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Figure 1: An example from the MovieGraphs dataset. Each of the 7637 video clips is annotated with: 1) a graph that captures the characters
in the scene and their attributes, interactions (with topics and reasons), relationships, and time stamps; 2) a situation label that captures the
overarching theme of the interactions; 3) a scene label showing where the action takes place; and 4) a natural language description of the
clip. The graphs at the bottom show situations that occur before and after the one depicted in the main panel.

Abstract
There is growing interest in artificial intelligence to build

socially intelligent robots. This requires machines to have
the ability to “read” people’s emotions, motivations, and
other factors that affect behavior. Towards this goal, we in-
troduce a novel dataset called MovieGraphs which provides
detailed, graph-based annotations of social situations de-
picted in movie clips. Each graph consists of several types of
nodes, to capture who is present in the clip, their emotional
and physical attributes, their relationships (i.e., parent/child),
and the interactions between them. Most interactions are
associated with topics that provide additional details, and
reasons that give motivations for actions. In addition, most
interactions and many attributes are grounded in the video
with time stamps. We provide a thorough analysis of our
dataset, showing interesting common-sense correlations be-
tween different social aspects of scenes, as well as across

scenes over time. We propose a method for querying videos
and text with graphs, and show that: 1) our graphs contain
rich and sufficient information to summarize and localize
each scene; and 2) subgraphs allow us to describe situa-
tions at an abstract level and retrieve multiple semantically
relevant situations. We also propose methods for interac-
tion understanding via ordering, and reason understanding.
MovieGraphs is the first benchmark to focus on inferred
properties of human-centric situations, and opens up an
exciting avenue towards socially-intelligent AI agents.

1. Introduction
An important part of effective interaction is behaving

appropriately in a given situation. People typically know
how to talk to their boss, react to a worried parent or a
naughty child, or cheer up a friend. This requires proper
reading of people’s emotions, understanding their mood,
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motivations, and other factors that affect behavior. Further-
more, it requires understanding social and cultural norms,
and being aware of the implications of one’s actions. The
increasing interest in social chat bots and personal assis-
tants [1, 4, 18, 22, 27, 42] points to the importance of teach-
ing artificial agents to understand the subtleties of human
social interactions.

Towards this goal, we collect a novel dataset called
MovieGraphs (Fig. 1) containing movie clips that depict
human-centric situations. Movies are a rich source of infor-
mation about behavior, because like people in the real world,
movie characters face a variety of situations: they deal with
colleagues at work, with family at home, with friends, and
with enemies. Past situations lead to new situations, relation-
ships change over time, and we get to see the same character
experience emotional ups and downs just as real people do.
The behavior of characters depends on their interpersonal
relationships (e.g. family or friends), as well as on the social
context, which includes the scene (e.g. bar) and situation
(e.g. date). We use graphs to describe this behavior because
graphs are more structured than natural language, and allow
us to easily ground information in videos.

The MovieGraphs dataset consists of 7637 movie clips
annotated with graphs that represent who is in each clip,
the interactions between characters, their relationships, and
various visible and inferred properties such as the reasons
behind certain interactions. Each clip is also annotated with
a situation label, a scene label (where the situation takes
place), and a natural language description. Furthermore, our
graphs are visually and temporally grounded: characters in
the graph are associated with face tracks in the clip, and most
interactions are associated with the time intervals in which
they occur.

We provide a detailed analysis of our dataset, show-
ing interesting common-sense correlations between differ-
ent social aspects of situations. We propose methods for
graph-based video retrieval, interaction understanding via
ordering, and understanding motivations via reason predic-
tion. We show that graphs contain sufficient information
to localize a video clip in a dataset of movies, and that
querying via subgraphs allows us to retrieve semantically
meaningful clips. Our dataset and code will be released
(http://moviegraphs.cs.toronto.edu), to inspire fu-
ture work in this exciting domain.

