emotion annotations for short
movie clips. However, the clips are quite small (8-12s) and
annotations are obtained in the continuous valence-arousal
space. Different from the above works, we also aim to pre-
dict character-level mental states and demonstrate that video
and dialog context helps for such labels.

Multimodal emotion recognition methods. RNNs have
been used since early days for ERC [28, 42, 64, 76] (often
with graph networks [23, 82]) as they allow effective com-
bination of audio, visual, and textual data. Inspired by re-
cent advances, Transformer architectures are also adopted
for ERC [12, 63]. External knowledge graphs provide use-
ful commonsense information [22] while topic modeling
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integrated with Transformers have improved results [85].
Multi-label prediction has also been attempted by consider-
ing a sequence-to-set approach [81], however that may not
scale with number of labels. While we adopt a Transformer
for joint modeling, our goal to predict emotions and men-
tal states for movie scenes and characters is different from
ERC. We adapt some of the above methods and compare
against them in our experiments. Close to our work, the
MovieGraphs [74] emotion annotations are used to model
changing emotions across the entire movie [46], and for
Temporal Emotion Localization [36]. However, the former
tracks one emotion in each scene, while the latter proposes
a different, albeit interesting direction.

3. Method

EmoTx leverages the self-attention mechanism in Trans-
formers [73] to predict emotions and mental states. We first
define the task (Sec. 3.1) and then describe our proposed
approach (Sec. 3.2), before ending this section with details
regarding training and inference (Sec. 3.3).

3.1. Problem Statement

We assume that movies have been segmented automati-
cally [56] or with a human-in-the-loop process [68,74] into
coherent scenes that are self-contained and describe a short
part of the story. The focus of this work is on characteriz-
ing emotions within a movie scene that are often quite long
(30-60s) and may contain several tens of shot changes.

Consider such a movie scene S that consists of a set of
video frames V , characters C, and dialog utterances U . Let
us denote the set of video frames as V = {ft}Tt=1, where
T is the number of frames after sub-sampling. Multiple
characters often appear in any movie scene. We model N
characters in the scene as C = {Pi}Ni=1, where each char-
acter Pi = {(ft, bit)} may appear in some frame ft of the
video at the spatial bounding box bit. We assume that bit
is empty if the character Pi does not appear at time t. Fi-
nally, U = {uj}Mj=1 captures the dialog utterances in the
scene. For this work, we use dialogs directly from subtitles
and thus assume that they are unnamed. While dialogs may
be named through subtitle-transcript alignment [19], scripts
are not always available or reliable for movies.

Task formulation. Given a movie scene S with its video,
character, and dialog utterance, we wish to predict the emo-
tions and mental states (referred as labels, or simply emo-
tions) at both the scene, yV , and per-character, yPi

, level.
We formulate this as a multi-label classification problem
with K labels, i.e. y = {yk}Kk=1. Each yk ∈ {0, 1} indi-
cates the absence or presence of the kth label in the scene
yVk or portrayed by some character yP

i

k . For datasets with
character-level annotations, scene-level labels are obtained
through a simple logical OR operation, i.e. yV =

⊕N
i=1 y

Pi

.

3.2. EmoTx: Our Approach

We present EmoTx, our Transformer-based method that
recognizes emotions at the movie scene and per-character
level. A preliminary video pre-processing and feature ex-
traction pipeline extracts relevant representations. Then, a
Transformer encoder combines information across modali-
ties. Finally, we adopt a classification module inspired by
previous work on multi-label classification with Transform-
ers [40]. An overview of the approach is presented in Fig. 2.

Preparing multimodal representations. Recognizing
complex emotions and mental states (e.g. nervous, deter-
mined) requires going beyond facial expressions to under-
stand the larger context of the story. To facilitate this,
we encode multimodal information through multiple lenses:
(i) the video is encoded to capture where and what event is
happening; (ii) we detect, track, cluster, and represent char-
acters based on their face and/or full-body appearance; and
(iii) we encode the dialog utterances as information com-
plementary to the visual domain.

A pretrained encoder ϕV extracts relevant visual infor-
mation from a single or multiple frames as ft = ϕV({ft}).
Similarly, a pretrained language model ϕU extracts dialog
utterance representations as uj = ϕU (uj). Characters are
more involved as we need to first localize them in the appro-
priate frames. Given a valid bounding box bit for person Pi,
we extract character features using a backbone pretrained
for emotion recognition as cit = ϕC(ft, b

i
t).

Linear projection. Token representations in a Transformer
often combine the core information (e.g. visual representa-
tion) with meta information such as the timestamp through
position embeddings (e.g. [65]). We first bring all modal-
ities to the same dimension with linear layers. Specifi-
cally, we project visual representation ft ∈ RDV using
WV ∈ RD×DV , utterance representation uj ∈ RDU using
WU ∈ RD×DU , and character representation cit ∈ RDC us-
ing WC ∈ RD×DC . We omit linear layer biases for brevity.

Modality embeddings. We learn three embedding vectors
EM ∈ RD×3 to capture the three modalities correspond-
ing to (1) video, (2) characters, and (3) dialog utterances.
We also assist the model in identifying tokens coming from
characters by including a special character count embed-
ding, EC ∈ RD×N . Note that the modality and character
embeddings do not encode any specific meaning or imposed
order (e.g. higher to lower appearance time, names in al-
phabetical order) - we expect the model to use this only to
distinguish one modality/character from the other.

Time embeddings. The number of tokens depend on the
chosen frame-rate. To inform the model about relative tem-
poral order across modalities, we adopt a discrete time bin-
ning strategy that translates real time (in seconds) to an in-
dex. Thus, video frame/segment and character box repre-
sentations fed to the Transformer are associated with their
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Transformer Encoder Layer (x2)

We should not
go there!

What is
that!?

SharedShared

0/1 0/10/1 0/10/1 0/1

Scene <CLS>

Char. <CLS>

Scene Type Emb. Scene Emb.

Positional Emb. Dia. Emb.

Char Type Emb.

Char. Count Emb.

Char. Emb.

  Dia. Type. Emb.

