
Think Global, Act Local: Dual-scale Graph Transformer for
Vision-and-Language Navigation

Shizhe Chen†, Pierre-Louis Guhur†, Makarand Tapaswi‡, Cordelia Schmid† and Ivan Laptev†

†Inria, École normale supérieure, CNRS, PSL Research University ‡IIIT Hyderabad
https://cshizhe.github.io/projects/vln_duet.html

Environment

Observations

Topological Mapping Global Action Planning
Instruction: “go into the

living room and water the

plant on the table.”

hShortest Route Planning

Next

LocationLocal Actions

Panorama

Encoding

Graph

Update

Instruction
Dynamic

Fusion

step 𝑡+1: panorama + GPS location

Coarse-scale

Encoding

Fine-scale

Encoding

a

b

c

d
e

f

h

i

geh

step 𝑡: panorama + GPS location

map 𝑡-1 map 𝑡

g

h

j

g
g

Figure 1. An agent is required to navigate in unseen environments to reach target locations according to language instructions. It only
obtains local observations of the environment and is allowed to make local actions, i.e., moving to neighboring locations. In this work,
we propose to build topological maps on-the-fly to enable long-term action planning. The map contains visited nodes and navigable
nodes that can be reached from the previously visited nodes. Our method predicts global actions, i.e., all navigable nodes in the map,
and trades off complexity by combining a coarse-scale graph encoding with a fine-scale encoding of observations at the current node .

Abstract

Following language instructions to navigate in unseen
environments is a challenging problem for autonomous em-
bodied agents. The agent not only needs to ground lan-
guages in visual scenes, but also should explore the envi-
ronment to reach its target. In this work, we propose a
dual-scale graph transformer (DUET) for joint long-term
action planning and fine-grained cross-modal understand-
ing. We build a topological map on-the-fly to enable ef-
ficient exploration in global action space. To balance the
complexity of large action space reasoning and fine-grained
language grounding, we dynamically combine a fine-scale
encoding over local observations and a coarse-scale encod-
ing on a global map via graph transformers. The proposed
approach, DUET, significantly outperforms state-of-the-art
methods on goal-oriented vision-and-language navigation
(VLN) benchmarks REVERIE and SOON. It also improves
the success rate on the fine-grained VLN benchmark R2R.

1. Introduction

Autonomous navigation is an essential ability for intel-
ligent embodied agents. Given the convenience of natu-

ral language for human-machine interaction, autonomous
agents should also be able to understand and act accord-
ing to human instructions. Towards this goal, Vision-and-
Language Navigation (VLN) [1] is a challenging problem
that has attracted a lot of recent research [2–9]. VLN re-
quires an agent to follow language instructions and to navi-
gate in unseen environments to reach a target location. Ini-
tial approaches to VLN [2–4] use fine-grained instructions
providing step-by-step navigation guidance such as “Walk
out of the bedroom. Turn right and walk down the hallway.
At the end of the hallway turn left. Walk in front of the couch
and stop”. This fine-grained VLN task enables grounding of
detailed instructions but is less practical due to the need of
step-by-step guidance. A more convenient interaction with
agents can be achieved by goal-oriented instructions [7, 8]
such as “Go into the living room and water the plant on
the table”. This task, however, is more challenging as it re-
quires both the grounding of rooms and objects as well as
the efficient exploration of environments to reach the target.

In order to efficiently explore new areas, or correct pre-
vious decisions, an agent should keep track of already
executed instructions and visited locations in its mem-
ory. Many existing VLN approaches [2, 10–14] implement

1

ar
X

iv
:2

20
2.

11
74

2v
1

 [
cs

.C
V

]
 2

3
Fe

b
20

22

https://cshizhe.github.io/projects/vln_duet.html

memory using recurrent architectures, e.g. LSTM, and con-
dense navigation history in a fixed-size vector. Arguably,
such an implicit memory mechanism can be inefficient to
store and utilize previous experience with a rich space-
time structure. A few recent approaches [15, 16] propose
to explicitly store previous observations and actions, and
to model long-range dependencies for action prediction via
transformers [17]. However, these models only allow for
local actions, i.e., moving to neighboring locations. As a
result, an agent has to run its navigation model N times to
backtrackN steps, which increases instability and compute.

A potential solution is to build a map [18] that explicitly
keeps track of all visited and navigable locations observed
so far. The map allows an agent to make efficient long-
term navigation plans. For example, the agent is able to
select a long-term goal from all navigable locations in the
map, and then uses the map to calculate a shortest path to
the goal. Topological maps have been explored by previous
VLN works [8, 19, 20]. These methods, however, still fall
short in two aspects. Firstly, they rely on recurrent architec-
tures to track the navigation state as shown in the middle of
Figure 2, which can greatly hinder the long-term reasoning
ability for exploration. Secondly, each node in topologi-
cal maps is typically represented by condensed visual fea-
tures. Such coarse representations reduce complexity but
may lack details to ground fine-grained object and scene
descriptions in instructions.

Our approach addresses both of these shortcomings, the
first one based on a transformer architecture and the second
one with a dual-scale action planning approach. We propose
a Dual-scale graph Transformer (DUET) with topological
maps. As illustrated in Figure 1, our model consists of
two modules: topological mapping and global action plan-
ning. In topological mapping, we construct a topological
map over time by adding newly observed locations to the
map and updating visual representations of nodes. Then at
each step, the global action planning module predicts a next
location in the map or a stop action. To balance fine-grained
language grounding and reasoning over large graphs, we
propose to dynamically fuse action predictions from dual
scales: a fine-scale representation of the current location
and a coarse-scale representation of the map. In particu-
lar, we use transformers to capture cross-modal vision-and-
language relations, and improve the map encoding by in-
troducing the knowledge of graph topology into transform-
ers. We pretrain the model with behavior cloning and aux-
iliary tasks, and propose a pseudo interactive demonstra-
tor to further improve policy learning. DUET significantly
outperforms state-of-the-art methods on goal-oriented VLN
benchmarks REVERIE and SOON. It also improves success
rate on fine-grained VLN benchmark R2R. In summary, the
contributions of our work are three-fold:

• We propose a dual-scale graph transformer (DUET)

H
A

M
T

Visited locationsCurrent location Navigable locations

G
ra

p
h

-b
a

se
d

D
U

E
T

(O
u

rs
)

Visual Memory Action Space

R
Recurrent

state
Action

Navigation

Memory

Fine-grained

representation

R

[1
5]

[8
,1

9,
20

]

Figure 2. Method comparison. HAMT [15] stores navigation and
visual memories to capture long-range dependency in action pre-
diction, but is limited to a local action space. Graph-based ap-
proaches [8, 19, 20] use topological maps to support a global ac-
tion space, but suffer from a recurrent navigation memory and a
coarse-scale visual representation. Our DUET model overcomes
previous limitations with a dual-scale encoding over the map.

with topological maps for VLN. It combines coarse-
scale map encoding and fine-scale encoding of the cur-
rent location for efficient planning of global actions.

• We employ graph transformers to encode the topolog-
ical map and to learn cross-modal relations with the
instruction, so that action prediction can rely on a long-
range navigation memory.

• DUET achieves state of the art on goal-oriented VLN
benchmarks, with more than 20% improvement on
success rate (SR) on the challenging REVERIE and
SOON datasets. It also generalizes to fine-grained
VLN task, i.e., increasing SR on R2R dataset by 4%.

