
Semi-supervised Learning with Constraints
for Person Identification in Multimedia Data
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Abstract

We address the problem of person identification in TV
series. We propose a unified learning framework for multi-
class classification which incorporates labeled and unla-
beled data, and constraints between pairs of features in the
training. We apply the framework to train multinomial lo-
gistic regression classifiers for multi-class face recognition.
The method is completely automatic, as the labeled data
is obtained by tagging speaking faces using subtitles and
fan transcripts of the videos. We demonstrate our approach
on six episodes each of two diverse TV series and achieve
state-of-the-art performance.

1. Introduction

Automatic identification of characters in TV series and
movies is both an important and challenging problem. Per-
son identities are an important source of information in
many higher level multimedia analysis tasks, such as se-
mantic indexing and retrieval, interaction analysis and video
summarization. Recently, multimedia content providers
have started to offer information on cast and characters for
TV series and movies during playback1,2,3, presumably via
a combination of face tracking, automatic identification and
crowd sourcing.

In this paper, we approach the problem of naming char-
acters in TV series as a transductive learning problem with
constraints. Our goal is to automatically identify all charac-
ters by training discriminative multi-class classifiers from
(i) weakly-supervised track labels, (ii) additional unlabeled
data and (iii) automatically generated constraints between
tracks. In contrast to other approaches, we integrate all
three sources of information (i–iii) into a common learning
framework. This allows us to better capture the underly-
ing distribution of the data, resulting in a classifier which

1Hulu Face Match: http://www.hulu.com/labs/tagging
2Amazon/IMDB X-Ray for movies: http://www.imdb.com/x-ray/
3Actor info cards for Google Play Movies & TV
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Figure 1: Overview of our approach for character naming.

subsequently increases recognition performance.

We assume that we have the entire data available at train-
ing time, i.e., we do not need to identify unseen data. For
example, the identification can be performed offline before-
hand if the goal is to display additional information on char-
acters during the playback of a TV episode.

Our contributions in this work are the following: 1. We
propose a multi-class learning framework that takes into ac-
count (weakly-)supervised data, unsupervised data and con-
straints in a joint formulation (Sec. 2). 2. We apply the pro-
posed learning framework to the task of character naming
in TV series (Sec. 3) and achieve state-of-the-art results.
3. We provide an extensive data set, consisting of more than
9200 face tracks from a total of 12 episodes over two TV
series, together with weakly-supervised labels obtained by
matching transcripts and subtitles, to further the research in
the field of automatic person identification/character nam-
ing and related areas (Sec. 4).
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1.1. Related work

Automatic naming of characters in TV series has re-
ceived increasing attention in the last years. While most
work is focused on naming face tracks [5, 10, 13, 14], the
problem has recently been extended to person tracks both to
increase coverage and performance [15]. To avoid manual
labeling of faces for training person models, Everingham et
al. [5] proposed an automatic method to weakly label some
track identities by detecting speakers, and aligning subtitles
and transcripts to obtain identities. This has been adapted
and further refined by others [2, 10, 14]. We use a similar
method in this work to automatically obtain labels for those
tracks which can be detected as speaking. Since speaker
detection is a difficult problem by itself, these labels are
typically noisy and incomplete (i.e., usually only about 20-
30% of the tracks can be assigned a name). In order to
increase the coverage of the weak labeling, one can treat
the names from transcripts as ambiguous labels, i.e., assign
multiple possible names to a face track when the speaking
face cannot be reliably detected (e.g., [3, 10]). Different
loss functions have been proposed to learn from such am-
biguous labels [3, 10]. Köstinger et al. [10] further take into
account unlabeled data with a cross entropy loss between
the expected prior distribution of identities and the model.

Cinbis et al. [1] make use of must-link and cannot-link
constraints in order to learn a face- and cast-specific metric
in order to improve face clustering and identification. How-
ever, they rely on supervised labeling of clusters in order
to perform the actual identification. In [15], we integrate
uniqueness constraints in a second global optimization step.
In a different scenario, Yan et al. [16] identify persons in
a camera network and integrate must-link and cannot-link
constraints in an empirical loss in their learning framework.

More generally, many approaches for semi-supervised
learning have been proposed (e.g., [7]). However, must-link
and cannot-link constraints are usually only considered for
semi-supervised clustering problems, i.e., there are no class
labels associated with the data, and the clustering is only
guided by the constraints (e.g., [12]).

In this work, we bring together learning from weakly
labeled data, unlabeled data and constraints in a common
framework.