Linear Layers

Scene region Char region Dia. region

Scene Predictions Char-1 Predictions Char-N Predictions

Linear Layer Linear Layer Linear Layer

D

C

B

A

MViT (Kinetics 400) ResNet50 (FER 2013) Finetuned RoBERTa

Frozen Network

Figure 2. An overview of EmoTx. We present the detailed approach in Sec. 3 but provide a short summary here. A: Video features (in
blue region), character face features (in purple region), and utterance features (in orange region) are obtained using frozen backbones and
projected with linear layers into a joint embedding space. B: Here appropriate embeddings are added to the tokens to distinguish between
modalities, character count, and to provide a sense of time. We also create per-emotion classifier tokens associated with the scene or a
specific character. C: Two Transformer encoder layers perform self-attention across the sequence of input tokens. D: Finally, we tap the
classifier tokens to produce output probability scores for each emotion through a linear classifier shared across the scene and characters.

relevant time bins. For an utterance uj , binning is done
based on its middle timestamp tj . We denote the time em-
beddings as ET ∈ RD×⌈T∗/τ⌉, where T ∗ is the maximum
scene duration and τ is the bin step. For convenience, ET

t

selects the embedding using a discretized index ⌈t/τ⌉.

Classifier tokens. Similar to the classic CLS tokens in
Transformer models [17, 87] we use learnable classifier to-
kens to predict the emotions. Furthermore, inspired by
Query2Label [40], we use K classifier tokens rather than
tapping a single token to generate all outputs (see Fig. 2D).
This allows capturing label co-occurrence within the Trans-
former layers improving performance. It also enables anal-
ysis of per-emotion attention scores providing insights into
the model’s workings. In particular, we use K classifier to-
kens for scene-level predictions (denoted zSk ) and N × K
tokens for character-level predictions (denoted zik for char-
acter Pi, one for each character-emotion pair).

Token representations. Combining the features with rele-
vant embeddings provides rich information to EmoTx. The
token representations for each input group are as follows:

scene cls. tokens: z̃Sk = zSk +EM
1 , (1)

char. cls. tokens: z̃ik = zik +EM
2 +EC

i , (2)

video: f̃t = WV ft +EM
1 +ET

t , (3)

character box: c̃it = WCc
i
t +EM

2 +EC
i +ET

t , (4)

and utterance: ũj = WUuj +EM
3 +ET

tj . (5)

Fig. 2B illustrates this addition of embedding vectors. We
also perform LayerNorm [2] before feeding the tokens to
the Transformer encoder layers, not shown for brevity.
Transformer Self-attention. We concatenate and pass all
tokens through H=2 layers of the Transformer encoder that
computes self-attention across all modalities [73]. For emo-
tion prediction, we only tap the outputs corresponding to the
classification tokens as

[ẑSk , ẑ
i
k] = TransformerEncoder

(
z̃Sk , f̃t, z̃

i
k, c̃

i
t, ũj

)
. (6)

We jointly encode all tokens spanning {k}K1 , {i}N1 , {t}T1 ,
and {j}M1 .
Emotion labeling. The contextualized representations for
the scene ẑSk and characters ẑik are sent to a shared linear
layer WE ∈ RK×D for classification. Finally, the proba-
bility estimates through a sigmoid activation σ(·) are:

ŷSk = σ(WE
k ẑ

S
k ) and ŷik = σ(WE

k ẑ
i
k), ∀k, i . (7)

3.3. Training and Inference

Training. EmoTx is trained in an end-to-end fashion with
the BinaryCrossEntropy (BCE) loss. To account for the
class imbalance we provide weights ωk for the positive la-
bels based on inverse of proportions. The scene and charac-
ter prediction losses are combined as

L =

K∑
k=1

BCE(ωk, y
V
k , ŷ

S
k )+

N∑
i=1

K∑
k=1

BCE(ωk, y
Pi

k , ŷik) . (8)
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Figure 3. Row normalized label co-occurrence matrices for the
top-10 emotions in a movie scene (left) or for a character (right).
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Figure 4. Bar chart showing the number of movie scenes associ-
ated with a specific count of annotated emotions.

Inference. At test time, we follow the procedure outlined in
Sec. 3.2 and generate emotion label estimates for the entire
scene and each character as indicated in Eq. 7.

Variations. As we will see empirically, our model is very
versatile and well suited for adding/removing modalities
or additional representations by adjusting the width of the
Transformer (number of tokens). It can be easily modified
to act as a unimodal architecture that applies only to video
or dialog utterances by disregarding other modalities.

4. Experiments and Discussion
We present our experimental setup in Sec. 4.1 before div-

ing into the implementation details in Sec. 4.2. A series of
ablation studies motivate the design choices of our model
(Sec. 4.3) while we compare against the adapted versions of
various SoTA models for emotion recognition in Sec. 4.4.
Finally, we present some qualitative analysis and discuss
how our model switches from facial expressions to video or
dialog context depending on the label in Sec. 4.5.

4.1. Dataset and Setup

We use the MovieGraphs dataset [74] that features 51
movies and 7637 movie scenes with detailed graph anno-
tations. We focus on the list of characters and their emo-
tions and mental states, which naturally affords a multi-
label setup. Other annotations such as the situation label,
or character interactions and relationships [32] are ignored
as they cannot be assumed to be available for a new movie.

Label sets. Like other annotations in the MovieGraphs
dataset, emotions are also obtained as free-text leading to
a huge variability and a long-tail of labels (over 500). We
focus our experiments on three types of label sets: (i) Top-
10 considers the most frequently occurring 10 emotions;
(ii) Top-25 considers frequently occurring 25 labels; and
(iii) Emotic, a mapping from 181 MovieGraphs emotions
to 26 Emotic labels provided by [46].

Statistics. We first present row max-normalized co-
occurrence matrices for the scene and characters (Fig. 3).
It is interesting to note how a movie scene has high co-
occurrence scores for emotions such as worried and calm
(perhaps owing to multiple characters), while worried is
most associated with confused for a single character. An-
other high scoring example for a single character is curious
and surprise, while a movie scene has curious with calm
and surprise with happy. In Fig. 4, we show the number of
movie scenes that contain a specified number of emotions.
Most scenes have 4 emotions. Appendix B features further
analysis.

Evaluation metric. We use the original splits from
MovieGraphs. As we have K binary classification prob-
lems, we adopt mean Average Precision (mAP) to measure
model performance (similar to Atomic Visual Actions [25]).
Note that AP also depends on the label frequency.

4.2. Implementation Details

Feature representations play a major role on the perfor-
mance of any model. We describe different backbones used
to extract features for video frames, characters, and dialog.

Video features ft: The visual context is important for
understanding emotions [31, 34, 45]. We extract spatial
features using ResNet152 [26] trained on ImageNet [61],
ResNet50 [26] trained on Place365 [84], and spatio-
temporal features, MViT [20] trained on Kinetics400 [10].