2. Related work

Vision-and-language navigation (VLN). Navigation tasks
involving instruction following [2–6, 9, 21–23] have be-
come increasingly popular. Initial VLN methods mainly
adopt recurrent neural networks with cross-modal atten-
tion [2, 10, 13, 24, 25]. More recently, transformer-based ar-
chitectures have been shown successful in VLN tasks [26],
notably by leveraging pre-trained architectures. For exam-
ple, PRESS [27] adopts BERT [28] for instruction encod-
ing. Different variants of ViLBERT are used in [29, 30]
to measure compatibility between instructions and visual
paths, but cannot be used for sequential action prediction.
Recurrent VLN-BERT [14] addresses the limitation by in-
jecting a recurrent unit in transformer architectures for ac-
tion prediction. Instead of relying on one recurrent state,

2

E.T. [16] and HAMT [15] directly use transformers to cap-
ture long-range dependency to all past observations and ac-
tions (see first row in Figure 2).
Maps for navigation. The work on visual navigation has
a long tradition of using SLAM [31] to construct metric
maps [32] of the environment, using non-parametric meth-
ods [33], neural networks [34,35], or a mixture of both [36].
Anderson et al. [37] employ such metric maps for VLN
tasks. However, it is challenging and requires accurate de-
termination to construct metric map in real-time naviga-
tion. Therefore, several works [38, 39] propose to represent
the map as topological structures for pre-exploring environ-
ments [40], or for back-tracking to other locations, trading-
off navigation accuracy with the path length [10, 24]. A
few recent VLN works [8, 19, 20] used topological maps
to support global action planning, but they suffer from us-
ing recurrent architectures for state tracking and also lack a
fine-scale representation for language grounding as shown
in Figure 2. We address the above limitations via a dual-
scale graph transformer with topological maps.
Training algorithms for sequential prediction. Behav-
ior cloning is the most widely used training algorithm for
sequential prediction. Nevertheless, it suffers from distri-
bution shifts between training and testing. To address the
limitation, different training algorithms have been proposed
such as scheduled sampling [41], DAgger [42], reinforce-
ment learning (RL) [43]. Most VLN works [13, 14] com-
bine behavior cloning and A3C RL [44]. Wang et al. [45]
propose to learn rewards via soft expert distillation. Due to
the difficulty of using RL in tasks with sparse rewards, we
instead use an interactive demonstrator to mimic an expert
and provide supervision in sequential training.

3. Method

Problem formulation. In the standard VLN setup for dis-
crete environments [2, 7, 8], the environment is an undi-
rected graph G = {V, E}, where V = {Vi}Ki=1 denotes
K navigable nodes, and E denotes connectivity edges. An
agent is equipped with an RGB camera and a GPS sensor,
and is initialized at a starting node in a previously unseen
environment. The goal of the agent is to interpret natural
language instructions and to traverse the graph to the tar-
get location and find the object specified by the instruction.
W = {wi}Li=1 are word embeddings of the instruction with
Lwords. At each time step t, the agent receives a panoramic
view and position coordinates of its current node Vt. The
panorama is split into n images Rt = {ri}ni=1, each rep-
resented by an image feature vector ri and a unique orien-
tation. To enable fine-grained visual perception, m object
features Ot = {oi}mi=1 are extracted in the panorama using
annotated object bounding boxes or automatic object detec-
tors [46]. In addition, the agent is aware of a few naviga-

a

c
b

d
e

f

g

a

c
b

d
e

"!"# "!

d

e

f

g

New Observation

d eAction

Figure 3. Illustration of graph updating at time step t. Given a
new action d → e, an agent receives new observations at node e.
It then adds new nodes and updates node representations.

ble views corresponding to its neighboring nodes N (Vt) as
well as their coordinates. The navigable views ofN (Vt) are
a subset of Rt. The possible local action space At at step t
contains navigating to Vi ∈ N (Vt) and stopping at Vt. Af-
ter the agent decides to stop at a location, it needs to predict
the location of the target object in the panorama.

Exploration and language grounding are two essential
abilities for VLN agents. However, existing works ei-
ther only allow for local actions At [13–15] which hinders
long-range action planning, or lack object representations
Ot [8, 19, 20] which might be insufficient for fine-grained
grounding. Our work addresses both issues with a dual-
scale representation and global action planning.
Overview. As illustrated in Figure 1, our model consists
of two learnable modules, namely topological mapping and
global action planning. The topological mapping module
gradually constructs a topological map over time. The
global action planning module then performs dual-scale
reasoning based on coarse-scale global observations and
fine-scale local observations. In the following, we introduce
topological mapping in Sec. 3.1 and global action planning
in Sec. 3.2. We end this section by presenting our approach
to train our model and use it for inference in Sec. 3.3.

3.1. Topological Mapping

The environment graph G is initially unknown to the
agent, hence, our model gradually builds its own map us-
ing observations along the path. Let Gt = {Vt, Et} with Kt

nodes, Gt ⊂ G be the map of the environment observed after
t navigation steps. There are three types of nodes in Vt (see
Figure 1): (i) visited nodes ; (ii) navigable nodes ; and
(iii) the current node . The agent has access to panoramic
views for visited nodes and the current node. Navigable
nodes are unexplored and are only partially observed from
already visited locations, hence, they have different visual
representations. At each step t, we add the current node Vt
and its neighboring unvisited nodesN (Vt) to Vt−1, and up-
date Et−1 accordingly as illustrated in Figure 3. Given the
new observation at Vt, we also update visual representations
of the current node and navigable nodes as follows.
Visual representations for nodes. At time step t, the agent

3

receives image features Rt and object features Ot of node
Vt. We use a multi-layer transformer [17] to model spatial
relations among images and objects. The core of the trans-
former is the self-attention block:

[R′t,O′t] = SelfAttn ([Rt,Ot]) , (1)

SelfAttn(X) = Softmax
(
XWq(XWk)

T

√
d

)
XWv, (2)

where W∗ ∈ Rd×d are parameters and biases are omitted.
For ease of notation, we still use Rt,Ot in the following
instead ofR′t,O′t to denote the encoded embeddings.

Then we update visual representation of the current
node by average pooling ofRt andOt. As the agent also
partially observes N (Vt) at Vt, we accumulate visual rep-
resentations of these navigable nodes based on the cor-
responding view embedding in Rt. If a navigable node has
been seen from multiple locations, we average all the par-
tial view embeddings as its visual representation. We use vi
to denote the pooled visual representation for each node Vi.
Such a coarse-scale representation enables efficient reason-
ing over large graphs, but may not provide sufficient infor-
mation for fine-grained language grounding especially for
objects. Therefore, we keepRt,Ot as a fine-grained visual
representation for the current node Vt to support detailed
reasoning at a fine-scale.

3.2. Global Action Planning

Figure 4 illustrates the global action planning module.
The coarse-scale encoder makes predictions over all previ-
ously visited nodes, but uses a coarse-scale visual represen-
tation. The fine-scale encoder instead predicts local actions
given fine-grained visual representations of the current lo-
cation. The dynamic fusion of both encoders combines pre-
dictions of global and local actions.

3.2.1 Text Encoder
To each word embedding in W is added a positional em-
bedding [28] corresponding to the position of the word
in the sentence and a type embedding for text [47]. All
word tokens are then fed into a multi-layer transformer
to obtain contextual word representations, denoted here as
Ŵ = {ŵ1, · · · , ŵL}.
3.2.2 Coarse-scale Cross-modal Encoder
The module takes the coarse-scale map Gt and encoded in-
struction Ŵ to make navigation predictions over a global
action space (∪ti=1Ai).
Node embedding. To the node visual feature vi is added a
location encoding and a navigation step encoding. The lo-
cation encoding embeds the location of a node in the map
in an egocentric view, which is the orientation and distance
relative to the current node. The navigation step encoding
embeds the latest visited time step for visited nodes and 0

for unexplored nodes. In this way, visited nodes are en-
coded with a different navigation history to improve align-
ment with the instruction. We add a ‘stop’ node v0 in the
graph to denote a stop action and connect it with all other
nodes.
Graph-aware cross-modal encoding. The encoded node
and word embeddings are fed into a multi-layer graph-
aware cross-modal transformer. Each transformer layer
consists of a cross-attention layer [47] to model relations
between nodes and instructions, and a graph-aware self-
attention layer to encode environment layout. The standard
attention in Eq. (2) only considers visual similarity among
nodes, and thus it might overlook nearby nodes which are
more relevant than distant nodes. To address the problem,
we propose the graph-aware self-attention (GASA) which
further takes into account the structure of the graph to com-
pute attention as follows:

GASA(X) = Softmax

(
XWq(XWk)

T

√
d

+M

)
XWv, (3)

M = EWe + be, (4)

where X denotes node representations, E is the pair-wise
distance matrix obtained from Et, and We, be are two learn-
able parameters. We stack N layers in the encoder and de-
note the output embedding of node Vi as v̂i.
Global action prediction. We predict a navigation score
for each node Vi in Gt as below:

sci = FFN(v̂i), (5)

where FFN denotes a two-layer feed-forward network. To
be noted, sc0 is the stop score. In most VLN tasks, it is not
necessary for an agent to revisit a node, and thus we mask
the score for visited nodes if not specially mentioned.