The rest of this paper is structured as follows: in Sec. 2,
we discuss related work; Sec. 3 describes our dataset; Sec. 4
introduces the models we use for video retrieval, interaction
ordering, and reason prediction; Sec. 5 presents the results
of our experiments; and we conclude in Sec. 6.

2. Related Work
Video Understanding. There is increasing effort in de-
veloping video understanding techniques that go beyond

classifying actions in short video snippets [19, 26], towards
parsing more complex videos [5, 35, 36]. A large body
of work focuses on identifying characters in movies or TV
series [6, 10, 33, 38] and estimating their poses [9]. Steps to-
wards understanding social aspects of scenes have included
classifying four visual types of interactions [31], and predict-
ing whether people are looking at each other [25]. [8, 29]
find communities of characters in movies and analyze their
social networks. In [11], the authors predict coarse social
interaction groups (e.g. monologue or dialog) in ego-centric
videos collected at theme parks. In the domain of affective
computing, the literature covers user studies of social behav-
ior [14]. However, we are not aware of any prior work that
analyzes and models human-centric situations at the level of
detail and temporal scale that we present here. Additionally,
our annotations are richer than in Hollywood2 [2] (action
labels vs interaction graphs), and more detailed than Large
Scale Movie Description Challenge (LSMDC) [3] (single
sentence vs short descriptions).

Video Q&A. Other ways to demonstrate video understand-
ing include describing short movie clips [34, 37, 41, 47] and
answering questions about them [13, 16, 28, 40]. However,
these models typically form internal representations of ac-
tions, interactions, and emotions, and this implicit knowl-
edge is not easy to query. We believe that graphs may lead
to more interpretable representations.

Graphs as Semantic Representations. Recently, there
has been increasing interest in using graphs as structured
representations of semantics. Johnson et al. [15] introduce
scene graphs to encode the relationships between objects in
a scene and their attributes, and show that such graphs im-
prove image retrieval compared to unstructured text. Recent
work aims to generate such scene graphs from images [43].

While retrieval methods using structured prediction ex-
ist, ours is the first to use video. Thus the potentials in our
model are very different, as we deal with a different prob-
lem: analyzing people. Our graphs capture human behavior
(e.g. encourages) that is inferred from facial expressions,
actions, and dialog. In contrast, [15] deals with spatial rela-
tionships between objects in images (e.g. in front of ).

Semantic Role Labeling. [23, 44, 45] deal with recogniz-
ing situations in images. This task involves predicting the
dominant action (verb) as well as the semantic frame, i.e. a
set of action-specific roles. However, these works focus on
static images with single actions, while we focus on movie
clips (videos and dialogs) and tackle different tasks.

3. The MovieGraphs Dataset
We construct a dataset to facilitate machine understand-

ing of real-world social situations and human behaviors. We
annotated 51 movies; each movie is first split into scenes
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TRAIN VAL TEST TOTAL

# Movies 34 7 10 51
# Video Clips 5050 1060 1527 7637
Desc #Words 35.53 34.47 34.14 35.11
Desc #Sents 2.73 2.45 2.91 2.73
Characters 3.01 2.97 2.9 2.98
Interactions 3.18 2.48 3.11 3.07
Summary Int. 2 2.06 2.05 2.02
Relationships 3.12 2.77 3.52 3.15
Attributes 13.59 14.53 13.79 13.76
Topics 2.64 2.7 2.68 2.65
Reasons 1.66 1.53 2.17 1.74
Timestamps 4.23 4.34 4.68 4.34
Avg. Duration 43.96 43.90 45.61 44.28

Table 1: Statistics of the MovieGraphs dataset across train, vali-
dation, and test splits. We show the number of movies and clips;
their average duration (sec); the number of words/sentences in
descriptions; and average counts of each type of node per graph.

automatically [39] and then the boundaries are refined man-
ually such that each clip corresponds to one social situation.