2. Semi-supervised learning with constraints

Let Xl = {(xi, yi)}Ni=1 denote training data xi with as-
sociated labels yi ∈ Y . The problem of character nam-
ing is inherently a multi-class problem, thus |Y| = K and,
without loss of generality, we assume Y = {1, . . . ,K}.
We further have additional unlabeled data Xu = {xi}Mi=1

and positive and negative constraints between data points
C = {(xi1,xi2, ci)}Li=1, where ci ∈ {−1,+1}, denotes a
negative and positive constraint, respectively.

We are interested in learning a classifier, which maps a
data point to one of the K classes

Fθ(x) : X → Y , (1)

where θ denotes the parameter set of the classifier. A com-
mon way to learn θ is to define a loss function over the train-
ing data, and then obtain the best θ by minimizing the loss:

θ∗ = argmin
θ
L(y|Xl; θ) . (2)

Different choices of F yield different classifiers, and the
definition of L determines the way in which the parameters
of the classifiers θ are learned. In this paper, we propose
a combined loss function that takes into account (i) labeled
data Xl, (ii) unlabeled data Xu and (iii) constraints C:

L(X ; θ) = L(yl, yc;Xl,Xu, C, θ) (3)
= Ll(yl;Xl, θ) + Lu(Xu, θ) + Lc(yc; C, θ) . (4)

We will now first introduce our model for F , and then
describe the different parts of the loss function in more de-
tail. The influence of different parts of the loss function on
a toy example are visualized in Fig. 2.

2.1. Model

Multinomial logistic regression [8] (MLR) belongs to the
family of log-linear models and is a classical choice for
multi-class classification. One of the advantages of MLR
is that it directly models probabilities of a data point be-
longing to class k with

P (y = k|x; θ) = eθ
T
k x∑

z e
θTz x

(5)

and therefore, P (y = k|x; θ) ∈ [0, 1] and
∑
k P (y =

k|x; θ) = 1. The model is defined by parameter vectors
θk, one for each class. We denote θ = [θ1, · · · , θK ] for the
full parameter set. To classify a sample x under this model,
we compute the most likely class as

Fθ(x) = argmax
k

P (y = k|x; θ) . (6)

Kernelization Multinomial logistic regression can be ex-
tended to non-linear decision boundaries by replacing θTk x
by a function f(x), which, according to the representer the-
orem [9], has the form

f(x) =

n∑
i=1

θkiK(x,xi) , (7)

where K(·, ·) is a positive definite reproducing kernel.
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Figure 2: Visualization of the effect of the different parts of the loss function on a toy example. The denoted error is the joint error on
labeled and unlabeled data. (a) Learning from labeled data (colored data points +/#/O) only. (b) Additionally taking unlabeled data (black
×) into account fits the decision boundaries better to the underlying distribution. (c) With (neg.) constraints the error on the unlabeled
data reduces to 0. (d) Even without labels, it is possible to still find meaningful structure in the data using the entropy and constraint loss,
however, the assignment to the classes turns out to be wrong. (e) Visualization of the entropy loss.

2.2. Supervised loss

For the sake of notational brevity, let use denote
P kθ (x) = P (y = k|x; θ) in the following.

In order to learn the parameters θ of F from labeled
training samples Xl, we use the standard negative log-
likelihood as loss

Ll(yl;Xl, θ) = −
1

N

N∑
i=1

K∑
k=1

1[yi=k] ln(P
k
θ (xi)) + λ||θ||2

(8)
and 1[·] the indicator function. In order to prevent overfit-
ting, we add a regularization term λ||θ||2 whose influence
is controlled by λ.

For MLR, this loss is convex and can be efficiently min-
imized with standard gradient descent techniques. The gra-
dient of Eq. 8 with respect to θ is

∂

∂θk
Ll = 2λθ − 1

N

N∑
i=1

xi ·
(
1[yi=k]− P kθ (xi)

)
. (9)

2.3. Entropy loss for unlabeled data

While the unlabeled data Xu does not carry information
about its class membership, it can be informative about the
distribution of data points in regions without labels. Instead
of placing decision boundaries as far as possible between
labeled samples, we desire that the decision boundaries also
respect the distribution of unlabeled data. That is, the class
boundaries should preferably lie in low-density regions (see
the toy example in Fig. 2 for a visual explanation).