3.2.3 Fine-scale Cross-modal Encoder
This part attends to the current location Vt in the map
to enable fine-scale cross-modal reasoning. The input is
the instruction Ŵt and fine-grained visual representations
{Rt,Ot} of the current node. The module predicts navi-
gation actions in a local action space (At), and grounds the
object at the final time step.
Visual Embedding. We add two types of location embed-
dings to Rt,Ot. The first type is the current location in the
map relative to the start node. This embedding helps un-
derstand absolute locations in instruction such as “go to the
living room in first floor”. Then for Vi ∈ N (Vt), we add
a second location embedding, the relative position of each
neighboring node to the current node. It helps the encoder
to realize egocentric directions such as “turn right”. A spe-
cial ‘stop’ token r0 is added for stop action.
Fine-grained cross-modal reasoning. We concatenate
[r0;Rt;Ot] as visual tokens and exploit a standard multi-

4

Graph-aware

Self-Attention

ℇ!

Text

Cross-

Attention
FFN

""

Localà Global

Local Action

Prediction

!!

Multi-layer

Transformer
, ⋯ , #$

⋯

"!

""

⋯

""

⋯

Self-

Attention

Cross-

Attention
FFN

Coarse-scale Cross-modal Encoder

Fine-scale Cross-modal Encoder

Topological Mapping

!#

!"

#!!

⋯

#"!

⋯

#""

#$$

"̂"

"̂#

⋯

Node

Embedding

Text

Embedding

Image

Embedding

Dynamic

Fusion
FFN

#!#

#!"

Object Prediction

Global Action

Prediction

Text Encoder

im
a

g
e

s
o

b
je

ct
s

M
u
lt
i-
la
y
e
r
Tr
a
n
sf
o
rm

e
r

⋯
⋯

##
% , ⋯ , #$

%

&"
%
, ⋯ , &&

%

"#

$$

"#

⋯

"&

$#

$$

⋯

Panorama Encoding

Graph Update

full pooling

partial pooling

$ nodes

Figure 4. DUET consists of topological mapping (left) and global action planning (right). The mapping module outputs a graph with K
node features {vi}Ki=1, and the current panorama encoding with image features {ri}ni=1 and object features {oi}mi=1. Node feature v0 and
image feature r0 are used to indicate the ‘stop’ action. The global action planning uses transformers for coarse- and fine-scale cross-modal
encoding and fuses the two scales to obtain a global action score si for each node.

layer cross-modal transformer [47] to model vision and lan-
guage relations. The output embeddings of visual tokens
are represented as r̂0, R̂t, Ôt respectively.
Local action prediction and object grounding. We pre-
dict a navigation score sfi in local action space At similar
to Eq. (5). Moreover, as the goal-oriented VLN task re-
quires object grounding, we further use a FFN to generate
object scores based on Ôt.
3.2.4 Dynamic Fusion
We propose to dynamically fuse coarse- and fine-scale ac-
tion predictions for better global action prediction. How-
ever, the fine-scale encoder predicts actions in a local ac-
tion space which does not match with the coarse-scale en-
coder. Therefore, we first convert local action scores sfi ∈
{stop,N (Vt)} into the global action space. In order to nav-
igate to other unexplored nodes that are not connected with
the current node, the agent needs to backtrack through its
neighboring visited nodes. Therefore, we sum over scores
of visited nodes in N (Vt) as an overall backtrack score
sback. We keep the values for sfi ∈ {stop,N (Vt)} and use
the constant sback for the others. Hence, the converted global
action scores are:

sf
′

i =

{
sback, if Vi ∈ Vt −N (Vt),

sfi , otherwise.
(6)

At each step, we concatenate v̂0 from coarse-scale encoder
and r̂0 from fine-scale encoder to predict a scalar for fusion:

σt = Sigmoid(FFN([v̂0; r̂0])). (7)

The final navigation score for Vi is:

si = σts
c
i + (1− σt)sf

′

i . (8)

3.3. Training and Inference

Pretraining. As shown in [15,16,26], it is beneficial to pre-
train transformer-based VLN models with auxiliary tasks as
initialization. Therefore, we first pretrain our model based
on off-line expert demonstrations with behavior cloning
and other common vision-and-language proxy tasks. We
use masked language modeling (MLM) [28], masked re-
gion classification (MRC) [48], single-step action predic-
tion (SAP) [15] and object grounding (OG) [49] if object
annotations are available. The SAP and OG loss in behav-
ior cloning given a demonstration path P∗ is as follows:

LSAP =
∑T

t=1
−log p(a∗t |W,P∗<t) (9)

LOG = −log p(o∗|W,PT) (10)

where a∗t is the expert action of a partial demonstration path
P∗<t, and o∗ is the groundtruth object at the last locationPT .
More details are presented in the supplementary material.
Policy learning via an interactive demonstrator. Behav-
ior cloning suffers from distribution shifts between training
and testing. Therefore, we propose to further train the pol-
icy with the supervision from a pseudo interactive demon-
strator (PID) π∗ similar to the DAgger algorithm [42]. Dur-
ing training we have access to the environment graph G,
hence π∗ can utilize G to select the next target node, i.e., a
navigable node with the overall shortest distance from the
current node and to the final destination. In each iteration,
we use the current policy to sample a trajectory P and use
π∗ to obtain pseudo supervision:

LPID =
∑T

t=1
−log p(aπ

∗

t |W,P<t) (11)

5

where aπ
∗

t is our pseudo target at step t. We combine the
original expert demonstrations with our pseudo demonstra-
tions in policy learning with a balance factor λ:

L = λLSAP + LPID + LOG. (12)

Inference. At each time step during testing, we update the
topological map as introduced in Sec. 3.1 and then predict
a global action as explained in Sec. 3.2. If it is a naviga-
tion action, the shortest route planning module employs the
Floyd algorithm to obtain a shortest path from the current
node to the predicted node given the map, otherwise the
agent stops at the current location. The agent is forced to
stop if it exceeds the maximum action steps. In such case, it
will return to a node with maximum stop probability as its
final prediction. At the stopped location, the agent selects
an object with maximum object prediction score.

4. Experiments

4.1. Datasets

We focus our evaluation on goal-oriented VLN bench-
marks REVERIE [7] and SOON [8], which require fine-
grained object grounding and advanced exploration capa-
bilities to find a remote object. We also evaluate our model
on the widely used VLN benchmark R2R [2], which has
step-by-step instructions and no object localization.

REVERIE contains high-level instructions mainly describ-
ing target locations and objects. Instructions contain 21
words on average. Given predefined object bounding boxes
provided for each panorama, the agent should select the cor-
rect object bounding box at the end of the navigation path.
The length of expert paths ranges from 4 to 7 steps.

SOON also provides instructions describing target rooms
and objects. The average length of instructions is 47 words.
SOON does not provide object boxes and requires the agent
to predict object center locations in the panorama. Hence,
we use an automatic object detector [46] to obtain candidate
object boxes. The length of expert paths ranges from 2 to
21 steps with 9.5 steps on average.

R2R contains step-by-step navigation instructions. The av-
erage length of instructions is 32 words. The average length
of expert paths is 6 steps.

Examples from REVERIE and R2R are illustrated in Fig-
ure 5. Further details are in the supplementary material.

4.2. Evaluation Metrics

Navigation metrics. We use standard metrics [1] to mea-
sure navigation performance, i.e., Trajectory Length (TL):
average path length in meters; Navigation Error (NE): av-
erage distance in meters between agent’s final location and
the target; Success Rate (SR): the ratio of paths with NE

Table 1. Comparison of different scales and dual-scale fusion strat-
egy on REVERIE val unseen split.

scale fusion OSR↑ SR↑ SR
OSR ↑ SPL↑ RGS↑ RGSPL↑

fine - 30.96 28.86 93.22 23.57 20.39 16.64
coarse - 46.44 36.52 78.64 25.98 - -

multi
average 51.86 45.81 88.33 31.94 32.49 22.78
dynamic 51.07 46.98 91.40 33.73 32.15 23.03

less than 3 meters; Oracle SR (OSR): SR given oracle stop
policy; and SR penalized by Path Length (SPL).
Object grounding metrics. To evaluate both the naviga-
tion and object grounding, we follow [7] and adopt Remote
Grounding Success (RGS): the proportion of successfully
executed instructions. We also use RGS penalized by Path
Length (RGSPL). All the metrics are the higher the better
except for TL and NE.

