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- Let's talk about how we're gonna do 
this thing.

- Mark and Vanessa are willing
to negotiate an open adoption.

- Hey, man.

- Hey, Vijay. How's it going?

- Did you hear? Juno MacGuff's pregnant.
- Yeah.

- And also, um...

- I think I'm in love with you.
- You mean, as friends?

- No. I mean, for real.

- Someday, you'll be back here, honey… 
on your terms.

Mac is Juno’s father

Juno suggests to Mark Vijay runs with Paulie Juno confesses to Paulie Mac consoles Juno

(Mac, Juno)

(Juno, Paulie)

(Juno, Mark)

(Vijay, Paulie)

Juno and Paulie are lovers

Juno and Mark are strangers

Vijay and Paulie are classmates

Figure 1: The goal of this work is to jointly predict interactions and relationships between all characters in movies. Some interactions are
based on dialog (e.g. suggests, confesses), some are primarily visual (e.g. runs with), and others are based on a fusion of both modalities
(e.g. consoles). The colored rows at the bottom highlight when a pair of characters appear in the movie timeline. Their (directed) relationships
are presented at the right. Example clips obtained from the movie Juno, 2007.

Abstract
Interactions between people are often governed by their

relationships. On the flip side, social relationships are built
upon several interactions. Two strangers are more likely to
greet and introduce themselves while becoming friends over
time. We are fascinated by this interplay between interac-
tions and relationships, and believe that it is an important
aspect of understanding social situations. In this work, we
propose neural models to learn and jointly predict inter-
actions, relationships, and the pair of characters that are
involved. We note that interactions are informed by a mix-
ture of visual and dialog cues, and present a multimodal
architecture to extract meaningful information from them.
Localizing the pair of interacting characters in video is a
time-consuming process, instead, we train our model to learn
from clip-level weak labels. We evaluate our models on the
MovieGraphs dataset and show the impact of modalities,
use of longer temporal context for predicting relationships,
and achieve encouraging performance using weak labels as
compared with ground-truth labels. Code is online.1

1https://annusha.github.io/LIReC/

1. Introduction

A salient aspect of being human is our ability to interact
with other people and develop various relationships over
the period of our lives. While some relationships drive the
typical interactions experienced by a pair of people in a
top-down manner (e.g. parents customarily love and nurture
their children); almost all social (non-family) relationships
are driven through bottom-up interactions (e.g. strangers
become friends over a good chat or a shared drink) [21].
For an intelligent agent to truly be a part of our lives, we
will need it to assimilate this complex interplay and learn to
behave appropriately in different social situations.

We hypothesize that a first step in this direction involves
learning how people interact and what their relationships
might be. However, training machines with live, real world,
experience-based data is an extremely complicated proposi-
tion. Instead, we rely on movies that provide snapshots into
key moments of our lives, portraying human behavior at its
best and worst in various social situations [47].

Interactions and relationships have been addressed sepa-
rately in literature. Interactions are often modeled as simple
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actions [19, 36], and relationships are primarily studied in
still images [29, 43] and recently in videos [30]. However,
we believe that a complete understanding of social situations
can only be achieved by modeling them jointly. For example,
consider the evolution of interactions and relationships be-
tween a pair of individuals in a romantic movie. We see that
the characters first meet and talk with each other and gradu-
ally fall in love, changing their relationship from strangers
to friends to lovers. This often leads to them getting married,
followed subsequently by arguments or infidelity (a strong
bias in movies) and a falling out, which is then reconciled
by one of their friends.

The goal of our work is to attempt an understanding of
these rich moments of peoples’ lives. Given short clips from
a movie, we wish to predict the interactions and relationships,
and localize the characters that experience them throughout
the movie. Note that our goals necessitate the combination
of visual as well as language cues; some interactions are
best expressed visually (e.g. runs with), while others are
driven through dialog (e.g. confesses) – see Fig. 1. As our
objectives are quite challenging, we make one simplifying
assumption - we use trimmed (temporally localized) clips in
which the interactions are known to occur. We are interested
in studying two important questions: (i) can learning to
jointly predict relationships and interactions help improve
the performance of both? and (ii) can we use interaction
and relationship labels at the clip or movie level and learn to
identify/localize the pair of characters involved? We refer to
this as weak track prediction. A solution for the first question
is attempted using a multi-task formulation operating on
several clips spanning the common pair of characters, while
the second uses a combination of max-margin losses with
multiple instance learning (see Sec. 3).