A common way to achieve this is to include an en-
tropy term into the loss function in order to encourage uni-
formly distributed class membership across the unlabeled
data [10, 17]. Instead, we use the entropy function as a
penalty on having the decision boundaries close to unla-

beled data points (see Fig. 2 (e))

h(xi) = −
∑
k

P kθ (xi) ln(P
k
θ (xi)) . (10)

For the loss, we sum over all unlabeled data points

Lu(Xu; θ) =
µ

M

M∑
i=1

h(xi) (11)

= − µ

M

M∑
i=1

∑
k

P kθ (xi) ln(P
k
θ (xi)) ,

where µ controls the relative influence of the loss. For MLR
this leads to the following gradient:

∂

∂θk
Lu = − µ

M

M∑
i=1

[
xiP

k
θ (xi) ·

K∑
c=1

(
1[k = c]− P cθ (xi)

)(
1 + ln(P kθ (xi))

)]
. (12)

2.4. Constraints

Finally, we include pair-wise constraints between train-
ing samples xi1 and xi2. The constraint (xi1,xi2, ci) spec-
ifies whether xi1 and xi2 belong to the same class (ci = 1)
or not (ci = −1). Such constraints arise for example
from temporal relations between face tracks, i.e., two tracks
which temporally overlap cannot belong to the same person,
and can be automatically generated without manual effort.
Note that, in general, we know the class memberships of
neither xi1 nor xi2.

Intuitively, for a negative constraint the product of the
likelihood of features xi1 and xi2 belonging to different



classes

P (yi1 6= yi2) =

K∑
k=1

K∑
l=1
l 6=k

P kθ (xi1)P
l
θ(xi2)

= 1−
K∑
k=1

P kθ (xi1)P
k
θ (xi2) (13)

should be high. We therefore use the negative log-
likelihood of the features belonging to different classes as
loss

Lc(ci; C, θ) = −
γ

L

L∑
i=1

ln(P (yi1 6= yi2))

= − γ
L
ln

(
1−

K∑
k=1

P kθ (xi1)P
k
θ (xi2)

)
.

(14)

Again, we need the derivative of the loss for efficient mini-
mization. The derivative with respect to θk is

∂

∂θk
Lc =

γ

L

L∑
i=1

[(
xi1 + xi2

)
P kθ (xi1)P

k
θ (xi2)−

(
xi1P

k
θ (xi1) + xi2P

k
θ (xi2)

)P (yi1 = yi2)

P (yi1 6= yi2)

]
. (15)

3. Automatic character naming
We apply the proposed learning framework to the task of

character naming in videos. We consider only face tracks
for identification similar to [5, 10, 14], in contrast to our
previous work [15] which builds on person tracks. How-
ever, since [15] relies on identities from face recognition as
input, we can directly improve those results by providing
improved facial identities. We will present some results on
this aspect in the evaluation in Sec. 4.2.

3.1. Pre-processing

Face Tracking For tracking faces, we employ a detector-
based face tracker based on the Modified Census Trans-
form [6]. Our tracker is able to track faces over a wide
range of pose angles (including profile faces and in-plane
rotations of up to 45 degrees), which results in a large num-
ber of tracks in non-frontal poses.

Speaking-Face Detection Keeping in mind the large
amount of multimedia data, we are especially interested in
an identification scheme, that does not require manual su-
pervision. Following [5, 10, 14], we align subtitles with
transcripts from the web in order to combine the timing
component of subtitles with the identities from the tran-
scripts. Using the 9-point facial feature model from [5],
we estimate the locations of eyes, nose and mouth in each

face track. Based on the estimated mouth position, we de-
termine for each face track whether the person is speaking
or not: we follow [5, 14] and compute for each frame the
minimum nearest neighbor distance of the (gray scale, his-
togram equalized) mouth region to the previous frame. By
thresholding the distances, we determine whether a person
is speaking or not.

Feature Extraction We employ a local-appearance-
based method for feature extraction [4]. First, the face is
aligned (warped and cropped) to a size of 48 × 64 pix-
els. The normalized face is split into 8 × 8 blocks, and the
Discrete Cosine Transform (DCT) is computed over each
block. For each block, we ignore the 0th value (average
brightness) and retain the next five coefficients, thus obtain
a 240 dimensional feature vector for each frame in the track.

3.2. Training

Given the face tracks, speaking information and subtitles
associated with names, we obtain three different types of
data from the given videos.