Dialog features uj : Each utterance is passed through a
RoBERTa-Base encoder [87] to obtain an utterance-level
embedding. We also extract features from a RoBERTa
model fine-tuned for the task of multi-label emotion clas-
sification (based on dialog only).

Character features cit: are represented based on face
or person detections. We perform face detection with
MTCNN [83] and person detection with Cascade RCNN [8]
trained on MovieNet [27]. Tracks are obtained using
SORT [5], a simple Kalman filter based algorithm, and
clusters using C1C [29]. Details of the character process-
ing pipeline are presented in Appendix C. ResNet50 [1]
trained on SFEW [14] and pretrained on FER13 [24] and
VGGFace [52], VGGm [1] trained on FER13 and pretrained
on VGGFace, and InceptionResnetV1 [66] trained on VG-
GFace2 [9] are used to extract face representations.

Frame sampling strategy. We sample up to T=300 tokens
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Method
Top-10 Top-25

Scene Char Scene Char

Random 16.87±0.23 12.49±0.15 9.73±0.101 5.84±0.05

MLP (2 Lin) 23.94±0.03 20.39±0.01 15.26±0.02 10.57±0.02

Single Tx encoder 25.66±0.02 20.95±0.09 16.14±0.03 11.08±0.18

EmoTx: 1 CLS 34.11±0.34 23.81±0.24 23.34±0.11 12.86±0.11

EmoTx (Ours) 34.22±0.18 24.35±0.23 23.86±0.10 13.36±0.11

Table 1. Architecture ablation. Emotions are predicted at both
movie scene and individual character (Char) levels. We see that
our multimodal model significantly outperforms simpler baselines.
Best numbers in bold, close second in italics.

at 3 fps (100s) for the video modality. This covers ∼99% of
all movie scenes. Our time embedding bins are also at 3 per
second, i.e. τ=1/3s. During inference, a fixed set of frames
are chosen, while during training, frames are randomly sam-
pled from 3 fps intervals which acts as data augmentation.
Character tokens are treated in a similar fashion, however
are subject to the character appearing in the video.

Architecture details. We experiment with the number of
encoder layers, H ∈ {1, 2, 4, 8}, but find H=2 to work best
(perhaps due to the limited size of the dataset). Both the
layers have same configuration - 8 attention heads with hid-
den dimension of 512. The maximum number of charac-
ters is N=4 as it covers up to 91% of the scenes. Tokens
are padded to create batches and to accommodate shorter
video clips. Appropriate masking prevents self-attention on
padded tokens. Put together, EmoTx encoder looks at K
scene classification tokens, T video tokens, N · (K + T )
character tokens, and T utterance tokens. For K=25, N=4
(Top-25 label set), this is up to 1925 padded tokens.

Training details. Our model is implemented in Py-
Torch [53] and trained on a single NVIDIA GeForce RTX-
2080 Ti GPU for a maximum of 50 epochs with a batch
size of 8. The hyperparameters are tuned to achieve best
performance on validation set. We adopt the Adam opti-
mizer [30] with an initial learning rate of 5 × 10−5, re-
duced by a factor of 10 using the learning rate scheduler
ReduceLROnPlateau. The best checkpoint maximizes the
geometric mean of scene and character mAP.

4.3. Ablation Studies

We perform ablations across three main dimensions: ar-
chitectures, modalities, and feature backbones. When not
mentioned, we adopt the defaults: (i) MViT trained on Ki-
netics400 dataset to represent video; (ii) ResNet50 trained
on SFEW, FER, and VGGFace for character representa-
tions; (iii) fine-tuned RoBERTa for dialog utterance rep-
resentations; and (iv) EmoTx with appropriate masking to
pick modalities or change the number of classifier tokens.

Architecture ablations. We compare our architecture

Vr Vm D C
Top 10 (mAP) Top 25 (mAP)

Scene Char Scene Char

1 ✓ - - - 22.81±0.02 15.90±0.19 14.85±0.02 7.98±0.05

2 - ✓ - - 25.73±0.02 17.88±0.12 16.11±0.05 8.96±0.12

3 - - ✓ - 27.28±0.01 20.25±0.14 20.20±0.08 11.09±0.12

4 - - - ✓ 31.38±0.40 21.22±0.50 20.32±0.05 11.23±0.14

5 ✓ - ✓ - 27.19±0.07 19.45±0.10 19.72±0.03 10.67±0.08

6 - ✓ ✓ - 28.93±0.02 21.41±0.15 21.29±0.05 12.03±0.23

7 - - ✓ ✓ 33.59±0.10 23.54±0.16 23.40±0.09 13.01±0.08

8 ✓ - ✓ ✓ 33.60±0.02 22.89±0.02 22.76±0.02 12.21±0.02

9 - ✓ ✓ ✓ 34.22 ±0.18 24.35±0.23 23.86±0.10 13.36±0.11

Table 2. Modality ablation. Vr: ResNet50 (Places365), Vm:
MViT (Kinetics400), D: Dialog, and C: Character.

against simpler variants in Table 1. The first row sets the
expectation by providing scores for a random baseline that
samples label probabilities from a uniform random distribu-
tion between [0, 1] with 100 trials. Next, we evaluate MLP
(2 Lin), a simple MLP with two linear layers with inputs as
max pooled scene or character features. An alternative to
max pooling is self-attention. The Single Tx encoder per-
forms self-attention over features (as tokens) and a classi-
fier token to which a multi-label classifier is attached. Both
these approaches are significantly better than random, es-
pecially for individual character level predictions which are
naturally more challenging than scene-level predictions.

Finally, we compare multimodal EmoTx that uses 1 clas-
sifier token to predict all labels (EmoTx: 1 CLS) against
K classifier tokens (last row). Both models achieve sig-
nificant improvements, e.g. in absolute points, +8.5% for
Top-10 scene labels and +2.3% for the much harder Top-25
character level labels. We believe the improvements reflect
EmoTx’s ability to encode multiple modalities in a mean-
ingful way. Additionally, the variant with K classifier to-
kens (last row) shows small but consistent +0.5% improve-
ments over 1 classifier token on Top-25 emotions.

Fig. 5 shows the scene-level AP scores for the Top-25
labels. Our model outperforms the MLP and Single Tx en-
coder on 24 of 25 labels and outperforms the single clas-
sifier token variant on 15 of 25 labels. EmoTx is good at
recognizing expressive emotions such as excited, serious,
happy and even mental states such as friendly, polite, wor-
ried. However, other mental states such as determined or
helpful are challenging.