Contributions. We conduct our study on 51 movies from
the recently released MovieGraphs [47] dataset (see Sec. 4.2).
The dataset annotations are based on free-text labels and
have long tails for over 300 interaction classes and about
100 relationships. To the best of our knowledge, ours is
the first work that attempts to predict interactions and long-
term relationships between characters in movies based on
visual and language cues. We also show that we can learn
to localize characters in the video clips while predicting
interactions and relationships using weak clip/movie level
labels without a significant reduction in performance.

2. Related Work

We present related work in understanding actions/interac-
tions in videos, studying social relationships, and analyzing
movies or TV shows for other related tasks.

Actions and interactions in videos. Understanding actions
performed by people can be approached in many different
ways. Among them, action classification involves predicting

the dominant activity in a short trimmed video clip [24, 41],
while action localization involves predicting the activity as
well as temporal extent [15, 39, 51]. An emerging area in-
volves discovering actions in an unsupervised manner by
clustering temporal segments across all videos correspond-
ing to the same action class [2, 25, 38].

Recently, there has been an interest in creating large-
scale datasets (millions of clips, several hundred classes) for
learning actions [1, 5, 11, 18, 34] but none of them reflect
person-to-person (p2p) multimodal interactions where sev-
eral complex actions may occur simultaneously. The AVA
challenge and dataset [19] is composed of 15 minute video
clips from old movies with atomic actions such as pose,
person-object interactions, and person-person interactions
(e.g. talk to, hand wave). However, all labels are based on
a short (3 second) temporal window, p2p actions are not
annotated between multiple people, and relationship labels
are not available. Perhaps closest to our work on studying
interactions, Alonso et al. [36] predict interactions between
two people using person-centered descriptors with tracks.
However, the TV-Human Interactions dataset [36] is limited
to 4 visual classes in contrast to 101 multimodal categories
in our work. As we are interested in studying intricate mul-
timodal p2p interactions and long-range relationships, we
demonstrate our methods on the MovieGraphs dataset [47].

Recognizing actions in videos requires aggregation of
spatio-temporal information. Early approaches include
hand-crafted features such as interest points [26] and Im-
proved Dense Trajectories [48]. With end-to-end deep learn-
ing, spatio-temporal 3D Convolutional Neural Networks
(e.g. I3D [5]) are used to learn video representations re-
sulting in state-of-the-art results on video understanding
tasks. For modeling long-videos, learning aggregation func-
tions [16, 33], subsampling frames [49], or accumulating
information from a feature bank [50] are popular options.

Relationships in still images. Most studies on predicting
social relationships are based on images [14, 17, 29, 40, 43].
For example, the People in Photo Albums (PIPA) [54] and
the People in Social Context (PISC) datasets [29] are popular
among social relationship recognition. The latter contains
5 relationship types (3 personal, 2 professional), and [29]
employs an attention-based model that looks at the entire
scene as well as person detections to predict relationships.
Alternately, a domain based approach is presented by Sun et
al. [43] that extends the PIPA dataset and groups 16 social re-
lationships into 5 categories based on Burgental’s theory [4].
Semantic attributes are used to build interpretable models
for predicting relationships [43].

We believe that modeling relationships requires looking
at long-term temporal interactions between pairs of people,
something that still image works do not allow. Thus, our
work is fundamentally different from above literature.

Social understanding in videos. Understanding people in



videos goes beyond studying actions. Related topics include
clustering faces in videos [22, 45], naming tracks based on
multimodal information [35, 44], studying where people
look while interacting [13, 32], predicting character emo-
tions [10, 47], modeling spatial relations between objects
and characters [27, 42, 55], recognizing actions performed
in groups [3, 8], predicting effects for characters [56], pro-
ducing captions for what people are doing [37, 7], answer-
ing questions about events, activities, and character mo-
tivations [28, 46, 23], reasoning about social scenes and
events [52, 53], understanding social relationships [30, 47],
and meta-data prediction using multiple modalities [6].

Perhaps most related to our work on predicting relation-
ships are [30, 31]. Lv et al. [31] present the first dataset for
modeling relationships in video clips, and propose a multi-
stream model to classify 16 relationships. More recently,
Liu et al. [30] propose a graph network to capture long-term
and short-term temporal cues in the video. Different from
above works, we address predicting relationships between
pairs of characters in an entire movie. We propose a joint
model for interactions and relationships as they may influ-
ence each other, and also localize the characters in the video.