We developed a web-based annotation tool that allows
human annotators to create graphs of arbitrary size by explic-
itly creating nodes and connecting them via a drag-and-drop
interface. Two key points of our dataset are that each anno-
tator: 1) creates an entire graph per clip, ensuring that each
graph is globally coherent (i.e., the emotions, interactions,
topics make sense when viewed together); and 2) annotates
a complete movie, so that the graphs for consecutive clips
in a movie are also coherent—this would not be possible if
annotators simply annotated randomly-assigned clips from a
movie. We provide details on annotation and dataset below.

3.1. Annotation Interface

Our annotation interface allows an annotator to view
movie clips sequentially. For each clip, the annotator was
asked to specify the scene and situation, write a natural lan-
guage summary, and create a detailed graph of the situation,
as depicted in Fig. 1. We describe each component of the
annotation:

The scene label provides information about the location
where the situation takes place, e.g. office, theater, airport.

The situation label corresponds to the high-level topic
of the clip, and summarizes the social interactions that occur
between characters, e.g. robbery, wedding.

The description provides a multi-sentence, natural lan-
guage summary of what happens in the clip, based on video,
dialog, and any additional information the annotator inferred
about the situation.

The graph represents a human’s understanding of a given
situation. Our graphs feature 8 different types of nodes, with
edges between them to indicate dependencies. We allow the
annotator to choose the directionality of each edge. A graph
consists of the following node types:

Character nodes represent the people in a scene. We
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Figure 2: Emotional timelines of the three main characters in
“Match Point.” The emotions are correlated with situations and
relationships between characters.

provide a comprehensive list of character names obtained
from IMDb1, which the annotators can drag and drop onto
the graph canvas.

Attributes can be added to character nodes. The cate-
gories of attributes are: age, gender, ethnicity, profession,
appearance, mental and emotional states.

Relationship nodes can link two or more characters. The
relationships can refer to: family (e.g. parent, spouse), friend-
ship/romance (e.g. friend, lover), or work (e.g. boss, co-
worker). A relationship node can be tagged with a start/end
token if it starts or ends in a given clip (e.g. the spouse re-
lationship starts in a wedding clip). Otherwise, we assume
that the characters were already in the relationship prior to
the scene (e.g. already married).

Interaction nodes can be added to link two or more char-
acters. Interactions can be either verbal (e.g. suggests, warns)
or non-verbal (e.g. hugs, sits near). They can be directed
(from one character to another, e.g. A helps B), or bidirec-
tional if the interaction is symmetric (e.g. A and B argue).
A summary interaction captures the gist of several local
interactions. Typically there is a single directed summary
interaction from each character to the other (e.g. argues),
while there may be many local ones (e.g. asks, replies).

Topic nodes can be added to interactions to add further
details. For example, the interaction suggests may have the
topic to quit the job.

Reason nodes can be added to interactions and attributes
to provide motivations. For example, apologizes (interac-
tion) can be linked to he was late (reason). Reasons can
also be added to emotions: for example, happy (emotion)
can be linked to she got engaged (reason). Reason nodes
contain inferred common-sense information. See Table 2 for
examples of topics and reasons.

Time stamp nodes ground the graph in the video clip,
by providing the time interval in which an interaction or
emotional state takes place (e.g. a character is sad, then (s)he
becomes happy).

We also perform automatic face tracking, and ask annota-
tors to assign a character name to each track (or mark as false
positive). Thus, character nodes are grounded in videos.

1http://www.imdb.com/
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3.2. Data Collection Procedure

We hired workers via the freelance website Upwork. We
worked closely with a small group of annotators, to ensure
high-quality annotations. The workers went through a train-
ing phase in which they annotated the same set of clips
according to an instruction manual. After gathering annota-
tions, we also had a cross-checking phase, where annotators
swapped movies and checked each others’ work.