Modality ablations. We evaluate the impact of each
modality (video, characters, and utterances) on scene- and
character-level emotion prediction in Table 2. We observe
that the character modality (row 4, R4) outperforms any of
the video or dialog modalities (R1-R3). Similarly, dialog
features (R3) are better than video features (R1, R2), com-
mon in movie understanding tasks [70, 74]. The choice of
visual features is important. Scene features Vr are consis-
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Video Character Dialog Metrics
MViT R50 R50 VGG-M RB Top-10 Top-25
K400 P365 FER FER FT Scene Char Scene Char

1 - ✓ - ✓ No 29.30 19.73 19.05 10.31
2 ✓ - - ✓ No 29.34 20.50 19.07 10.34
3 - ✓ ✓ - No 29.69 20.25 20.16 11.06
4 ✓ - ✓ - No 31.39 21.12 20.88 11.46
5 ✓ - - ✓ ✓ 31.50 21.60 21.49 11.64
6 - ✓ - ✓ ✓ 32.42 22.32 21.45 11.62
7 - ✓ ✓ - ✓ 33.46 22.98 22.69 12.48
8 ✓ - ✓ - ✓ 34.22 24.35 23.86 13.36

Table 3. Feature ablations with backbones. (MViT, K400): MViT
on Kinetics400, (R50, P365): ResNet50 on Places365, (R50,
FER): ResNet50 on Facial Expression Recognition (FER), (VGG-
M, FER): VGG-M on FER, and (RB, FT): RoBERTa finetuned.
Best numbers in bold. More results in Appendix E.

tently worse than action features Vm as reflected in compar-
isons R1, R2 or R5, R6 or R8, R9. Finally, we observe that
using all modalities (R9) outperforms other combinations,
indicating that emotion recognition is a multimodal task.
Backbone ablations. We compare several backbones for
the task of emotion recognition. The effectiveness of the
fine-tuned RoBERTa model is evident by comparing pairs
of rows R2, R5 and R3, R7 and R4, R8 of Table 3, where
we see a consistent improvement of 1-3%. Character rep-
resentations with ResNet50-FER show improvement over
VGGm-FER as seen from R5, R8 or R6, R7. Finally, com-
paring R8 shows the benefits provided by action features as
compared to places. Details are presented in Appendix E.

4.4. SoTA Comparison

We compare our model against published works Emo-
tionNet [75], CAER [34], AttendAffectNet [71], and
M2Fnet [12] by adapting them for our tasks (adaptation de-
tails are provided in Appendix F).

Table 4 shows scene-level performance while the
character-level performance is presented in Table 5. First,

Method
Top 10 Top 25 Emotic

Val Test Val Test Val Test

Random 16.87 13.84 9.73 7.57 11.47 11.36
CAER [34] 18.35 15.38 11.84 9.49 13.91 12.68
ENet [75] 19.14 16.14 11.22 9.08 13.55 12.64
AANet [71] 21.55 17.55 12.55 10.20 14.71 13.37
M2Fnet [12] 24.55 19.10 16.02 13.05 18.27 16.76

EmoTx (Ours) 34.22 29.35 23.86 19.47 23.67 21.40

Table 4. Comparison against SoTA for scene-level predictions.
AANet: AttendAffectNet. ENet: EmotionNet. Mean over 3 runs.

Method
Top 10 Top 25 Emotic

Val Test Val Test Val Test

Random 12.49 11.37 5.84 5.36 6.40 6.32
AANet [71] 17.43 16.04 8.64 7.20 8.53 7.75
M2Fnet [12] 20.82 19.01 10.67 9.71 11.30 9.92

EmoTx (Ours) 24.35 22.32 13.36 11.71 12.29 11.76

Table 5. Comparison against SoTA for character-level predictions.
AANet denotes AttendAffectNet. Mean over 3 runs.

we note that the test set seems to be harder than val as also
indicated by the random baseline, leading to a performance
drop from val to test across all approaches. EmoTx outper-
forms all previous baselines by a healthy margin. For scene
level, we see +4.6% improvement on Emotic labels, +7.8%
on Top-25, and +9.7% on Top-10. Character-level predic-
tions are more challenging, but we see consistent improve-
ments of +1.5-3% across all label sets. Matching expec-
tation, we see that simpler models such as EmotionNet or
CAER perform worse than Transformer-based approaches
of M2Fnet and AttendAffectNet. Note that EmotionNet and
CAER are challenging to adapt for character-level predic-
tions and are not presented, but we expect M2Fnet or At-
tendAffectNet to outperform them.
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Figure 6. A scene from the movie Forrest Gump showing the multimodal self-attention scores for the two predictions: Mrs. Gump is
worried and Forrest is happy. We observe that the worried classifier token attends to Mrs. Gump’s character tokens when she appears
at the start of the scene, while Forrest’s happy classifier token attends to Forrest towards the end of the scene. The video frames have
relatively similar attention scores while dialog helps with emotional utterances such as told you not to bother or it sounded good.
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Figure 7. Sorted expressiveness scores for Top-25 emotions. Ex-
pressive emotions have higher scores indicating that the model at-
tends to character representations, while mental states have lower
scores suggesting more attention to video and dialog context.

4.5. Analyzing Self-attention Scores

EmoTx provides an intuitive way to understand which
modalities are used to make predictions. We refer to the
self-attention scores matrix as α, and analyze specific rows
and columns. Separating the K classifier tokens allows us
to find attention-score based evidence for each predicted
emotion by looking at a row αzS

k
in the matrix.

Fig. 6 shows an example movie scene where EmoTx pre-
dicts that Forrest is happy and Mrs. Gump is worried. We
see that the model pays attention to the appropriate mo-
ments and modalities to make the right predictions.

Expressive emotions vs. Mental states. We hypothesize
that the self-attention module may focus on character tokens
for expressive emotions, while looking at the overall video
frames and dialog for the more abstract mental states. We
propose an expressiveness score as

ek =

∑N
i=1

∑T
t=1 αzS

k ,ci
t∑T

t=1 αzS
k ,ft +

∑M
j=1 αzS

k ,uj

, (9)

where αzS
k ,ci

t
is the self-attention score between the scene

classifier token for emotion k (zSk ) and character Pi’s ap-
pearance in the video frame as bit; αzS

k ,ft is for the video ft
and αzS

k ,uj
is for dialog utterance uj . Higher scores indi-

cate expressive emotions as the model focuses on the char-
acter features, while lower scores identify mental states that
analyze the video and dialog context. Fig. 7 shows the av-
eraged expressiveness score for the Top-25 emotions when
the emotion is present in the scene (i.e. yk=1). We observe
that mental states such as honest, helpful, friendly, confident
appear towards the latter half of this plot while most expres-
sive emotions such as cheerful, excited, serious, surprise
appear in the first half. Note that the expressiveness scores
in our work are for faces and applicable to our particular
dataset. We also conduct a short human evaluation to un-
derstand expressiveness by annotating whether the emotion
is conveyed through video, dialog, or character appearance;
presented in Appendix G.