3. Model

In this section, we present our approach towards pre-
dicting the interactions and relationships between pairs of
characters (Sec. 3.1), and localizing characters in the video
as tracks (Sec. 3.2).

Notation. We define A as the set of all interaction labels,
both visual and spoken (e.g. runs with, consoles); andR as
the set of all relationship labels between people (e.g. parent-
child, friends). We process complete movies, where each
movieM consists of three sets of information:

1. Characters CM = {c1, . . . , cP }, each cj representing a
cluster of all face/person tracks for that character.

2. Trimmed video clips annotated with interactions
TM = {(v1, a

∗
1, c1j , c1k), . . . , (vN , a

∗
N , cNj , cNk)},

where vi corresponds to a multimodal video clip, a∗i ∈
A is a directed interaction label, and cij is used to de-
note the tracks for character cj in the clip vi.

3. Directed relationships between all pairs of characters
RM = {rijk = relationship(vi, cj , ck)} for all clips
i ∈ [1, N ]. For simplicity of notation, we assign a
relationship label rijk to each clip. However, note that
relationships typically span more than a clip, and often
the entire movie (e.g. parent-child).

For each clip vi, our goal is to predict the primary in-
teraction ai, the characters cij and cik that perform this
interaction, and their relationship rijk. In practice, we pro-
cess several clips belonging to the same pair of characters
as predicting relationships with a single short clip can be
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Figure 2: Normalized correlation map between (selected) interac-
tions and relationships. Darker regions indicate higher scores.

quite challenging, and using multiple clips helps improve
performance.

We denote the correct pair of characters in a tuple
(vi, a

∗
i , cij , cik) from T as p∗i = (cij , cik), and the set of

all character pairs as PM = {(cj , ck)∀j, k, j 6= k}.
Note that the interaction tuples in T may be temporally

overlapping with each other. For example, Jack may look
at Jill while she talks to him. We deal with such interaction
labels from overlapping clips in our learning approach by
masking them out in the loss function.

3.1. Interactions and Relationships in a Clip

Fig. 2 shows example correlations between a few selected
interactions and all 15 relationships in our dataset. We ob-
serve that interactions such as obeys go together with worker-
manager relationships, while an enemy may shoot, or pull (a
weapon), or commit a crime. Motivated by these correlations,
we wish to learn interactions and relationships jointly.

When the pair of characters that interact is known, we pre-
dict their interactions and relationships using a multi-modal
clip representation Φ(vi, p

∗
i ) ∈ RD. As depicted in Fig. 3, Φ

combines features from multiple sources such as visual and
dialog cues from the video, and character representations by
modeling their spatio-temporal extents (via tracking).

Interactions. We use a two-layer MLP with a classification
layer WI2 ∈ R|A|×D,bI2 ∈ R|A| to predict interactions
between characters. The score for an interaction a in clip v
is computed as

sI(v, a) = σI(wI2
a · ReLU(WI1Φ(v, p∗) + bI1) + bI2

a ),
(1)

where σ(·) represents the sigmoid operator. We learn the
clip representation parameters along with the MLP by mini-
mizing the max-margin loss function for each sample

LI(v) =
∑

ā∈A\OI(v)
ā 6=a∗

[mI − sI(v, a∗) + sI(v, ā)]+ , (2)

where [·]+ is a ReLU operator, mI is the margin, and OI(v)
is the set of interaction labels from clips temporally over-
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- I like that.

-What do you like about it?

-All of it. It's a family. Just the 

way you said. 
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0.69    asks
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0.64    watches

0.35    explains

0.27    talks to

0.72    friend

0.33    stranger

0.27    manager

φR
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Interactions
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Figure 3: Model architecture. Left: Our input is a trimmed video clip for one interaction, and consists of visual frames and all dialogues
within its duration. Each interaction is associated with two characters, and they are represented visually by extracting features from cropped
bounding boxes. Modalities are processed using fixed pre-trained models (BERT for textual, I3D for visual) to extract clip representations
denoted by Φ(v). Right: In the second panel, we show the architecture of our joint interaction and relationship prediction model. In
particular, multiple clips are used to compute relationships, and we fuse these features while computing interaction labels.

lapping with v. The loss encourages our model to asso-
ciate the correct interaction a∗ with the clip v, while push-
ing other non-overlapping interaction labels ā away. Dur-
ing inference, we predict the interaction for a clip v as
â = arg maxa sI(v, a).
Relationships. While interactions are often short in duration
(few seconds to a minute), relationships in a movie may last
for several minutes to the entire movie. To obtain robust
predictions for relationships, we train a model that observes
several trimmed video clips that portray the same pair of
characters. Let us denote Vjk ⊂ {v1, . . . , vN} as one such
subset of clips that focus on characters cj and ck. In the
following, we drop the subscripts jk for brevity.