3.3. Dataset Statistics

Our dataset consists of 7637 annotated clips from 51
movies. Dataset statistics are shown in Table 1. The majority
of the clips contain between 2 and 4 characters, and a graph
has on average 13.8 attributes and 3.1 interactions. Fig. 3
shows the distributions of the top 20 emotion attributes, inter-
actions, and situations. We show correlations between node
types for a selected set of labels in Fig. 6, and the most com-
mon social aspects of scenes associated with the situation
party, to showcase the insight offered by our dataset.

The dataset annotations allow us to follow a character
throughout a movie. Fig. 2 shows the emotions experienced
by the three main characters of the movie “Match Point,”
clip by clip. The emotions make sense when viewed in the
context of the situations: when the characters flirt, they are
happy; when they talk about problematic issues (pregnancy,
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Figure 5: Flow of situations aggregated from all movies.

the truth, the affair), they are angry. Fig. 4 shows the emo-
tional profiles of characters from the movie “The Social
Network,” obtained by aggregating the characters’ emotions
over all clips.

In movies, like in real life, situations follow from other
situations. In Fig. 5, we present a tree of situations rooted
at rescue; this is essentially a knowledge graph that shows
possible pairwise transitions between situations.

4. Situation Understanding Tasks
Graphs are an effective tool for capturing the gist of a

situation, and are a structured alternative to free-form rep-
resentations such as textual descriptions. We propose three
tasks to demonstrate different aspects of situation under-
standing: 1) video clip retrieval using graphs as queries; 2)
interaction sorting; and 3) reason prediction. In this section,
we describe these tasks and propose models to tackle them.

4.1. Graph-Based Situation Retrieval

Here we aim to use graphs as queries to retrieve relevant
clips from our dataset, where each clip consists of video
and dialog. We assume our query is a graph G = (V, E)
consisting of different types of nodes vtype ∈ V and edges
between them. We use the notation vch , vatt , vrel , vint ,
vtopic , and vreason to denote character, attribute, relation-
ship, interaction, topic, and reason nodes. Character nodes
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Interaction: “asks”

Topic Reason

who she is she is pretty
is this love at first sight can’t stop looking at her
if he is sober he is the driver
about the speech he’s the best man
about wedding gifts list he needs to buy one
for help he is late again
if he is for bride or groom to determine seating area
for time alone to think

Table 2: Topics and reasons associated with the interaction “asks”
in the movie “Four Weddings and a Funeral.”

are the backbone of the graph: all other nodes (except for
topics and reasons) link to at least one character node. To
ease notation, we consider the scene and situation labels as
disconnected nodes in the graph, vsc and vsi, respectively.

To perform retrieval, we aim to learn a real-valued func-
tion Fθ(M,G) that scores the similarity between a movie
clip M and the query graph G, where Fθ should score the
highest for the most relevant clip(s). At test time, we are
interested in retrieving the clip with the highest similarity
with G. We design Fθ to exploit the structure of the graph
and evaluate it against a clip in a semantically meaningful
way. In particular, we reason about the alignment between
character nodes in the graph and face/person tracks in the
video. Given an alignment, we score attributes, interactions,
and other nodes accordingly.

Each clip M typically contains several video shots. We
automatically parse each clip to obtain face tracks in each
shot, and cluster tracks with similar faces across shots. To
model interactions and relationships, we extend the face de-
tection boxes to create full-body person tracks. We represent
each cluster cj with a feature vector xj , and a pair of clusters
(cj , ck) with a feature vector xjk. Global information about
the clip is captured with a feature vector xscene. Additional
details are provided in Sec. 4.1.2.

We define a random variable z = (z1, . . . , zN ) which
reasons about the alignment between character nodes vchi and
face clusters, zi ∈ {1, . . . ,K}. Here, N is the number of

character nodes in the query G, and K is the number of face
clusters in the clip. We restrict z to map different nodes to
different clusters, resulting in all permutations z ∈ P (K,N).
In practice, N = 5 and K = 7.