5. Conclusion

We presented a novel task for multi-label emotion and
mental state recognition at the level of a movie scene and
for each character. A Transformer encoder based model,
EmoTx, was proposed that jointly attended to all modalities
(features) and obtained significant improvements over pre-
vious works adapted for this task. Our learned model was
shown to have interpretable attention scores across modali-
ties – they focused on the video or dialog context for mental
states while looking at characters for expressive emotions.
In the future, EmoTx may benefit from audio features or
by considering the larger context of the movies instead of
treating every scene independently.

Acknowledgements. We thank Google India Faculty Re-
search Award 2022 for travel support.
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Appendix

In Sec. A we refer to Fig.1 (teaser) and share the hid-
den contexts in each scene reflecting upon the importance
of individual modalities to capture the emotions in real-
world environments. Sec. B present some statistics around
emotions extracted from the MovieGraphs dataset. In
Sec. C we share the character detection, tracking, and clus-
tering pipeline used to extend the tracks provided in the
MovieGraphs dataset. In Sec. D we visualize the class
AP scores for top-10 and 25 emotions from MovieGraphs
along with Emotic mapped emotions. Since there were sev-
eral feature combinations in our work, an extended feature
ablation is presented in Sec. E. Finally, Sec. F shares de-
tails of the modifications made to adapt EmotionNet [75],
CAER [34], M2Fnet [12], and AttendAffectNet [71] for
comparison with EmoTx. We end with another qualitative
example showing the attention scores similar to Fig. 6 in
Sec. G.

A. The Stories behind Emotions in Fig. 1

We discuss some additional details from Fig.1. Prior to
this, note that the emotions are grouped into three tuples,
each corresponding to the frame depicted in the example
- however, this was for illustrative purposes and making it
easy to match emotions to the frames. We do not explicitly
generate frame-level predictions.

Scene A is taken from the movie “Sleepless in Seattle,
1993”, scene number 087, where Suzy is narrating an inci-
dent from a classical movie “An affair to remember”. While
narrating, she gets sentimental and starts crying. The other
characters, Sam and Greg listen curiously but feel neutral
and mock her by faking a cry and narrating the scene from
some war movie. This makes Suzy laugh, and she asks the
duo to stop before the scene ends. The reflected emotions
and mental states include upset, calm, confused, excited,
sad, and happy. Observing the situation, it is evident that
a single emotion label does not suffice and both the visual
and dialog context taken over a longer duration is important
to predict emotions with mental states.

Scene B is taken from the movie “Forrest Gump, 1994”,
scene number 045. Forrest has joined the army and it is his
introductory day. Sergeant Drill asks Forrest about his role
in the army to which Forrest replies “To do whatever you
tell me Sergeant Drill” which impresses him a lot. Then
Sergeant Drill praises him by saying it is the best response
he has ever heard! The original subtitles of this clip are
shared in Table 6. We hope to show that the dialog modality
is crucial in understanding the real emotions since visually
it appears that both the characters are angry and screaming
at each other but in reality Forrest is determined, honest,
and serious, while the Sergeant is excited.

Scene C is taken from movie “Slumdog Millionaire, 2008”,
scene number 076. The scene represents a Television Show
“Who wants to be a millionaire?” where Jamal is being
asked some question. He has given the response and is wait-
ing for the confirmation from the anchor. The frames used
in the figure reflect the moment when the anchor excitedly
reveals that the answer given by Jamal is correct. However,
by only looking at the faces, it appears as if Jamal is tense
and he anchor is scolding him, whereas in reality, everyone
is clapping and cheering for him. We show that looking at
the visual frame is necessary to correctly predict the wider
perspective of emotions, here corresponding to the transi-
tion from nervous and curious to surprised and amused for
Jamal, and excited for the anchor.

B. MovieGraphs-Emotions: Dataset Features
The MovieGraphs dataset [74] contains graph-based an-

notations for each scene within a movie. The nodes of these
graphs include characters and their details such as relation-
ships, interactions, emotions, and other physical attributes,
along with movie scene-level labels such as the overarching
situation, place (scene), and a few sentence natural language
description. There are a total of 51 movies divided into 7637

Start End Speaker Utterance

00:00 00:04 Sergeant Drill Gump! What’s your sole purpose
in this Army?

00:04 00:06 Forrest Gump To do whatever you tell me, Drill
Sergeant!

00:06 00:10 Sergeant Drill God damn it, Gump! You’re a
goddamn genius!

00:10 00:12 Sergeant Drill That’s the most outstanding an-
swer I’ve ever heard.

00:12 00:15 Sergeant Drill You must have a goddamn IQ of
160!

00:15 00:18 Sergeant Drill You are goddamn gifted, Private
Gump!

00:19 00:21 Sergeant Drill Listen up, people!
00:21 00:25 Forrest Gump Now, for some reason, I fit in

the Army like one of them round
pegs.

00:25 00:27 Forrest Gump It’s not really hard.
00:27 00:30 Forrest Gump You just make your bed real

neat and remember to stand up
straight,

00:31 00:34 Forrest Gump and always answer every ques-
tion with, ”Yes, Drill Sergeant!”

00:35 00:36 Sergeant Drill Is that clear?
00:36 00:38 Everyone Yes, Drill Sergeant!

Table 6. Subtitles from Scene 045 from movie Forrest Gump,
1993, corresponding to Scene B from Fig. 1. Note that the speaker
names are added for improving the clarity and understanding, our
model does not have access to them.
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clips with associated graphs. The MovieGraphs dataset is
provided with train, validation and test splits which con-
tain 33/7/11 movies with 5050/1060/1527 clip graphs re-
spectively. These clips have an average duration of 41.7s at
23.976 fps (frames per second). For each clip, we focus on
characters and their emotion attributes. As the dataset con-
sists of free-text annotations, this amounts to massive 509
unique emotion labels in the dataset, which however, can
be mapped to a smaller set.

Label distributions. We analyze the dataset from various
perspectives and highlight some statistics.