Similar to predicting interactions, we represent indi-
vidual clips of V using Φ, apply a pooling function g(·)
(e.g. avg, max) to combine the individual clip representa-
tions as Φ(V, p∗) = g(Φ(v, p∗)) and adopt a linear classifier
WR ∈ R|R|×D,bR ∈ R|R| to predict relationships. The
scoring function

sR(V, r) = σr
(
wR

r Φ(V, p∗) + bRr
)

(3)

computes the likelihood of character pair p∗ from the clips
V having relationship r. We train model parameters using a
similar max-margin loss function

LR(V ) =
∑
r̄∈R
r̄ 6=r∗

[mR − sR(V, r∗) + sR(V, r̄)]+ , (4)

that attempts to score the correct relationship r∗ higher than
others r̄. Unlike LI , we assume that a single label applies
to all clips in V . If a pair of characters change relationships
(e.g. from strangers to friends), we select the set of clips V
during which a single relationship is present. At test time,
we predict the relationship as r̂ = arg maxr sR(r, V ).

Joint prediction of interactions and relationships is per-
formed using a multi-task formulation. We consider multiple
clips V and train our model to predict the relationship as
well as all interactions of the individual clips jointly. We
introduce a dependency between the two tasks by concate-
nating the clip representations for interactions ΦI(v, p∗) and
relationships ΦR(V, p∗). Fig. 3 visualizes the architecture
used for this task. We predict interactions as follows:

sI(v, V, a) = σ(wI2
a ·ReLU(WI1[ΦI(v, p∗); ΦR(V, p∗)])).

(5)
Linear layers include biases, but are omitted for brevity.
The loss function LI(v) now uses sI(v, V, a), but remains
unchanged otherwise. The combined loss function is

LIR(V ) = LR(V ) +
λ

|V |
∑
v∈V

LI(v) , (6)

where λ balances the two losses.

3.2. Who is interacting?

Up until now, we assumed that a clip v portrays two
known characters that performed interaction a. However,
movies (and the real world) are often more complex, and
we observe that several characters may be interacting simul-
taneously. To obtain a better understanding of videos, we
present an approach to predict the characters along with the
interactions they perform, and their relationship.

While the interaction or relationship may be readily avail-
able as a clip-level label, localizing the pair of characters
in the video can be a tedious task as it requires annotating
tracks in the video. We present an approach that can work
with such weak (clip-level) labels, and estimate the pair of
characters that may be interacting.
Predicting interactions and characters. As a first step, we
look at jointly predicting interactions and the pair of charac-



ters. Recall that p∗i denotes the correct pair of characters in a
clip tuple consisting of vi, and PM is the set of all character
pairs in the movie. We update the scoring function (Eq. 1)
to depend on the chosen pair of characters p ∈ PM as

sIC(v, a, p) = σ(wI2
a · ReLU(WI1Φ(v, p))) , (7)

where Φ(v, p) now encodes the clip representation for any
character pair p (we use zeros for unseen characters). We
train our model to predict interactions and the character pair
by minimizing the following loss

LIC(v) =
∑

ā∈A\OI (v)
p̄∈PM

(ā,p̄)6=(a∗,p∗)

[mIC − sIC(v, a∗, p∗) + sIC(v, ā, p̄)]+ . (8)

If we consider the scoring function sIC(v, a, p) as a matrix
of dimensions |PM |×|A|, the negative samples are taken
from everywhere except columns that have an overlapping
interaction labelOI(v), and the element where (ā = a∗, p̄ =
p∗). At test time, we compute the character pair prediction
accuracy given ground-truth (GT) interaction, interaction
accuracy given GT character pair, and joint accuracy by
picking the maximum score along both dimensions.
Training with weak labels. When the GT character pair
p∗ is not known during training, we modify the loss from
Eq. 8 by first choosing the pair p̂∗ that scores highest for the
current parameters and a∗, that is known during training.

p̂∗ = arg max
p

sIC(v, a∗, p) , (9)

Lweak
IC (v) =

∑
ā∈A\OI(v), ā 6=a∗

p̄∈PM

[mIC − sIC(v, a∗, p̂∗) + sIC(v, ā, p̄)]+ .