We define a function that scores a graph in the video clip
given an alignment z as follows:

Fθ(M,G, z) = φsc(v
sc) + φsi(v

si)

+
∑
i

(
φch(v

ch
i , zi) + φatt(Vatti , zi)

)
+
∑
i,j

φint(Vintij , zi, zj) +
∑
i,j

φrel(Vrelij , zi, zj). (1)

The set of attributes associated with character i is Vatti =
{vattk : (i, k) ∈ E} and the set of interactions between a
pair of characters (i, j) is Vintij = {vintk : (i, k), (k, j) ∈ E},
where all edges are directed. The set of relationships is
defined similarly. Here, φ are potential functions which
score components of the graph in the clip. Each φ also
depends on the clip M and learned parameters θ, which we
omit for convenience of notation.

We now describe each type of potential in more detail. To
form the query using the graph, we embed each node label
using word embeddings. For nodes that contain phrases,
we mean-pool over the words to get a fixed length repre-
sentation atype (where type is att, int, etc.). In our case,
atype ∈ R100 (GloVe [32]). We learn two linear embeddings
for each type, W type

g for query node labels and W type
m for

observations, and score them in a joint space. We share Wg

across all node types to prevent overfitting.

Video-Based Potentials. The attribute unary potential
computes the cosine similarity between node embeddings
and visual features:

φatt(Vatti , zi) =
〈
Wg

∑
vk∈Vatt

i

aattk ,W att
m xattzi

〉
. (2)

A similar potential is used to score the scene vsc and situation
vsi labels with video feature xscene (but does not depend on



z). Furthermore, we score pairwise dependencies as:

φtype(Vtypeij , zi, zj) =
〈
Wg

∑
vk∈Vtype

ij

atypek ,W type
m xzizj

〉
(3)

with type ∈ {rel , int}.
Scoring Dialog. To truly understand a situation, we need
to consider not only visual cues, but also dialog. For this, we
learn a function Q to score a query G with dialog D as:

Q(D,G) =
∑
vk∈V

∑
i

max
j

((Wgak,i)
T (Wdxdj )) , (4)

where ak,i is the GloVe embedding of the ith word in node
vk, and xdj is the embedding of the jth dialog word. This
finds the best matching word in the dialog for each word
in the graph, and computes similarity by summing across
all graph words. We initialize the matrices Wg and Wd

to identity, because GloVe vectors already capture relevant
semantic information. To take into account both video and
dialog, we perform late fusion of video and dialog scores
(see Sec. 5.1).
Person Identification. To classify each face cluster as one
of the characters, we harvest character and actor images
from IMDb. We fine-tune a VGG-16 [30] network on these
images, combined with our video face crops, using a triplet
loss (i.e., minimizing the Euclidean distance between em-
beddings of two positive examples wrt a negative pair). To
compute φch(vchi , zi), we find the embedding distance be-
tween the face track and each movie character, and convert
it into a probability. For details, see Suppl. Mat. D.

4.1.1 Learning and Inference

Learning. Our training data consists of tuples
(Gn,Mn, zn): for each graph we have an associated
clip and ground-truth alignment to face clusters. We learn
the parameters of Fθ using the max-margin ranking loss:

Lθ =
∑
(n,n′)

max(0, 1−(Fθ(Gn,Mn, zn)−Fθ(Gn,Mn′ , zn′))) ,

(5)
where n′ is an index of a negative example for Gn. In
practice, we sample three classes of negatives: 1) clips from
other movies (different characters, therefore easy negatives);
2) different clips from the same movie (medium difficulty);
or 3) the same clip with different alignments zn′ (same
characters, aligned with the clip incorrectly, therefore hard
negatives). We train the dialog model Q(D,G) similarly,
with a max-margin ranking loss that does not involve z. We
use the Adam optimizer [17] with learning rate 0.0003.
Inference. We perform an exhaustive search over all clips
and alignments to retrieve the most similar clip for the query
graph G:

M∗ = argmax
n

(
max

z
Fθ(G,Mn, z)

)
. (6)

4.1.2 Implementation Details
Video Features. To obtain a holistic video representa-
tion, we process every fifth frame of the video using the
Hybrid1365-VGG model [46] and extract pool5 features.
We mean pool over space and time to obtain one representa-
tion xscene ∈ R512 for the entire clip. For each face cluster,
we compute age and gender predictions [20] (Eq. 2, xagezi ,
xgenzi ) and extract features from another CNN trained to pre-
dict emotions [21] (Eq. 2, xattzi ). This allows us to score
unary terms involving attributes.