4.3. Implementation Details

Features. For images, we adopt ViT-B/16 [50] pretrained
on ImageNet to extract features. For objects, we use the
same ViT on the REVERIE dataset as it provides bounding
boxes, while we use the BUTD object detector [46] on the
SOON dataset. The orientation feature [11] contains sin(·)
and cos(·) values for heading and elevation angles.
Model architecture. We use 9, 2, 4 and 4 transformer
layers in the text encoder, panorama encoder, coarse-scale
cross-modal encoder and fine-scale cross-modal encoder,
respectively. Other hyper-parameters are set the same as in
LXMERT [47], e.g., the hidden layer size is 768. We utilize
the pretrained LXMERT for initialization.
Training details. On the REVERIE dataset, we first pre-
train DUET with the batch size of 32 for 100k iterations
using 2 Nvidia Tesla P100 GPUs. We automatically gener-
ate synthetic instructions to augment the dataset [10]. Then
we use Eq. (12) to fine-tune the policy with the batch size of
8 for 20k iterations on a single Tesla P100. The best epoch
is selected by SPL on val unseen split. More details are
provided in supplementary material.

4.4. Ablation Study

We ablated our approach on the REVERIE dataset. All
results in this section are reported on the val unseen split.
1) Coarse-scale vs. fine-scale encoders. We first evalu-
ate coarse-scale and fine-scale encoders separately for the
REVERIE navigation task in the upper part of Table 1. As
the coarse-scale encoder is not fed with object representa-
tions, it is unable to select target objects for the REVERIE
task. However, it outperforms the fine-scale version except
for SR

OSR , for which the fine-scale encoder achieves much
higher performance. This ratio estimates the performance
of the stop action (the OSR is the success rate under oracle

6

Table 2. Ablation of graph-aware self-attention (GASA) for graph
encoding on REVERIE val unseen split.

Fusion GASA OSR↑ SR↑ SPL↑ RGS↑ RGSPL↑

average
× 49.22 44.50 30.90 29.88 20.73
X 51.86 45.81 31.94 32.49 22.78

dynamic
× 49.25 45.24 32.88 29.91 21.57
X 51.07 46.98 33.73 32.15 23.03

stop policy) and indicates that fine-grained visual represen-
tations are essential to determine the target location speci-
fied in the instruction. However, the fine-scale encoder ob-
tains a low OSR score, suggesting it lacks exploration due
to a limited action space. The coarse-scale encoder instead
benefits from the constructed map and is able to efficiently
explore more areas with high OSR and SPL metrics.
2) Dual-scale fusion strategy. As the fine- and coarse-
scale encoders are complementary, we compare different
approaches to fuse the two encoders in the bottom part of
Table 1. Both fusion methods outperform the fine-scale and
coarse-scale encoder by a large margin. Our proposed dy-
namic fusion achieves more efficient exploration compared
to the average fusion with 1.79% improvement on SPL.
3) Graph-aware self-attention. Table 2 ablates models
with or without graph topology encoded in the transformer
as in Eq. (3). It shows that the awareness of the graph struc-
tures is more beneficial to improve the SPL score, which
emphasizes navigating to the target with shorter distance.
4) Training losses. In Table 3, we compare different train-
ing losses for DUET. The first row only uses LSAP in be-
havior cloning. As it is not trained for object grounding, we
can ignore RGS and RGSPL metrics. The second row adds
the object supervision in training. It also improves navi-
gation performance, which suggests that additional cross-
modal supervisions such as association between words and
objects can be beneficial to VLN tasks. In the third row,
we add common auxiliary proxy tasks MLM and MRC
in training, which are more helpful for object grounding.
As instructions in REVERIE mainly describe the final tar-
get, these two losses are more relevant to object grounding.
We further fine-tune the model with reinforcement learning
(RL) [14,15] or our PID in the last two rows to address dis-
tribution shift issue in behavior cloning. Both RL and PID
achieve significant improvement and PID outperforms RL.
5) Data augmentation with synthetic instructions. We
evaluate contributions of augmenting training data with syn-
thetic instructions. The upper block of Table 4 presents re-
sults of pretraining with or without the augmented data. We
can see that the synthetic data is beneficial in the pretraining
stage and improves SPL and RGSPL by 1.63% and 1.76%
respectively. Based on the initialization of the model in row
2, we use PID to further improve the policy. The results are

Table 3. Ablation of training losses on REVERIE val unseen split.

Pretrain Finetune
OSR↑ SR↑ SPL↑ RGS↑ RGSPL↑

SAP OG Aux RL PID

X × × × × 38.45 35.30 24.55 - -
X X × × × 40.24 37.80 26.40 23.89 16.36
X X X × × 37.63 36.81 27.19 25.05 18.40
X X X X × 47.51 42.35 32.97 29.91 23.53
X X X × X 51.07 46.98 33.73 32.15 23.03

Table 4. Ablation of augmented speaker data in training on
REVERIE val unseen split.

PID Aug OSR↑ SR↑ SPL↑ RGS↑ RGSPL↑

× × 37.29 34.56 25.56 23.00 16.64
X 37.63 36.81 27.19 25.05 18.40

X
× 51.07 46.98 33.73 32.15 23.03
X 52.09 46.58 32.72 31.75 22.18

Table 5. Comparison with the state of the art on SOON dataset.

Split Methods TL OSR↑ SR↑ SPL↑ RGSPL↑

Val
Unseen

GBE [8] 28.96 28.54 19.52 13.34 1.16
DUET (Ours) 36.20 50.91 36.28 22.58 3.75

Test
Unseen

GBE [8] 27.88 21.45 12.90 9.23 0.45
DUET (Ours) 41.83 43.00 33.44 21.42 4.17

shown in the bottom block of Table 4. The synthetic data
however does not bring improvements to the performance.
We hypothesize that auxiliary proxy tasks in pretraining
help to take advantage from the noisy synthetic data, but
the policy learning still requires cleaner data.

4.5. Comparison with State of the Art

REVERIE. Table 6 compares our final model with state-
of-the-art models on the REVERIE dataset. Our model sig-
nificantly beats the state of the arts on all evaluation metrics
on the three splits. For example, on the val unseen split, our
model outperforms the previous best model HAMT [15] by
14.03% on SR, 3.53% on SPL and 5.75% on RGSPL. Our
model also generalizes better on the test unseen split, where
we improve over HAMT by 22.11% on SR, 9.39% on SPL
and 8.98% on RGSPL. This clearly demonstrates the effec-
tiveness of our dual-scale action planning model with topo-
logical maps. Note that none of the previous methods has
employed a map for navigation on this dataset.
SOON. Table 5 presents the results on the SOON dataset.
Our model also achieves significant better performance than
the previous graph-based approach GBE [8], with 20.54%
gains on SR and 12.19% on SPL on test unseen split. The
results, however, are much lower than those on REVERIE.

7

Table 6. Comparison with the state-of-the-art methods on REVERIE dataset.

Methods
Val Seen Val Unseen Test Unseen

Navigation Grounding Navigation Grounding Navigation Grounding
TL OSR↑ SR↑ SPL↑ RGS↑ RGSPL↑ TL OSR↑ SR↑ SPL↑ RGS↑ RGSPL↑ TL OSR↑ SR↑ SPL↑ RGS↑ RGSPL↑

Human - - - - - - - - - - - - 21.18 86.83 81.51 53.66 77.84 51.44

Seq2Seq [2] 12.88 35.70 29.59 24.01 18.97 14.96 11.07 8.07 4.20 2.84 2.16 1.63 10.89 6.88 3.99 3.09 2.00 1.58
RCM [12] 10.70 29.44 23.33 21.82 16.23 15.36 11.98 14.23 9.29 6.97 4.89 3.89 10.60 11.68 7.84 6.67 3.67 3.14
SMNA [11] 7.54 43.29 41.25 39.61 30.07 28.98 9.07 11.28 8.15 6.44 4.54 3.61 9.23 8.39 5.80 4.53 3.10 2.39
FAST-MATTN [7] 16.35 55.17 50.53 45.50 31.97 29.66 45.28 28.20 14.40 7.19 7.84 4.67 39.05 30.63 19.88 11.61 11.28 6.08
SIA [49] 13.61 65.85 61.91 57.08 45.96 42.65 41.53 44.67 31.53 16.28 22.41 11.56 48.61 44.56 30.80 14.85 19.02 9.20
RecBERT [14] 13.44 53.90 51.79 47.96 38.23 35.61 16.78 35.02 30.67 24.90 18.77 15.27 15.86 32.91 29.61 23.99 16.50 13.51
Airbert [30] 15.16 48.98 47.01 42.34 32.75 30.01 18.71 34.51 27.89 21.88 18.23 14.18 17.91 34.20 30.28 23.61 16.83 13.28
HAMT [15] 12.79 47.65 43.29 40.19 27.20 25.18 14.08 36.84 32.95 30.20 18.92 17.28 13.62 33.41 30.40 26.67 14.88 13.08

DUET (Ours) 13.86 73.86 71.75 63.94 57.41 51.14 22.11 51.07 46.98 33.73 32.15 23.03 21.30 56.91 52.51 36.06 31.88 22.06

REVERIE: Go to the living room and wipe down the end table.

s

s

s s

s s

ss

R2R: Walk from telephone down hall and turn left down hall just before
vase. Walk through archway into bedroom. Stop between bed and chair.