(10)

In contrast to the case when we know GT p∗, we discard
negatives from the entire column (a = a∗) to prevent minor
changes in choosing p̂∗ from suppressing other character
pairs. In practice, we treat sIC(v, a∗, p) as a multinomial
distribution and sample p̂∗ from it to prevent the model from
getting stuck at only one pair. Inference is performed in a
similar way as above.
Hard negatives. Training a model with max-margin loss
can affect performance if the loss is satisfied (= 0) for most
negative samples. As demonstrated in [12], choosing hard
negatives by using max instead of

∑
can help improve

performance. We adopt a similar strategy for selecting hard
negatives, and compute the loss over all character pairs with
their best interaction, i.e.

∑
p̄∈PM

maxā(·) in Eq. 8 and 10.
Prediction of interactions, relationships, and characters.
We present the loss function used to learn a model that jointly
estimates which characters are performing what interactions
and what are their relationships. Similar to Eq. 7, we first
modify the relationship score to depend on p:

sRC(V, r, p) = σ(wR
r g(Φ(V, p)) + bRr ) . (11)

This is used in a weak label loss function similar to Eq. 10.

p̂∗ = arg max
p

sRC(V, r∗, p) + sIC(v, a∗, p) , (12)

Lweak
RC (V ) =

∑
r̄∈R, r̄ 6=r∗

p̄∈PM

[mRC − sRC(V, r∗, p̂∗) + sRC(V, r̄, p̄)]+ ,

(13)

Lweak
IRC (V ) = Lweak

RC (V ) +
λ

|V |
∑
v∈V

Lweak
IC (v) . (14)

During inference, we combine the scoring functions sIC
and sRC to produce a 3D tensor in |PM |×|A|×|R|. As
before, we compute character pair accuracy given GT a∗ and
r∗, interaction accuracy given GT p∗ and r∗, and relationship
accuracy given GT p∗ and a∗. We are also able to make
joint predictions on all three by picking the element that
maximizes the tensor over all three dimensions.

4. Experiments
We start by describing implementation details (Sec. 4.1),

followed by a brief analysis of the dataset and the challenging
nature of the task (Sec. 4.2). In Sec. 4.3 we examine inter-
action and relationship prediction performance as separate
and joint tasks. Sec. 4.4 starts with learning interactions and
estimating the pair of characters simultaneously. Finally, we
also discuss predicting relationships jointly with interactions
and localizing character pairs. We present both quantitative
and qualitative evaluation throughout this section.

4.1. Implementation Details

Visual features. We extract visual features for all clips using
a ResNeXt-101 model [20] pre-trained on the Kinetics-400
dataset. A batch of 16 consecutive frames is encoded, and
feature maps are global average-pooled for the clip represen-
tation, and average pooled over a region of interest (ROIPool)
to represent characters. Given a trimmed clip vi, we max
pool above extracted features over the temporal span of the
clip to pick the most important segments.
Dialog features. To obtain a text representation, all dia-
logues are first parsed into sentences. A complete sentence
may be as short as a single word (e.g. “Hi.”) or consist of
several subtitle lines. Multiple lines are also joined if they
end with “...”. Then, each sentence is processed using pre-
trained BERT-base model with a masked sentence from the
next person if it exists. We supply a mask for every sec-
ond sentence as done in the sentence pair classification task
(for more details, c.f . [9]). We max pool over all sentences
uttered in a trimmed clip to obtain a final representation.

Note that every clip always has a visual representation.
In the absence of dialog or tracks, we set the representations
for missing modalities to 0.
Clip representation Φ. We process the feature vector corre-
sponding to each modality obtained after max pooling over



the temporal extent with a two-layer MLP. Dropout (with
p = 0.3), ReLU and tanh(·) non-linearities are used in the
MLP. The final clip representation is a concatenation of all
modalities (see Fig. 3 left).