We extend the face detections to obtain person detec-
tions and tracks that are used to score pairwise terms. We
represent each person track by pooling features of spatio-
temporal regions in which the person appears. Specifically,
xzizj (Eq. 3) is computed by stacking such person track fea-
tures [xpzi ;x

p
zj ]. Note that ordered stacking maintains edge

directions (vchi → vint,rel → vchj ).
Text. We evaluate two representations for text modalities:
(i) TF·IDF [24], where we use the logarithmic form; and (ii)
GloVe [32] word embeddings. Similar to [40], scoring the
dialogs with TF·IDF involves representing the graph query
and dialog text as sparse vectors (R|vocab|) and computing
their cosine similarity. We explore two pooling strategies
with word embeddings: 1) max-sum (Eq. 4); and 2) max-sum
· idf, which weighs words based on rarity.

4.2. Interaction Ordering

Predicting probable future interactions on the basis of
past interactions, their topics, and the social context is a
challenging task. We evaluate interaction understanding via
the proxy task of learning to sort a set of interactions into a
plausible order (Table 5). We present a toy task wherein we
take the interactions between a pair of characters, and train
an RNN to choose interactions sequentially from the set, in
the order in which they would likely occur. We represent
an interaction and corresponding topic by the concatena-
tion of their GloVe embeddings, with an additional digit
appended to indicate the direction of the interaction. We
train an attention-based decoder RNN to regress interaction
representations: at each time step, it outputs a vector that
should be close to the embedding of the interaction at that
step in the sequence. We use a single-layer GRU [7], and
condition on a 100-d context vector formed by applying lin-
ear layers on the situation, scene, relationship, and attribute
embeddings. We zero-mask one interaction from the input
set at each time step, to ensure that the model does not se-
lect the same interaction multiple times. Masking is done
with teacher-forcing during training, and with the model’s
predictions at test time. For details, see Suppl. Mat. B.

4.3. Reason Prediction

Given information about the scene in the form of at-
tributes of each character, their relationship, and an interac-



tion in which they are engaging, we aim to predict plausible
reasons for why the interaction took place. Scene and situa-
tion labels are also used, to provide global context.

As in previous tasks, we first represent the relevant nodes
by their GloVe embeddings. The characters are identity
agnostic and are represented as a weighted combination of
their attributes. We encode individual components of the
sub-graph (scene, situation, interaction, relationship) through
linear layers and learn a 100-d context vector.

Our decoder is a single-layer GRU with 100 hidden units
that conditions on the scene description (context vector), and
produces a reason, word by word. As is standard, the de-
coder sees the previous word and context vector at each time
step to generate the next word. To obtain some variability
during sampling, we set the temperature to 0.6. We train the
model end-to-end on the train and val sets (leaving out a few
samples to choose a checkpoint qualitatively), and evaluate
on test. Please refer to Suppl. Mat. C for details.

5. Experimental Results
The MovieGraphs dataset is split into train, val, and test

sets with a 10:2:3 ratio of clips (see Table 1), and no overlap-
ping movies. We learn model parameters on train, choose
checkpoints on val, and present final evaluation on test.

Face Clustering and Person Identification. On average,
our clips have 9.2 valid face tracks which form 2.1 ground-
truth clusters. For face clustering, we obtain a weighted
clustering purity of 75.8%, which is reasonable, as we do not
filter background characters or false-positive tracks. Person
identification (ID) for a large number of movies spanning
many decades is hard, due to the differences between IMDb
gallery images and video face tracks. We obtain a track-level
identification accuracy of 43.7% vs. chance at 13.2%. We
present details in Suppl. Mat. D.