Fig. 8 shows the number of scenes that have a certain
number of emotions. We observe that most scenes have 2-7
emotions, and the train, val, and test distributions are rela-
tively similar. The absolute counts are expected to be lower
due to smaller val/test sizes.

Fig. 9 presents the number of instances for top-10 (or-
ange) and top-25 (orange + blue) label sets. We see a classic
long-tail effect, however, by selecting the top-25, we ensure
that there are sufficient instances for all labels to learn a de-
cent representation.

Fig. 10 shows the same distribution after mapping 181
emotions from MovieGraphs to the 26 emotion labels of the
Emotic dataset [31]. We used a similar mapping as shared
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one emotion annotated in the scene.

by [46] and show the details in Table 7. Recall that we
report results on this label set in our SoTA experiments in
Sec. 4.4 of the main paper.

We assign the character index 1, 2, . . . to the most fre-
quent, second most frequent character, and so on. The plot
in Fig. 11 shows the average number of scenes in which
a character appears, or rather, has an annotated emotion
from the MovieGraphs dataset. This provides interesting
avenues for future research, to track emotions across the
entire movie.

Co-occurrence in the top-25 labels. Similar to Fig. 3 of
the main paper, we show the row-normalized co-occurrence
matrices for the top-25 labels in Fig. 12. From a cur-
sory look, we observe that the movie scene labels (left) are
denser than the per-character co-occurrence (right) - this is
expected as the movie scene level labels contain a combina-
tion of multiple characters.

We present a few notable differences between the scene-
level and character-level co-occurrences. Tuples here corre-
spond to label1 selecting a row, and label2 selecting a col-
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Emotic Label MovieGraphs emotions

Affection loving, friendly
Anger angry, resentful, outraged, vengeful

Annoyance annoyed, annoying, frustrated, irritated, agitated, bitter,
insensitive, exasperated, displeased

Anticipation optimistic, hopeful, imaginative, eager
Aversion disgusted, horrified, hateful

Confidence confident, proud, stubborn, defiant, independent, con-
vincing

Disapproval disapproving, hostile, unfriendly, mean, disrespectful,
mocking, condescending, cunning, manipulative, nasty,
deceitful, conceited, sleazy, greedy, rebellious, petty

Disconnection indifferent, bored, distracted, distant, uninterested, self-
centered, lonely, cynical, restrained, unimpressed, dis-
missive

Disquietment worried, nervous, tense, anxious, afraid, alarmed, sus-
picious, uncomfortable, hesitant, reluctant, insecure,
stressed, unsatisfied, solemn, submissive

Doubt/Conf confused, skeptical, indecisive
Embarrassment embarrassed, ashamed, humiliated

Engagement curious, serious, intrigued, persistent, interested, atten-
tive, fascinated

Esteem respectful, grateful
Excitement excited, enthusiastic, energetic, playful, impatient, pan-

icky, impulsive, hasty
Fatigue tired, sleepy, dizzy

Fear scared, fearful, timid, terrified
Happiness cheerful, delighted, happy, amused, laughing, thrilled,

smiling, pleased, overwhelmed, ecstatic, exuberant
Pain hurt

Peace content, relieved, relaxed, calm, quiet, satisfied, re-
served, carefree

Pleasure funny, attracted, aroused, hedonistic, pleasant, flattered,
entertaining, mesmerized

Sadness sad, melancholy, upset, disappointed, discouraged,
grumpy, crying, regretful, grief-stricken, depressed,
heartbroken, remorseful, hopeless, pensive, miserable

Sensitivity apologetic, nostalgic
Suffering offended, insulted, ignorant, disturbed, abusive, offen-

sive
Surprise surprise, surprised, shocked, amazed, startled, aston-

ished, speechless, disbelieving, incredulous
Sympathy kind, compassionate, supportive, sympathetic, encour-

aging, thoughtful, understanding, generous, concerned,
dependable, caring, forgiving, reassuring, gentle

Yearning jealous, determined, aggressive, desperate, focused,
dedicated, diligent

Table 7. Mapping MovieGraphs emotions to Emotic labels,
adapted from Affect2MM [46].

umn. (friendly, polite) seems to be applicable to different
characters in a scene, but not for one. (honest, curious)
shows similar characteristics. Interestingly while a single
character is (alarmed, worried), in a scene, (alarmed, seri-
ous) also gets fairly high scores.

C. Character Processing Pipeline

The face tracks provided by the MovieGraphs
dataset [74] occasionally miss the characters due to
the quality of the face detection. By watching some clips,
we observed that many face tracks were broken within a

clip due to missed detections and multiple track IDs were
provided for the same character within a single shot. In
addition, some shots had 0 detections, but could be useful
to provide a wider perspective on the emotions of that
character and scene. Therefore, we extend the face tracks
from MovieGraph dataset by first extending the sparse
ground-truth tracks within a shot and then over multiple
shots within a scene through clustering.

In summary, we first recompute face detections and
tracks for the movie scenes. A subset of the new face
tracks are assigned a name based on overlap with the orig-
inal tracks present in the dataset. Then, we cluster all de-
tections in a clip using hierarchical clustering and assign
names to remaining unnamed tracks based on the cluster-
ing. Fig. 13 shows an example where original tracks did not
have a single detection (due to the dark scene) for a scene
in the “Forrest Gump, 1994” movie.

Face and person detection and tracking. New face and
person detections are extracted from every movie scene of
the MovieGraphs dataset. We adopt MTCNN (Multi-Task
Cascaded Convolutional Neural Networks) [83] for face de-
tection and Cascade-RCNN pretrained on cast annotations
of MovieNet [27] for person detection. Since the original
tracks are only for faces, we first compute person boxes us-
ing the person detector and obtain face detections within the
person box in order to define a mapping between face and
person detections. If multiple faces are found within a per-
son bounding box, the face with higher detection probabil-
ity is selected. The resulting bounding boxes are tracked
using the Kalman-filter based SORT (Simple Online and
Realtime Tracking) algorithm [5]. Due to the mapping es-
tablished between the face and person detections, the same
track ID is shared between face and person tracks. For the
rest of the discussion, we focus on face tracks.

Extending names from original to new face tracks. Since
some of the newly generated tracks coincide with the orig-
inal tracks from MovieGraphs, such tracks are assigned a
name based on their IoU overlap score. In particular, for
every detection in the original tracks, a corresponding new
detection is mapped if the IoU score between the two is
greater than a threshold (0.7 in our case). Thus, names from
the original detections (or track), are mapped to the new
track, and a majority vote of these names is used to decide
the final name for a new track.