Multi-label masking. As multiple interactions may occur
at the same time or have overlapping temporal extents with
other clips, we use masking to exclude negative contribu-
tions to the loss function by such labels. OI(v), the labels
corresponding to the set of clips overlapping with v, are
created by checking for an overlap (IoU) greater than 0.2.

Learning. We train our models with a batch size of 64, and
use the Adam optimizer with a learning rate of 3e-5.

4.2. Dataset

We evaluate our approach on the MovieGraphs
dataset [47]. The dataset provides detailed graph-based an-
notations of social situations for 7600 scenes in 51 movies.
Two main types of interactions are present—detailed inter-
actions (e.g. laughs at) last for a few seconds and are often a
part of an overarching summary interaction (e.g. entertains)
that may span up to a minute. We ignore this distinction for
this work and treat all interactions in a similar manner. These
hierarchical annotations are a common source of multiple
labels being associated with the same timespan in the video.

The total number of interactions is different from the num-
ber of p2p instances as some interactions involve multiple
people. For example, in an interaction where a couple (cj
and ck) listens to their therapist (cl), two p2p instances are
created: cj → listens to→ cl and ck → listens to→ cl.

The dataset is partitioned into train (35 movies), vali-
dation (7 movies) and test (9 movies) splits. The train set
consists of 15,516 interactions (and 20,426 p2p instances)
and 2,676 pairs of people with annotated relationships. Val-
idation and test sets have 3,992 and 5,380 p2p instances
respectively, and about 600 relationship pairs each.

Missing labels. A relationship label is available for 64% of
the interactions in which at least two people participate. For
a pair of people associated with an interaction, both have
track features for 76% of the dataset. In other cases one or
no characters appear due to failure in tracking or being out
of the scene. For evaluation, we only consider samples that
have a relationship, or when a pair of characters appear.

Merging interaction and relationship labels. We reduce
the number of interaction labels from 324 to 101, and rela-
tionships from 106 to 15 to mitigate severe problems of long
tail with only 1-3 samples per class. However, the merging
does not adversely affect the diversity of classes, e.g. reas-
sures, wishes, informs, ignores are different interactions in
our label set related to communication.

We adopt a hierarchical approach to merge interactions.
Firstly, all classes are divided into 4 categories: (i) informa-
tive or guiding (e.g. explains, proposes, assists, guide) (ii)

Modalities Interaction Accuracy
Visual Dialog Tracks Top-1 Top-1 Soft Top-5

3 - - 18.7 24.6 45.8
- 3 - 22.4 30.1 50.6
3 3 - 25.0 31.9 54.8
3 3 3 26.1 32.6 57.3

Table 1: Interaction prediction accuracy for different modalities.

involving movement (e.g. hits, plays, embraces, catches);
(iii) neutral valence (e.g. avoids, pretends, reads, searches);
and (iv) negative valence (e.g. scolds, mocks, steals, com-
plains). Within each of the subclasses we merge interactions
based on how similar their meanings are in common usage –
this process is verified by multiple people.

We also reduce the number of relationships to 15 major
classes: stranger, friend, colleague, lover, enemy, acquain-
tance, ex-lover, boss, worker, manager, customer, knows-by-
reputation, parent, child and sibling.
Directed interactions and relationships are used between
one person to another. For example when a parent→ informs
→ child, the opposite directed interaction from the child
to their parent can be listens to or ignores. Additionally,
interactions and relationships can also be bidirectional, both
people act with the same intention e.g. lovers kiss each other.

4.3. Predicting Interactions and Relationships

We first present results for predicting interactions and
relationships separately, followed by our joint model.
Interaction classification. We analyze the influence of each
modality for interaction classification separately in Table 1.
Dialogs have a stronger impact on model performance as
compared to visual features owing to the prevalence of con-
versation based interactions in movies. However, both modal-
ities are complementary and when taken together provide
a 2.6% increase in accuracy. As expected, combining all
modalities including tracks for each participating character
provide the highest prediction accuracy at 26.1%.

Apart from accuracy, we report soft accuracy, a metric
that treats a prediction as correct when it matches any of the
interactions overlapping with the clip, i.e. â ∈ a∗ ∪ OI(v).
When using all modalities, we achieve 32.6% accuracy.