HAMT [30]

DueT HAMT [30]DueT HAMT [15]

DueTDueT HAMT [15]

Figure 5. Predicted trajectories of DUET and the state-of-the-art
HAMT [15]. The green and checkered flags denote start and tar-
get locations respectively. The dashed lines denote global actions.
DUET is able to make more efficient explorations and correct its
previous decisions, while HAMT is limited by its local actions.

This is because SOON contains fewer and more challenging
training data (see supplementary material for analysis).
R2R. As shown in Table 7, DUET beats state-of-the-art ap-
proaches on success rate (SR) by 6% and 4% on val un-
seen and test unseen split respectively. However, it achieves
comparable performances on SPL. This can be explained by
the fact that for map-based approaches backtracking is en-
couraged which makes the trajectory length longer. We fur-
ther compare a coarse-scale DUET for fair comparison with
previous graph-based approaches [8, 19, 20] which do not
use a fine-scale encoder. Even without using the fine-scale
representation, DUET still outperform them by a margin,
showing the effectiveness of our graph transformer. It also
demonstrates DUET is able to backtrack more efficiently.

Table 7. Comparison with the state of the art on R2R dataset.
Methods are grouped according to the used memories: ‘Rec’ for
recurrent state, ‘Seq’ for sequence and ‘Map’ for topological map.

Mem Methods Val Unseen Test Unseen
TL↓ NE↓ SR↑ SPL↑ TL↓ NE↓ SR↑ SPL↑

Rec

Seq2Seq [2] 8.39 7.81 22 - 8.13 7.85 20 18
SF [10] - 6.62 35 - 14.82 6.62 35 28
PRESS [27] 10.36 5.28 49 45 10.77 5.49 49 45
EnvDrop [13] 10.70 5.22 52 48 11.66 5.23 51 47
AuxRN [51] - 5.28 55 50 - 5.15 55 51
PREVALENT [26] 10.19 4.71 58 53 10.51 5.30 54 51
RelGraph [52] 9.99 4.73 57 53 10.29 4.75 55 52
RecBERT [14] 12.01 3.93 63 57 12.35 4.09 63 57

Seq HAMT [15] 11.87 3.65 65 59 12.65 4.11 63 58
HAMT-e2e [15] 11.46 2.29 66 61 12.27 3.93 65 60

Map

EGP [19] - 4.83 56 44 - 5.34 53 42
GBE [8] - 5.20 54 43 - 5.18 53 43
SSM [20] 20.7 4.32 62 45 20.4 4.57 61 46

DUET-coarse 12.96 3.67 68 59 13.08 3.93 67 58
DUET (Ours) 13.94 3.31 72 60 14.73 3.65 69 59

Figure 5 visualizes some qualitative examples.

5. Conclusion

We propose DUET (dual-scale graph transformer) for
vision-and-language navigation (VLN) based on online
constructed topological maps. It uses graph transform-
ers to reason over a coarse-scale map representation for
long-term action planning and a fine-scale local repre-
sentation for fine-grained language grounding. The two
scales are dynamically combined in the navigation pol-
icy. DUET achieves state-of-the-art performance on VLN
benchmarks REVERIE, SOON and R2R. However, our ap-
proach is not always successful as demonstrated by the gap
between seen and unseen environments, and is restricted
to discrete environments. Future work will address these
points. Applications of our work should take security and
privacy risks into account.

8

Acknowledgement. This work was granted access to the
HPC resources of IDRIS under the allocation 101002 made
by GENCI. This work is funded in part by the French
government under management of Agence Nationale de la
Recherche as part of the “Investissements d’avenir” pro-
gram, reference ANR19-P3IA-0001 (PRAIRIE 3IA Insti-
tute) and by Louis Vuitton ENS Chair on Artificial Intelli-
gence.

References

[1] Peter Anderson, Angel Chang, Devendra Singh Chap-
lot, Alexey Dosovitskiy, Saurabh Gupta, Vladlen
Koltun, Jana Kosecka, Jitendra Malik, Roozbeh
Mottaghi, Manolis Savva, et al. On evaluation
of embodied navigation agents. arXiv preprint
arXiv:1807.06757, 2018. 1, 6

[2] Peter Anderson, Qi Wu, Damien Teney, Jake Bruce,
Mark Johnson, Niko Sünderhauf, Ian Reid, Stephen
Gould, and Anton Van Den Hengel. Vision-and-
language navigation: Interpreting visually-grounded
navigation instructions in real environments. In
CVPR, pages 3674–3683, 2018. 1, 2, 3, 6, 8, 12, 13

[3] Howard Chen, Alane Suhr, Dipendra Misra, Noah
Snavely, and Yoav Artzi. Touchdown: Natural lan-
guage navigation and spatial reasoning in visual street
environments. In CVPR, pages 12538–12547, 2019.
1, 2

[4] Alexander Ku, Peter Anderson, Roma Patel, Eugene
Ie, and Jason Baldridge. Room-across-room: Mul-
tilingual vision-and-language navigation with dense
spatiotemporal grounding. In EMNLP, pages 4392–
4412, 2020. 1, 2

[5] Jacob Krantz, Erik Wijmans, Arjun Majumdar, Dhruv
Batra, and Stefan Lee. Beyond the nav-graph: Vision-
and-language navigation in continuous environments.
In ECCV, pages 104–120. Springer, 2020. 1, 2

[6] Mohit Shridhar, Jesse Thomason, Daniel Gordon,
Yonatan Bisk, Winson Han, Roozbeh Mottaghi, Luke
Zettlemoyer, and Dieter Fox. Alfred: A benchmark for
interpreting grounded instructions for everyday tasks.
In CVPR, pages 10740–10749, 2020. 1, 2

[7] Yuankai Qi, Qi Wu, Peter Anderson, Xin Wang,
William Yang Wang, Chunhua Shen, and Anton
van den Hengel. Reverie: Remote embodied visual
referring expression in real indoor environments. In
CVPR, pages 9982–9991, 2020. 1, 3, 6, 8, 12, 13

[8] Fengda Zhu, Xiwen Liang, Yi Zhu, Qizhi Yu, Xiao-
jun Chang, and Xiaodan Liang. Soon: Scenario ori-
ented object navigation with graph-based exploration.