5.1. Graph-based Retrieval

All retrieval results are shown in Table 3. Similar to
image-text retrieval (e.g. Flickr8k [12]), we use the following
metrics: median rank and recall at K (1, 5, 10). Unless
mentioned otherwise, we assume that the entire graph is used
as part of the query. The first two rows show the performance
of a random retrieval model that may or may not know the
source movie.

Description Retrieval. Our first experiment evaluates the
similarity between graphs and clip descriptions. We use
the three models described in Sec. 4.1.2: TF·IDF, max-sum,
and max-sum · idf. We consistently obtain median rank 1
(Table 3, rows 3-5), possibly due to descriptive topics and
reasons, and character names that help localize the scene
well (see Suppl. Mat. A for an ablation study on node types).
Dialog Retrieval. In our second experiment, we aim to
retrieve a relevant clip based on dialog, given a graph. This

Method PersonID TEST
CL ID R@1 R@5 R@10 med.-R

1 random, movie unkn. - - 0.1 0.3 0.7 764
2 random, movie known - - 0.7 3.3 6.6 78

DESCRIPTION
3 TF·IDF - - 61.6 83.8 89.7 1
4 GloVe, max-sum - - 62.1 81.3 87.2 1
5 GloVe, idf · max-sum - - 61.3 81.6 86.9 1

DIALOG
6 TF·IDF - - 31.8 49.8 57.2 6
7 GloVe, max-sum - - 28.0 42.4 50.2 10
8 GloVe, idf · max-sum - - 28.7 43.1 50.2 10

MOVIE CLIP
9 sc - - 1.1 4.3 7.7 141.5
10 sc, si - - 1.0 5.4 8.7 140
11 sc, si, att pr pr 2.2 9.4 15.5 84
12 sc, si, att, rel, int pr pr 2.7 10.9 18.9 59
13 sc, si, att, rel, int pr gt 7.7 28.8 44.9 13
14 sc, si, att, rel, int gt gt 13.0 37.4 50.4 10
15 sc, si, att, rel, int, dlg pr pr 31.6 50.4 56.6 5
16 sc, si, att, rel, int, dlg gt gt 40.4 62.1 71.1 3

Table 3: Retrieval results when using the graph as a query. dlg
refers to dialog. For PersonID, CL and ID indicate clustering and
identification; gt denotes ground-truth, and pr denotes predictions.

is considerably harder, as many elements of the graph are
visual (e.g. kisses) or inferred from the conversation (e.g. en-
courages). We evaluate dialog retrieval with the same models
used for descriptions. Here, GloVe models (rows 7, 8) per-
form worse than TF·IDF (row 6) achieving med.-R 10 vs 6.
We believe that this is because the embeddings for several
classes of words are quite similar, and confuse the model.

Movie Clip Retrieval. Our third experiment evaluates the
impact of visual modalities. Note that if the query consists
only of scene or situation labels, there are multiple clips that
are potential matches. Nevertheless, starting from a random
median rank of 764, we are able to improve the rank to
141.5 (row 9) with the scene label only, and 140 with scene
and situation labels (row 10). Directly mapping high-level
situations to visual cues is challenging.

Similar to the way characters help localize descriptions
and dialogs, person identification helps localization in the
visual modality. If our query consists only of characters, in
the best case scenario of using ground-truth (gt) clustering
and ID, we obtain a median rank of 17. Our predicted (pr)
clustering works quite well, and obtains median rank 19.
Owing to the difficulty of person ID, using pr clustering and
ID pushes the median rank to 69.