In Fig. 4 we see two example interactions that are chal-
lenging to predict based on visual cues alone. In the top
example, we see that the ground-truth label reads is empha-
sized, possibly due to the dialog mentioning letters, and is
chosen with highest score upon examining the visual tracks.
The bottom example is an interesting case where no dialog
(all 0 vector) helps predictions. In this case, our model seems
to have learned that leaving corresponds to walking without
any dialog. Again, by including information about tracks,
our model is able to predict the correct label.

We also investigate the influence of different temporal
feature aggregation methods in Table 4. Max-pooling outper-
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Figure 4: Influence of different modalities on interaction prediction
performance. In each example, we show the top 5 interactions
predicted by the visual cues (left), the visual + dialog cues (center),
and visual + dialog + track information (right). The correct label is
marked with a green bounding rectangle. Discussion in Sec. 4.3.

forms both average and sum as it allows to form the clip-level
representations including the most influential segments.

Relationship classification. Relationships are often consis-
tent for long durations in a movie. For example, strangers
do not become friends in one moment, and parents always
stay parents. We hypothesize that it is challenging to predict
a relationship by watching one interaction, and show the
impact of varying the number of clips (size of V ) in Fig. 5.
We see that the relationship accuracy improves steadily as
we increase the number of clips. The drop at 6 clips is within
variance. We choose 18 clips as a trade-off between per-
formance and speed. During training, we randomly sample
up to 18 clips for the same pair of people having the same
relationship. At test time, the clips are fixed and uniformly
distributed along all occurrences of pairs of character.

Joint prediction for interactions and relationships. We
set the loss trade-off parameter λ = 1.5 and jointly optimize
the network to predict interactions and relationships. We
evaluate different options on how the two tasks are modeled
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y Figure 5: Relationship accu-
racy increases as we analyze
more clips. We choose 18
clips as a trade-off between
performance and speed.

Task Random Int. only Rel. only Joint

Interaction 0.99 26.1 - 26.3
Relationship 6.67 - 26.8 28.1

Table 2: Top-1 accuracy for the joint prediction of Int. and Rel.

Method Int. Rel.

Rel. ↔ Int. 25.3 26.8
Rel. ← Int. 26.3 25.9
Rel. → Int. 26.3 28.1

Table 3: Different architectures
for joint modeling of interac-
tions and relationships.

Method Int.

avg 24.2
sum 25.4
max 26.1

Table 4: Impact of tempo-
ral aggregation methods on
interaction accuracy.

Supervision Negatives
Multinom. Accuracy
Sampling Int. Character Joint

Random - - 0.99 15.42 0.15

Full sum - 25.5 55.0 14.2

Weak sum - 18.9 20.0 4.6
Weak sum 3 25.1 25.0 7.8
Weak sum-max 3 23.0 32.3 8.2

Table 5: Joint prediction of interactions and character pairs for
fully and weakly supervised settings. See Sec. 4.4 for a discussion.

jointly in Table 3. Overall, concatenating relationship fea-
ture for predicting interactions performs best (Rel. → Int.).
Table 2 shows that the relationship accuracy improves by
1.3%, while interactions gain a meagre 0.2%.

On further study, we observe that some interactions
achieve large improvements, while others see a drop in per-
formance. For example, interactions such as hugs (+17%),
introduces (+14%), and runs (+12%), are associated with
specific relationships: siblings, child, lover with hugs; enemy,
lover with runs. On the other hand, a few other interactions
such as talks to, accuses, greets, informs, yells see a drop
in performance from 1-8%, perhaps as they have the same
top-3 relationships: friend, colleague, stranger.

Relationships show a similar trend. Sibling, acquain-
tance, lover correspond to specific interactions such as hugs,
greets, kisses and improve by 11%, 8%, and 7% respectively.
While boss and manager have rather generic interactions
asks, orders, explains and reduce by 5-7%.

We observe that joint learning does helps improve per-
formance. However, interactions performed by people with
common relationships, or relationships that exhibit common
interactions are harder for our joint model to identify lead-
ing to small overall improvement. We believe this is made
harder due to the long tail classes.

4.4. Localizing Characters

We present an evaluation of character localization and
interaction prediction in Table 5. We report interaction
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friend

parent

child

stranger

PredictClip Given

Who?

- You don't like Victoria? 

- She laughs like a hyena.

- Is this true?

- Sort of, a little bit. Tell 
them what you did. 

talks 

What

 relationship?

Doing

what?