Face clustering and naming other tracks. Not all tracks
are assigned a name through the above method due to
missed detections in the original tracks. Thus, we per-
form clustering to increase the coverage. First, we extract
good identity features from an InceptionResNetV1 [66] pre-
trained on the VGGFace2 [9] dataset. For clustering we
use the C1C [29] algorithm which also uses track infor-
mation for establishing must and cannot links between the
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Figure 12. Normalized label co-occurrence matrices for the top-25 emotions associated with a movie scene (left) and character-level
emotions (right).

Original face tracks


Forrest Gump


Forrest Gump


Jen

Extended face tracks


Figure 13. Example face detections. The original face tracks do
not work for dark scenes or profile faces, while our new detections
and tracks are able to find them. Scene-036 from Forrest Gump,
1994.

face features. Individual face detections (features) are pro-
cessed and clustered using C1C resulting in multiple parti-
tions with varying number of clusters. We calculate the Sil-
houette score [60] for every partition and the one with high-
est score is selected as the representative partition. Now,
based on the named tracks generated using the paragraph
above, every cluster is assigned a probability corresponding
to distinct names (via named detections) within the cluster.
For clusters which do not have any named detection, equal
probability is given to every name present in the scene. The
cluster name-probabilities corresponding to the detections
of unnamed tracks are extracted and the average of these
soft scores is used to reflect the names for the newly discov-
ered tracks. This way, we assign a name probability to new
tracks and threshold it with 0.7 to select the final name for
such new tracks.

D. Analyzing AP scores

Similar to Fig. 5 of the main paper, we present per-
emotion scores for the top-10 emotions in the dataset in
Fig. 14. We observe that our model with the individual clas-
sifier (CLS) tokens outperforms other approaches in 5 of 10
emotions. In Fig. 15, we show the AP for each group of
Emotic labels. We observe that challenging labels such as
pain, sensitivity, perform much worse than others such as
happiness, sadness, anger, etc.

E. Feature Ablation

We expand upon the feature ablation in Table 3 of the
main paper to show the effect of additional feature combi-
nations in Table 8. All the trends are similar, fine-tuning
RoBERTa helps consistently, ResNet50 trained on FER ap-
pears to be a good representation for characters, and the
MViT trained on Kinetics400 provides better results for
both the label sets, while ResNet50 trained on Places365
is a close second.

F. Adapting SoTA Methods for our Task

The MovieGraphs dataset has not been used directly to
predict emotions at a scene or character level. Related to
using labels from MovieGraphs, Affect2MM [46] extracts
scene-level emotion timelines for the entire movie, but re-
lies on one emotion per scene. This is quite different from
our vision of a multi-label setting where the scene and each
character can present multiple emotions. For a fair compar-
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Figure 14. AP scores for the top-10 emotions label set sorted from high to low AP score for our model with individual CLS tokens.
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Figure 15. AP scores on the 26 grouped labels of the Emotic label set.

Under one condition

And our tattoos. Yeah.

Jamie, will you be
my best friend again?

Kiss me.

Okay. So...
That's what makes
us so awesome.

That's some Prince
Charming shit, though, right? I'm in love with her.

In Public?
In front of all these people?

Dialog tokens
Dylan tokens
Jamie tokens
Video tokens

To Char Tokens
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Figure 16. A scene from the movie Friends with Benefits with self-attention scores for multiple modalities for two character-level predic-
tions: Jamie is happy and Dylan is excited. From the figure we can infer that the happy classifier token attends to the Jamie character tokens
with spikes observed when she smiles or laughs, while Dylan’s excited classifier token attends primarily to the dialog utterance tokens. We
can see this as very few face snaps indicate that Dylan is excited, in fact, Dylan’s face is not even visible often. However, dialog utterances
like That’s what makes us so awesome, Hey, I miss you, and Jamie, will you be my best friend again? are extremely useful for the model to
infer the emotions.
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Video Character Dialog Metrics (mAP)
MViT R50 R152 R50 VGG-M IRv1 RB RB Top-10 Top-25
K400 P365 INet FER FER VGG-F FT PT Scene Char Scene Char

1 - ✓ - - - ✓ - ✓ 25.07±0.12 15.48±0.15 16.41±0.24 8.31±0.17

2 - - ✓ - - ✓ - ✓ 25.85±0.24 15.63±0.21 16.45±0.09 8.31±0.09

3 - - ✓ - ✓ - - ✓ 29.20±0.22 19.88±0.27 18.93±0.38 10.16±0.17

4 ✓ - - - - ✓ - ✓ 29.27±0.08 18.07±0.22 18.35±0.09 0.09±0.08

5 - ✓ - - ✓ - - ✓ 29.30±0.21 19.73±0.17 19.05±0.19 10.31±0.00

6 ✓ - - - ✓ - - ✓ 29.34±0.08 20.50±0.04 19.07±0.19 10.34±0.17

7 - ✓ - - - ✓ ✓ - 29.34±0.17 19.49±0.03 20.73±0.08 10.75±0.02

8 - - ✓ - - ✓ ✓ - 29.47±0.14 19.29±0.10 20.74±0.11 10.79±0.07

9 - ✓ - ✓ - - - ✓ 29.69±0.38 20.25±0.14 20.16±0.29 11.06±0.12

10 - - ✓ ✓ - - - ✓ 30.19±0.38 20.27±0.26 19.83±0.07 11.06±0.16

11 ✓ - - ✓ - - - ✓ 31.39±0.34 21.18±0.18 20.88±0.28 11.46±0.08

12 ✓ - - - ✓ - ✓ - 31.50±0.36 21.60±0.09 21.49±0.30 11.64±0.20

13 - - ✓ - ✓ - ✓ - 31.96±0.20 21.81±0.37 21.28±0.25 11.58±0.26

14 ✓ - - - - ✓ ✓ - 32.23±0.07 21.45±0.07 22.10±0.11 11.63±0.06

15 - ✓ - - ✓ - ✓ - 32.42±0.26 22.32±0.27 21.45±0.17 11.62±0.05

16 - - ✓ ✓ - - ✓ - 33.44±0.33 22.89±0.24 22.75±0.18 12.52±0.12

17 - ✓ - ✓ - - ✓ - 33.46±0.21 22.98±0.16 22.69±0.22 12.48±0.20

18 ✓ - - ✓ - - ✓ - 34.22±0.18 24.35±0.23 23.86±0.10 13.36±0.11

Table 8. Extended feature ablations. The different feature backbones are (MViT, K400): MViT pretrained on Kinetics400, (R50, P365):
ResNet50 on Places365, (R152, INet): ResNet152 on ImageNet, (R50, FER): ResNet50 on Facial Expression Recognition (FER), (VGG-
M, FER): VGG-M on FER, (IRv1, VGG-F): InceptionResNet-v1 trained on VGG-Face dataset, (RB, FT): pretrained RoBERTa finetuned
for emotion recognition and (RB, PT): pretrained RoBERTa. Best numbers in bold, close second in italics.