In CVPR, pages 12689–12699, 2021. 1, 2, 3, 6, 7, 8,
12, 13

[9] Muhammad Zubair Irshad, Chih-Yao Ma, and Zsolt
Kira. Hierarchical cross-modal agent for robotics
vision-and-language navigation. In ICRA, pages
13238–13246, 2021. 1, 2

[10] Daniel Fried, Ronghang Hu, Volkan Cirik, Anna
Rohrbach, Jacob Andreas, Louis-Philippe Morency,
Taylor Berg-Kirkpatrick, Kate Saenko, Dan Klein, and
Trevor Darrell. Speaker-follower models for vision-
and-language navigation. In NeurIPS, pages 3318–
3329, 2018. 1, 2, 3, 6, 8

[11] Chih-Yao Ma, Jiasen Lu, Zuxuan Wu, Ghassan Al-
Regib, Zsolt Kira, Richard Socher, and Caiming
Xiong. Self-monitoring navigation agent via auxiliary
progress estimation. In ICLR, 2019. 1, 6, 8

[12] Xin Wang, Qiuyuan Huang, Asli Celikyilmaz,
Jianfeng Gao, Dinghan Shen, Yuan-Fang Wang,
William Yang Wang, and Lei Zhang. Reinforced
cross-modal matching and self-supervised imitation
learning for vision-language navigation. In CVPR,
pages 6629–6638, 2019. 1, 8

[13] Hao Tan, Licheng Yu, and Mohit Bansal. Learning to
navigate unseen environments: Back translation with
environmental dropout. In NAACL, pages 2610–2621,
2019. 1, 2, 3, 8

[14] Yicong Hong, Qi Wu, Yuankai Qi, Cristian
Rodriguez-Opazo, and Stephen Gould. Vln BERT: A
recurrent vision-and-language BERT for navigation.
In CVPR, pages 1643–1653, 2021. 1, 2, 3, 7, 8, 13

[15] Shizhe Chen, Pierre-Louis Guhur, Cordelia Schmid,
and Ivan Laptev. History aware multimodal trans-
former for vision-and-language navigation. In
NeurIPS, 2021. 2, 3, 5, 7, 8, 13, 14

[16] Alexander Pashevich, Cordelia Schmid, and Chen
Sun. Episodic transformer for vision-and-language
navigation. In ICCV, pages 15942–15952, 2021. 2,
3, 5

[17] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need.
In NeurIPS, pages 5998–6008, 2017. 2, 4

[18] Devendra Singh Chaplot, Ruslan Salakhutdinov, Ab-
hinav Gupta, and Saurabh Gupta. Neural topological
SLAM for visual navigation. In CVPR, pages 12875–
12884, 2020. 2

9

[19] Zhiwei Deng, Karthik Narasimhan, and Olga Rus-
sakovsky. Evolving graphical planner: Contextual
global planning for vision-and-language navigation.
In NeurIPS, volume 33, 2020. 2, 3, 8

[20] Hanqing Wang, Wenguan Wang, Wei Liang, Caiming
Xiong, and Jianbing Shen. Structured scene memory
for vision-language navigation. In CVPR, pages 8455–
8464, 2021. 2, 3, 8

[21] Vihan Jain, Gabriel Magalhaes, Alexander Ku, Ashish
Vaswani, Eugene Ie, and Jason Baldridge. Stay on the
path: Instruction fidelity in vision-and-language navi-
gation. In ACL, pages 1862–1872, 2019. 2, 13

[22] Abhishek Das, Samyak Datta, Georgia Gkioxari, Ste-
fan Lee, Devi Parikh, and Dhruv Batra. Embodied
question answering. In CVPR, pages 1–10, 2018. 2

[23] Licheng Yu, Xinlei Chen, Georgia Gkioxari, Mohit
Bansal, Tamara L Berg, and Dhruv Batra. Multi-target
embodied question answering. In CVPR, pages 6309–
6318, 2019. 2

[24] Chih-Yao Ma, Zuxuan Wu, Ghassan AlRegib, Caim-
ing Xiong, and Zsolt Kira. The regretful agent:
Heuristic-aided navigation through progress estima-
tion. In CVPR, pages 6732–6740, 2019. 2, 3

[25] Arun Balajee Vasudevan, Dengxin Dai, and Luc
Van Gool. Talk2nav: Long-range vision-and-language
navigation with dual attention and spatial memory. In-
ternational Journal of Computer Vision, 129(1):246–
266, 2021. 2

[26] Weituo Hao, Chunyuan Li, Xiujun Li, Lawrence
Carin, and Jianfeng Gao. Towards learning a generic
agent for vision-and-language navigation via pre-
training. In CVPR, pages 13137–13146, 2020. 2, 5, 8,
13

[27] Xiujun Li, Chunyuan Li, Qiaolin Xia, Yonatan Bisk,
Asli Celikyilmaz, Jianfeng Gao, Noah A Smith, and
Yejin Choi. Robust navigation with language pretrain-
ing and stochastic sampling. In EMNLP, pages 1494–
1499, 2019. 2, 8

[28] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. BERT: Pre-training of deep bidi-
rectional transformers for language understanding. In
NAACL, pages 4171–4186, 2019. 2, 4, 5, 11

[29] Arjun Majumdar, Ayush Shrivastava, Stefan Lee, Pe-
ter Anderson, Devi Parikh, and Dhruv Batra. Im-
proving vision-and-language navigation with image-
text pairs from the web. In ECCV, pages 259–274.
Springer, 2020. 2

[30] Pierre-Louis Guhur, Makarand Tapaswi, Shizhe Chen,
Ivan Laptev, and Cordelia Schmid. Airbert: In-domain
pretraining for vision-and-language navigation. In
ICCV, pages 1634–1643, 2021. 2, 8

[31] Sebastian Thrun. Probabilistic robotics. Communica-
tions of the ACM, 45(3):52–57, 2002. 3

[32] Sebastian Thrun. Learning metric-topological maps
for indoor mobile robot navigation. Artificial Intelli-
gence, 99(1):21–71, 1998. 3

[33] Albert S Huang, Abraham Bachrach, Peter Henry,
Michael Krainin, Daniel Maturana, Dieter Fox, and
Nicholas Roy. Visual odometry and mapping for au-
tonomous flight using an rgb-d camera. In Robotics
Research, pages 235–252. Springer, 2017. 3

[34] Jingwei Zhang, Lei Tai, Ming Liu, Joschka
Boedecker, and Wolfram Burgard. Neural SLAM:
Learning to explore with external memory. arXiv
preprint arXiv:1706.09520, 2017. 3

[35] Saurabh Gupta, James Davidson, Sergey Levine,
Rahul Sukthankar, and Jitendra Malik. Cognitive
mapping and planning for visual navigation. In CVPR,
pages 2616–2625, 2017. 3

[36] Devendra Singh Chaplot, Dhiraj Gandhi, Saurabh
Gupta, Abhinav Gupta, and Ruslan Salakhutdinov.
Learning to explore using active neural SLAM. In
ICLR, 2020. 3

[37] Peter Anderson, Ayush Shrivastava, Devi Parikh,
Dhruv Batra, and Stefan Lee. Chasing ghosts: Instruc-
tion following as bayesian state tracking. NeurIPS,
32:371–381, 2019. 3

[38] Nikolay Savinov, Alexey Dosovitskiy, and Vladlen
Koltun. Semi-parametric topological memory for nav-
igation. ICLR, 2018. 3

[39] Kuan Fang, Alexander Toshev, Li Fei-Fei, and Silvio
Savarese. Scene memory transformer for embodied
agents in long-horizon tasks. In CVPR, pages 538–
547, 2019. 3

[40] Kevin Chen, Junshen K Chen, Jo Chuang, Marynel
Vázquez, and Silvio Savarese. Topological planning
with transformers for vision-and-language navigation.
In CVPR, pages 11276–11286, 2021. 3

[41] Samy Bengio, Oriol Vinyals, Navdeep Jaitly, and
Noam Shazeer. Scheduled sampling for sequence pre-
diction with recurrent neural networks. In NeurIPS,
volume 28, 2015. 3

10

[42] Stéphane Ross, Geoffrey Gordon, and Drew Bagnell.
A reduction of imitation learning and structured pre-
diction to no-regret online learning. In AISTATS, pages
627–635. JMLR Workshop and Conference Proceed-
ings, 2011. 3, 5

[43] Richard S Sutton and Andrew G Barto. Reinforcement
learning: An introduction. MIT press, 2018. 3

[44] Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi
Mirza, Alex Graves, Timothy Lillicrap, Tim Harley,
David Silver, and Koray Kavukcuoglu. Asynchronous
methods for deep reinforcement learning. In ICML,
pages 1928–1937. PMLR, 2016. 3

[45] Hu Wang, Qi Wu, and Chunhua Shen. Soft expert re-
ward learning for vision-and-language navigation. In
ECCV, pages 126–141. Springer, 2020. 3

[46] Peter Anderson, Xiaodong He, Chris Buehler, Damien
Teney, Mark Johnson, Stephen Gould, and Lei Zhang.
Bottom-up and top-down attention for image caption-
ing and visual question answering. In CVPR, pages
6077–6086, 2018. 3, 6, 12

[47] Hao Tan and Mohit Bansal. LXMERT: Learning
cross-modality encoder representations from trans-
formers. In EMNLP, pages 5103–5114, 2019. 4, 5,
6