Rows 9-16 present an ablation of graph components. We
start with the scene, situation, attributes, and characters (rows
9-11) as part of our query graphs. Including interactions
(+topics) and relationships improves the rank from 84 to 59
(row 12). In a scenario with gt clusters and ID, we see a
large improvement in med.-R from 59 to 10 (rows 13, 14).
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Figure 7: Identity agnostic sub-graph queries and the top-2 retrieved clips, which are from different movies. We search for video clips that
have overall similarity with respect to scene and situation, and also character attributes and emotions. The yellow boxes indicate results that
are quite similar in meaning to the query, and the green boxes indicate ground-truth.

Fully Sorted Accuracy Longest Common Subsequence
40.5% (27%) 0.74 (0.67)

Table 4: Performance of our interaction sorting approach on the
test set. The number in (·) is random chance.

Situation: Conversation with friend

adult

?

male

adult

<None>

C2 male

thanks

C1

colleagues

Scene: Boat

GT: for saving him during the war

PRED: for his help

Situation: Camping

adult

?

male

adult

her 

confidence

C2 female

mocks

C1

strangers

Scene: Campsite

GT: he’s got no problem with women

PRED: the food has an urgent

Figure 8: Example sub-graphs with GT and predicted reasons. The
left one is scored Very relevant, and the right Not relevant. However,
the model’s mistake of relating camping with food is reasonable.

Late Fusion. We combine video and dialog cues using
late fusion of the scores from the models used in rows 8 and
12/14, and see a large increase in performance in both pr-pr
and gt-gt settings (rows 15, 16). This points to the benefits
offered by dialog in our model.
Qualitative Results. We present an example of sub-graph
retrieval in Fig. 7. Even with small queries (sub-graphs) and
identity agnostic retrieval, we obtain interesting results.

5.2. Interaction Ordering
We measure ordering performance using two metrics: (i)

the model’s accuracy at predicting complete sequences; and
(ii) the length of the longest common subsequence (LCS) be-
tween the ground-truth and prediction. Quantitative results
are shown in Table 4. Table 5 shows qualitative examples
of the orderings predicted by our model. The first two se-
quences are correctly sorted by our model, while the third
is a failure case. However, even in the failure case, interac-
tions 2, 3, 4, and 5 are in the correct order (longest common
subsequence), and the entire sequence is plausible.

5.3. Reason Prediction
An interaction can have several distinct and relevant rea-

sons, making automatic scoring using captioning metrics
hard. We ask 10 AMT workers to score 100 sub-graphs and
their predicted reasons as: Very relevant, Semi-relevant, and

GT Pred Dir. Interaction + [Topic]

1 1 → asks [why she’s crying]
2 2 ← explains to [why she is sad]
3 3 → comforts

1 1 → waits for [to end the audition]
2 2 ← informs [audition went bad]
3 3 → suggests [they have a drink]
4 4 ← agrees

1 2 → explains [it’s great to know who he wants]
2 3 → advises [to go visit her]
3 1 ← expresses doubt [she may not like him]
4 6 → encourages
5 4 ← thanks [for the advice]
6 5 ← announces [he is going to her]

Table 5: Qualitative results for ordering interactions. Each interac-
tion is shown with its topic in brackets. The interactions are listed
in their ground-truth order, and the predicted sequence is shown in
the “Pred” column, where the numbers represent the order in which
the interaction is predicted. The→ indicates that C1 initiates the
interaction with C2, and← the reverse.

Not relevant. Fig. 8 shows two examples, along with their GT
and predicted reasons. We are able to obtain a clear verdict
(6 or more annotators agree) on 72 sub-graphs: 11 samples
are rated very relevant, while 10 more are semi-relevant.

6. Conclusion
In this work, we focused on understanding human-centric

situations in videos. We introduced the MovieGraphs dataset,
that contains rich annotations of everyday social situations in
the form of graphs. Our graphs capture people’s interactions,
emotions, and motivations, many of which must be inferred
from a combination of visual cues and dialog. We performed
various statistical analyses of our dataset and proposed three
tasks to benchmark situation understanding: graph-based
video retrieval, interaction understanding via ordering, and
reason prediction. We proposed models for each of the tasks,
that point to their successes and challenges.
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