Joint prediction

talks toparenta)

parentb)

nothingd)

parentc) talks to

Figure 6: Example for joint prediction of interaction (Int), relation-
ship (Rel), and character pair (Char) by our model. The visual clip,
dialog, and possible track pairs are presented on the left. Given
2 pieces of information, we are able to answer the third: Who?
Int + Rel → Char; Doing what? Char + Rel → Int; and What
relationship? Char + Int→ Rel. We can also jointly predict all
three components by maximizing scores along all dimensions of
the 3D tensor. Best seen on screen with zoom.

Supervision Negatives
Multinom. Accuracy
Sampling Int. Rel. Char. Joint

Random - - 0.99 6.67 15.42 0.01

Full sum - 25.8 16.6 88.3 2.71

Weak sum 3 25.8 12.0 42.0 0.86
Weak sum-max 3 20.8 21.8 33.9 2.14

Table 6: Joint interaction, relationship, and character pair pre-
diction accuracy. Other labels are provided when predicting
columns: Int., Rel., and Char. See Sec. 4.4 for a discussion.

accuracy given the correct character pair; character pair
prediction accuracy given the correct interaction; and the
overall accuracy as joint.
Training with full supervision. In the case when the pair
of characters are known (ground-truth pair p∗ is given), we
achieve 25.5% accuracy for interactions. This is comparable
to the setting where we only predict interactions (at 26.1%).
We believe that the difference is due to our goal to maximize
the score for the correct interaction and character pair over
the entire matrix |PM |×|A|. The joint accuracy is 14.2%,
significantly higher than random at 0.15%.

Training with weak supervision. Here, interaction labels
are applicable at the clip-level, and we are unaware of which
characters participate in the interaction even during training.
Table 5 shows that sampling a character pair is better than
arg max in Eq. 9 (4.6% vs. 7.8% joint accuracy) as it pre-
vents the model from getting stuck at a particular selection.
Furthermore, switching training from sum over all negatives
to hard negatives (sum-max) after a burn-in period of 20
epochs further improves accuracy to 8.2%.

Joint character localization, interaction and relationship
prediction is presented in Table 6. In the case of learning
with GT character pairs (fully supervised), including learning
of relationships boosts accuracy for predicting character
pairs to an impressive 88.3%. The interaction accuracy also

All methods Supervision
Accuracy

Int. Rel. Char. Joint

Int only - 20.7 - - -
Rel only - - 22.4 - -
Int + Rel - 20.7 20.5 - -

Int + Char Full 19.7 - 52.8 11.1
Int + Char Weak 17.9 - 29.7 6.34

Int + Rel + Char Full 20.0 18.6 88.8 2.29
Int + Rel + Char Weak 15.6 29.6 21.6 1.50

Table 7: Evaluation on the test set. The columns Int., Rel, and Char
refer to interaction, relationship, and character pair prediction accu-
racy. During joint learning with full/weak supervision, individual
accuracies are reported when other labels are given.

increases to 25.8% as compared against 25.5% when training
without relationships (Table 5).

When learning with weak labels, we see similar trends
as before. Both multinomial sampling and switching from
all (sum) to hard (sum-max) negatives improves the joint
accuracy to a respectable 2.14% as compared to 2.71% with
full supervision. Fig. 6 shows an example prediction from
our dataset. We present joint prediction when no information
is provided in part d in contrast to parts a, b, c where two of
three pieces of information are given.

Test set. Table 7 compiles results of all our models on the
test set. We see similar trends, apart from a drop in relation-
ship accuracy due to different val and test distributions.

Overall, we observe that learning interactions and rela-
tionships jointly helps improve performance, especially for
classes that have unique correspondences, but needs further
work on other categories. Additionally, character localiza-
tion is achievable and we can train models with weak labels
without significant drop in performance.

5. Conclusion

We presented new tasks and models to study the interplay
of interactions and relationships between pairs of charac-
ters in movies. Our neural architecture efficiently encoded
multimodal information in the form of visual clips, dialog,
and character pairs that were demonstrated to be comple-
mentary for predicting interactions. Joint prediction of in-
teractions and relationships was found to be particularly
beneficial for some classes. We also presented an approach
to localize character pairs given their interaction/relationship
labels at a clip-level, i.e. without character-level supervision
during training. We will share modifications made to the
MovieGraphs dataset to promote future work in this exciting
area of improving understanding of human social situations.
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