[48] Jiasen Lu, Dhruv Batra, Devi Parikh, and Stefan
Lee. ViLBERT: Pretraining task-agnostic visiolinguis-
tic representations for vision-and-language tasks. In
NeurIPS, volume 32, 2019. 5

[49] Xiangru Lin, Guanbin Li, and Yizhou Yu. Scene-
intuitive agent for remote embodied visual grounding.
In CVPR, pages 7036–7045, 2021. 5, 8

[50] Alexey Dosovitskiy, Lucas Beyer, Alexander
Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,
Thomas Unterthiner, Mostafa Dehghani, Matthias
Minderer, Georg Heigold, Sylvain Gelly, et al. An
image is worth 16× 16 words: Transformers for
image recognition at scale. ICLR, 2020. 6, 12

[51] Fengda Zhu, Yi Zhu, Xiaojun Chang, and Xiao-
dan Liang. Vision-language navigation with self-
supervised auxiliary reasoning tasks. In CVPR, pages
10012–10022, 2020. 8

[52] Yicong Hong, Cristian Rodriguez, Yuankai Qi, Qi Wu,
and Stephen Gould. Language and visual entity
relationship graph for agent navigation. NeurIPS,
33:7685–7696, 2020. 8

[53] Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun Cho,
Aaron Courville, Ruslan Salakhudinov, Rich Zemel,
and Yoshua Bengio. Show, attend and tell: Neural im-
age caption generation with visual attention. In ICML,
pages 2048–2057. PMLR, 2015. 12

[54] Jeffrey Pennington, Richard Socher, and Christo-
pher D Manning. Glove: Global vectors for word rep-
resentation. In EMNLP, pages 1532–1543, 2014. 12

[55] Angel Chang, Angela Dai, Thomas Funkhouser, Ma-
ciej Halber, Matthias Niebner, Manolis Savva, Shuran
Song, Andy Zeng, and Yinda Zhang. Matterport3d:
Learning from rgb-d data in indoor environments. In
3DV, pages 667–676. IEEE, 2017. 12

Appendix

Section A provides additional details for the model. The
experimental setup is described in Section B, including
datasets, metrics and implementation details. Section C
presents more ablation studies of our DUET model. Sec-
tion D shows more qualitative examples.

A. Model Details

A.1. Pretraining Objectives

As introduced in Sec 3.3, we employ two auxiliary
proxy tasks in pretraining in addition to behavior cloning
tasks SAP (single-step action prediction) and OG (object
grounding). In the following, we describe the two auxiliary
tasks: masked language modeling (MLM) and masked re-
gion classification (MRC). The inputs for the two tasks are
pairs of instructionW and demonstration path P .

Masked Language Modeling (MLM) task aims to learn
grounded language representations and cross-modal align-
ment by predicting masked words given contextual words
and demonstration path. We randomly replace tokens in
W by a special token [mask] with the probability of
15% [28]. Both the coarse-scale encoder and fine-scale en-
coder can generate contextual word embeddings for masked
words as introduced in Sec 3.2.2 and 3.2.3 respectively.
The coarse-scale encoder utilizes visual information from
an encoded graph at the final step as contexts, while the
fine-scale encoder utilizes the last panoramic observation
as visual contexts. We average output embeddings of
the two encoders for masked words, and employ a two-
layer fully-connected network to predict word distributions
p(wi|W\i,P) whereW\i is the masked instruction and wi
is the label of masked word. The objective of the task is
minimizing the negative log-likelihood of original words:
LMLM = −log p(wi|W\i,P).
Masked Region Classification (MRC) aims to predict se-
mantic labels of masked image regions in an observation

11

given an instruction and neighboring regions. As instruc-
tions in goal-oriented VLN tasks mainly describe the last
observation in the demonstration path, we only apply the
MRC task on the fine-scale encoder. We randomly zero out
view images and objects in the last observation of P with
the probability of 15%. The target semantic labels for view
images are class probability predicted by an image classi-
fication model [50] pretrained on ImageNet, while the la-
bels for objects are class probability predicted by an object
detector [46] pretrained on VisualGenome. We use a two-
layer fully-connected network to predict semantic labels for
each masked visual token, and minimize the KL divergence
between the predicted and target probability distribution.

A.2. Speaker Model for Data Augmentation

We train a speaker model to synthesize instructions
based on visual observations for REVERIE dataset. As
REVERIE provides annotated object classes and Matter-
port3D also contains annotated room classes, we utilize
these semantic labels to alleviate the gap between vision
and language. Our speaker model consists of a panorama
encoder and a sentence decoder. The panorama encoder is
fed with image features of the panorama, semantic labels
of target object and target room as well as the level of the
room. We project all the input features into the same dimen-
sion, and utilize a transformer with self-attention to capture
relations of each token. The sentence decoder then sequen-
tially generates words conditioning on the encoded tokens.
We use LSTM as the decoder and follow the architecture in
show-attend-tell image captioning model [53].

Please note that we only employ data in REVERIE train-
ing split to learn the speaker model. We initialize the word
embeddings in encoder and decoder with pretrained GloVe
embeddings [54] and train the speaker model for 50 epochs.
We employ the trained speaker model to synthesize instruc-
tions for every annotated object in the REVERIE training
split, leading to 19,636 instructions in total. We extend the
size of the training set from 10,466 instruction-path pairs to
30,102 pairs.

B. Experimental Setups

B.1. Dataset

We primarily focus our evaluation on goal-oriented VLN
benchmarks REVERIE [7] and SOON [8]. To localize tar-
get objects in these benchmarks, the agent requires fine-
grained object grounding and advanced exploration capa-
bilities. We also test our model on less demanding VLN
benchmarks R2R [2] with step-by-step instructions and no
object localization. All the benchmarks build upon the Mat-
terport3D [55] environment and contain 90 photo-realistic
houses. Each house is defined by a set of navigable loca-
tions. Each location is represented by the corresponding

panorama image, GPS coordinates and a set of possible ac-
tions. We adopt the standard split of houses into training,
val seen, val unseen, and test subsets. Houses in the val
seen split are the same as in training, while houses in val
unseen and test splits are different from training.

Table 8 presents statistics of the three datasets. To be
noted, we follow the released challenge split on SOON
dataset instead of the split in the original paper [8]1.

B.2. Data Processing for SOON Dataset

The SOON dataset does not provide annotated object
bounding boxes per panorama. It only annotates the loca-
tion of target object bounding boxes for each instruction,
including the orientation of object’s center point as well
as orientation of top left, top right, bottom left, and bot-
tom right corners. The object grounding setting in SOON
dataset is to predict the orientation of object’s center point.
However, we observe that though the annotated objects’
center points are of good quality, their annotations of the
four corners are quite noisy2. Therefore, we propose to
clean the object bounding boxes in training and also pro-
vide more automatically detected objects as fine-grained vi-
sual contexts to represent each panorama.

Specifically, we employ the BUTD detector [46] pre-
trained on VisualGenome to detect objects per panorama,
which covers 1600 object and scene classes. We filter
some unimportant classes for SOON dataset such as ‘back-
ground’, ‘floor’, ‘ceiling’, ‘wall’, ‘roof’ and so on. We then
select one of the detected objects as our pseudo target ac-
cording to the semantic similarity of object classes and the
Euclidean distances of the objects’ center points compared
to annotated target object. In this way, we convert the object
grounding setting in SOON datset similar to the setting in
REVERIE dataset, whose goal is to select one object from
all candidate objects. In inference, we utilize the orientation
of the selected object as our object grounding prediction.

B.3. Evaluation Metrics

Due to the different settings for object grounding in
REVERIE and SOON datasets, definitions of success in the
two datasets are different. In REVERIE dataset, the success
is defined as arriving at a location where the target object is
visible and selecting the target object among all annotated
candidate objects in the panorama of the location. In SOON
dataset, an agent succeeded in carrying out an instruction if
it arrives 3 meters near to one of the target locations and the

1As shown in https://github.com/ZhuFengdaaa/SOON/
issues/1, Zhu et al. [8] do not release the split in their original pa-
per. Therefore, performance comparisons on SOON dataset are based on
their challenge report https://scenario-oriented-object-
navigation.github.io/.

2As shown in https://github.com/ZhuFengdaaa/SOON/
issues/2, about 50% polygons constructed by the annotated four cor-
ners do not contain the objects’ center point.