Method Top 10 Top 25 Emotic
Val Test Val Test Val Test

Random 16.87±0.23 13.84±0.20 9.73±0.10 7.57±0.08 11.47±0.11 11.36±0.09

CAER [34] 18.35±0.10 15.38±0.13 11.84±0.07 9.49±0.08 13.91±0.06 12.68±0.02

ENet [75] 19.14±0.10 16.14±0.05 11.22±0.06 9.08±0.08 13.55±0.06 12.64±0.03

AANet [71] 21.55±0.18 17.55±0.16 12.55±0.15 10.20±0.13 14.71±0.19 13.37±0.20

M2Fnet [12] 24.55±0.39 19.10±0.06 16.02±0.14 13.05±0.31 18.27±0.16 16.76±0.20

EmoTx 34.22±0.18 29.35±0.18 23.86±0.10 19.47±0.10 23.67±0.03 21.40±0.03

Table 9. Comparison against SoTA for scene-level predictions. AANet denotes AttendAffectNet, while ENet refers to EmotionNet.

ison to previous work, we chose models that have attained
SoTA in image, video and multimodal emotion recognition.
We share details on how these methods are adapted to make
them suitable for our task.

EmotionNet [75] is a recent SoTA for emotion recogni-
tion from web images. It uses a joint embedding training
approach which uses emotional keywords associated with
a given image and aligns its learned text embedding (pre-
trained on massive text data) with image embedding ex-
tracted from a standard feature backbone (ResNet50). To
adapt EmotionNet for our task, we used word2vec [44] for
extracting text embeddings and ResNet50 for frames. Since
we use a video as input, the frame features are max-pooled
to generate a single representation. We use the proposed

embedding loss and provide the emotion labels as the key-
words for joint embedding training. This learned ResNet50
is finetuned for multilabel emotion recognition where the
individual frame features are max-pooled before passing to
the logits layer.

CAER (Context Aware Emotion Recognition) [34] is a
deep Convolutional Network which consists of two stream
encoding networks to separately extract the facial and con-
text features which are fused using an adaptive fusion net-
work. Detections from our extended face tracks are used as
inputs for the face encoding stream and the full video frame
with masked faces was used as input to context encoding
stream. Since CAER is designed to extract emotions from
images we adapt it to videos by applying max-pooling over
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Method Top 10 Top 25 Emotic
Val Test Val Test Val Test

Random 12.49±0.15 11.37±0.14 5.84±0.05 5.36±0.05 6.40±0.05 6.32±0.05

AANet [71] 17.43±0.28 16.04±0.19 8.64±0.19 7.20±0.15 8.53±0.17 7.75±0.11

M2Fnet [12] 20.82±0.28 19.01±0.45 10.67±0.38 9.71±0.34 11.30±0.35 9.92±0.02

EmoTx (Ours) 24.35±0.23 22.31±0.11 13.36±0.11 11.71±0.05 12.29±0.08 11.76±0.10

Table 10. Comparison against SoTA for character-level predictions. AANet denotes AttendAffectNet.

the fused features from both the streams to generate a single
representation for a video. This adapted model is trained to
predict multiple scene-level emotions.

M2FNet [12] is a transformer based model originally devel-
oped for Emotion Recognition in Conversations (ERC) and
features a fusion-attention mechanism to modulate the at-
tention given to each utterance considering the audio and vi-
sual features. As this model is designed for utterance emo-
tion recognition we apply a max-pooling operation over the
final outputs of fusion attention module to generate a feature
representation for all the utterances in a video. Since this
model provides two strategies to consider visual features:
one with the video frame and another that combines multi-
ple faces in a frame, we use them to predict either scene- or
character-level emotions separately.

AttendAffectNet [71] proposes two multi-modal self-
attention based approaches for predicting emotions from
movie clips. We adapted the proposed Feature AttendAf-
fectNet model in our work. It leverages the transformer
encoder block where every input token represents a differ-
ent modality. These modality feature vectors are generated
by average pooling over respective features. Following the
proposed mechanism, a classification head was attached at
the end of the model for predicting multi-label emotions.
We adopt the same backbone representations, MViT [20]
pre-trained on Kinetics400 [10] and ResNet50 pretrained
on FER13 [24], for their work to extract scene and face fea-
tures respectively.

SoTA results. Reflecting Tables 4 and 5 in the main pa-
per, we present the Table 9 and Table 10 and also include
standard deviation over 3 runs.

G. Additional Qualitative Analysis
Fig. 16 shows another example (similar to Fig. 6 from

the main paper) where we visualize the emotions for two
characters Jamie and Dylan. We see that our model looks at
relevant video frames, dialog utterances, and character rep-
resentations while making the predictions. The scene de-
scribed above is of a proposal, where the protagonist, Dy-
lan, clears out some misunderstanding and proposes to the
female lead character, Jamie, in between an ongoing flash
mob (scene). As mentioned, in the Fig. 16 caption, both
the characters develop emotion: happy and excited. From

the facial expressions as well as from dialog utterances,
it is apparent enough for the readers to predict emotions,
but from model’s point-of-view culminating all these sig-
nals and making sense of them, that too for complex human
emotions, is a great job.
User study on understanding expressiveness. We asked
2 people to look at about 30 random clips that have positive
labels for angry, scared, cheerful and independently mark
yes when the emotion was apparent in the video (V), dialog
(D), and character/face (C), similar to a multi-label setup.
Note, our model’s attention scores suggest that cheerful is
an expressive emotion (character tokens are helpful), while
scared and angry can rely on dialog and video context.

Below, we present the fraction of times each modal-
ity was picked by the users. For angry, the annotators
favored V: 62%, D: 80%, and C: 59%, due to several
neutral-faced instances with harsh dialog and violent ac-
tions. Scared, V: 56%, D: 48%, C: 62%, was sometimes
expressed through screaming or crying, with no modality
standing out strongly. Finally, cheerful, V: 41%, D: 64%,
C: 79%, was observed most prominently on character faces
and through dialog. Note that this analysis aligns with our
observations in Fig. 7 of the main paper that the expressive-
ness scores are applicable to our particular dataset.
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