12

https://github.com/ZhuFengdaaa/SOON/issues/1
https://github.com/ZhuFengdaaa/SOON/issues/1
https://scenario-oriented-object-navigation.github.io/
https://scenario-oriented-object-navigation.github.io/
https://github.com/ZhuFengdaaa/SOON/issues/2
https://github.com/ZhuFengdaaa/SOON/issues/2

Table 8. Dataset statistics. #house, #instr denote the number of houses and instructions respectively.

VLN Task Dataset
Train Val Seen Val Unseen Test Unseen

#house #instr #house #instr #house #instr #house #instr

Object-oriented
REVERIE [7] 60 10,466 46 1,423 10 3,521 16 6,292

SOON [8] 34 2,780 2 113 5 339 14 1,411

Fine-grained
R2R [2] 61 14,039 56 1,021 11 2,349 18 4,173
R4R [21] 59 233,532 40 1,035 11 45,234 - -

Table 9. Ablation of balance factor λ in the fine-tuning loss.

Navigation Object Grounding
OSR SR SPL RGS RGSPL

0 53.00 48.22 33.00 32.12 22.04
0.2 51.07 46.98 33.73 32.15 23.03
0.5 52.06 46.98 32.38 32.43 22.72
1 50.33 45.64 32.54 30.19 21.50

predicted orientation of target object’s center point is inside
of the annotated polygon of the object in the location.

B.4. Training Details

REVERIE: In pretraining, we combine the original dataset
with augmented data synthesized by our speaker model. We
pretrain DUET with the batch size of 32 for 100k iterations
using 2 Nvidia Tesla P100 GPUs. Then we use Eq. (12)
presented in the main paper to fine-tune the policy with the
batch size of 8 for 20k iterations on a single Tesla P100.
The best epoch is selected by SPL on val unseen split.
SOON: As the size of SOON dataset is much smaller
than REVERIE dataset and the instructions are much more
complicated, we do not synthesize instructions for SOON
dataset. We pretrain model using the original instructions
and our automatically cleaned object bounding boxes for
40k iterations with batch size of 32. We fine-tune the model
for 40k iterations with batch size of 2 on a single Tesla P100
and select the best model by SPL on val unseen split.
R2R: Following previous works [14, 15, 26], we adopt aug-
mented R2R data [26] in pretraining. We pretrain the model
for 200k interations with batch size of 64. We fine-tune the
model for 20k iterations with batch size of 8.

C. Additional Ablations

C.1. Balance factor λ in fine-tuning objective

Table 9 presents the performance of using different λ in
the fine-tuning objective in Eq. (12) of the main paper. The
larger λ, the more important of the behavior cloning. We
can see that over-emphasizing behavior cloning is harmful
to the exploration ability. The model with λ = 1 achieves

Go to second level hallway next to the kitchen and clean the photo above the
black bench and that is closest to the kitchen.

ss

DueTDUET

Go to the brown bedroom on level 2 at the end of the hall and open the left
window.

DueTHAMT

DueTDUET DueTHAMT

Figure 6. Predicted trajectories of DUET and the state-of-the-art
HAMT [15] on REVERIE val unseen split. The green and check-
ered flags denote start and target locations respectively.

the worst OSR and SR. Removing behavior cloning (λ = 0)
achieves good navigation performance such as in OSR, SR
and SPL, but it is less competitive in object grounding. We
think this is because the agent fails to navigate to target lo-
cations in its sampled trajectories, and is unable to train the
object grounding module. However, the agent is guaranteed
to arrive at target locations in behavior cloning.

C.2. Backtrack ratio in inference

The backtrack action indicates that the agent does not
select a neighboring node from the local action space but
jumps to a previously partially observed node through the
global action space. We compute the backtrack ratio for
DUET. On the REVERIE val seen split, DUET only back-
tracks in 13.7% of the predicted trajectories; while on the
REVERIE val unseen split, DUET backtracks in 48.6% of

13

exit the roped off hall, follow the red carpet, turn right, continue straight
down the red carpet, enter room at the end, stop once inside the room.

ss

HAMT [30]DueTHAMT HAMT [15]

DueTDUET

Walk all the way forward passing all the picture frames on the wall on your
left. Enter the corner on your left with the arch layout, and stop there.

DueTDUET

DueTHAMT

DueTHAMT

Figure 7. Predicted trajectories of DUET and the state-of-the-art
HAMT [15] on R2R val unseen split. The green and checkered
flags denote start and target locations respectively.

its predicted trajectories. As the agent has the capacity to
memorize house structures in seen environments, it can di-
rectly find the target location without much exploration in
seen environments. However, when the agent is deployed in
unseen environments, it has to explore more to find the tar-
get location specified by high-level instructions. When step-
by-step instructions are given such as in R2R dataset, we
observe the backtrack ratio significantly decreases to 23.2%
on val unseen split, which matches our expectation.

C.3. Fusion weights of coarse and fine scales

We observe that the agent typically puts more weights
on the fine-scale module in the beginning and at the end of
the navigation, and on the coarse-scale module in the mid-
dle. Quantitatively, the average weight of the coarse-scale
module is 0.36 in the beginning, 0.45 in the middle, and
0.42 at the end. The agent may not need to backtrack at
early steps, so it relies more on the local fine-scale module.

Then, the agent needs to explore so the global coarse-scale
module gets more attention. When deciding where to stop,
the agent should identify the target object and the fine-scale
module is emphasized again.

C.4. Failure analysis

We perform an additional quantitative evaluation on the
REVERIE dataset. For navigation, we measure whether an
agent stops at the target room type (e.g. a bathroom) or at
the correct location. We obtain the following results: (a) in-
correct room type: 29.82%; (b) correct room type + incor-
rect location: 23.20%; (c) correct location: 46.98%. This
shows that fine-grained scene understanding remains chal-
lenging. With respect to object grounding, once an agent
reaches the correct location, the object can be correctly lo-
calized 68.43% of the time.

D. Qualitative Examples

Figure 6 visualizes some examples of our DUET and the
state-of-the-art HAMT [15] model on REVERIE dataset. In
both the cases, the agents explore an incorrect direction in
the first attempt. However, DUET is able to efficiently ex-
plore another direction towards the goal. Figure 7 shows
some examples on R2R dataset. Though step-by-step in-
structions are provided, the instruction can still be ambigu-
ous. For example, both directions of the start point in the top
example of Figure 7 can “exit the rope off hall”. DUET is
also better at correcting its previous decisions when it finds
that the followup instructions do not match with the visual
observations.

We further provide some failure cases in REVERIE and
R2R datasets in Figure 8. In the top example of Fig-
ure 8, there are several bathrooms in the house and our
DUET model arrives at one of bathroom. However, the
arrived bathroom does not contain the fine-grained objects
specified in the instruction. It suggests that our model still
needs to improve the fine-grained object grounding capa-
bility. The bottom example presents three different instruc-
tions for the same trajectory on R2R dataset. The agent
succeeds in following the first instruction, but fails for the
other two instructions. We observe that the predictions are
not very robust across different language instructions.

14

REVERIE: Go to the living room and ipe
down the end table.

go to the bathroom on the second floor
inside of the room with teddy bear on the
chair and clean the the first picture close to
the door. (✗)

R2R: Leave the closet and bedroom. In the hall, go down the stairs.
Stop on the third stair from the top.

ss

REVERIE: Go to the living room and ipe
down the end table.

Go to the bathroom on level 2 that has a
grounded towel rack with two red towels on it
where above said rack is a depiction of an
angel praying and bring me one of the photos
closest to the entrance of the room. (✗)

REVERIE: Go to the living room and ipe
down the end table.

Go to the bathroom that has red towels
with white stripes and dust off the photo
that is closest to the doorway. (✗)

REVERIE: Go to the living room and ipe
down the end table.

Walk past the counters and exit the kitchen.
Wait next to the landscape painting on the
wall. (✔)

DueTHAMT

REVERIE: Go to the living room and ipe
down the end table.

Walk between the two kitchen islands and
then turn right. Pass through the stone
archway and stop just after you pass
through it. Wait there. (✗)

REVERIE: Go to the living room and ipe
down the end table.

Walk through the kitchen. Walk through the
archway to the left of the stove. Wait at the
framed landscape painting. (✗)

Figure 8. Predicted trajectories of DUET on REVERIE val unseen split (top) and R2R val unseen split (bottom). The green and checkered
flags denote start and target locations respectively.

15