Weakly-labeled data When a subtitle (associated with
a name from the transcripts) coincides with a “speaking”
face track, we label that track with the given identity
and take the corresponding features as supervised samples
Xl = {(xi, yi)}, where yi corresponds to the identity of
the speaker label. Given that both facial feature detection
and speaking-face detection are noisy, we do not expect per-
fectly clean labels from this method. Tbl. 1 shows the pre-
cision and recall (in terms of all tracks) of our speaker de-
tection method for all episodes. “#speaking tracks” denotes
the number of tracks which were determined as speaking,
which is usually less than 30% of the tracks (not all char-
acters speak at the same time). On average, we associate a
name to about 22% of the tracks with a precision of 87%,
which is similar to the reported performances of [5, 10, 14].
While in [10] the problem of noisy labels is explicitly tar-
geted, the regularization of the parameter vector θ (Eq. 8)
penalizes overly complex decision boundaries and prevents
overfitting on noisy labels.

Unlabeled data With only 22% of the face tracks labeled
by the previous method, we are left with around 78% of
the data that has no labels associated with it. We take all
features of the unlabeled tracks as Xu.

Constraints We can automatically deduce constraints be-
tween data points from face tracks. Negative constraints are
formed when two tracks overlap temporally, based on the
assumption that the same person cannot appear twice at the
same time. This is similar to the uniqueness constraint as
used in the model by [15], however, we already employ it
at training time. This poses a problem if there actually are
two tracks of the same (or very similar looking) person at



BBT-1 BBT-2 BBT-3 BBT-4 BBT-5 BBT-6 BF-1 BF-2 BF-3 BF-4 BF-5 BF-6

# characters 6 5 7 8 6 6 12 13 14 15 15 18
# face tracks 622 565 613 581 558 820 764 963 1081 835 786 1084

# unknown tracks 8 2 87 41 82 195 11 126 10 38 94 63
# speaking tracks 206 153 170 163 120 174 178 244 214 227 211 216

spk precision 83.98 91.5 92.35 88.96 90.83 82.76 87.08 85.25 82.24 87.67 89.57 89.35
spk recall 27.81 24.78 25.61 24.96 19.53 17.56 20.29 21.6 16.28 23.83 24.05 17.8

Table 1: Statistics across all videos in the data set showing the number of characters, face tracks and speaker assignment performance.

the same time. Our evaluation data is especially insidious
in that sense since there are two Xanders in episode 5-03
of Buffy (BF-3) (played by identical twins), which actually
often appear together in the same shot.

3.3. Training

We first collect training data from all available episodes,
and train one joint multi-class classifier from supervised
data, unsupervised data and constraints by minimization of
the joint loss function (Eq. 4) via L-BFGS [11].

Taking into account all available training data from mul-
tiple episodes at the same time is unfortunately computa-
tionally infeasible, especially for the kernelized version of
the multinomial logistic regression. We therefore reduce
the data by subsampling, effectively removing features that
were temporally nearby and therefore presumably visually
similar. For the kernel computation we further randomly se-
lect prototypes instead of working with the full kernel ma-
trix. This technically turns the originally transductive learn-
ing problem (with all data available at training time) into
a semi-supervised learning problem, albeit solely for com-
putational reasons. Scaling the learning so that all avail-
able training data can be actually used remains for future
research.

3.4. Identification

For determining the identity yt of a face track t with fea-
tures {x(t)

i }
|t|
i=1 we apply the learned classifier framewise

according to Eq. 6 and compute a class score for the track
having identity k as

pt(k) =
1

|t|

|t|∑
i=1

P (y= k|x(t)
i ) =

1

|t|

|t|∑
i=1

eθ
T
k x

(t)
i∑

z e
θTz x

(t)
i

.

(16)

The track is assigned the identity of the most likely class
over all frames

yt = argmax
k

pt(k) . (17)

Although the outputs of the classifier are in the range [0, 1]
and could be interpreted as probabilities, we take the sum
instead of the product over all frames, which we found to
be more robust to outliers in practice.

Assignment to “unknown” Usually some unknowns
have small speaking roles, and therefore we can automat-
ically collect some training samples for them. We model
unknown characters as one joint class in the model, i.e.,
training data from all unknowns are used as positives for
this class. Thus, no special handling for the unknown class
is required: a new track is assigned the “unknown” identity,
when it is the most likely class according to Eq. 17.

4. Evaluation
4.1. Data set and experimental setup

Our data set4 consists of 12 full episodes from two
TV series. We select episodes 1–6 from season 1 of The
Big Bang Theory (BBT-1 to BBT-6) (as used in [15]), and
episodes 1–6 from season 5 of Buffy the Vampire Slayer
(BF-1 to BF-6) (as used in [5, 10, 14]). The two series are
quite different in their filming style, and therefore also pose
different challenges. The Big Bang Theory is a sitcom (∼20
minutes per episode) with a main cast of 5-8 people and
mostly takes place indoors. It includes many full-view shots
which contain multiple people at a time, however the faces
are rather small (the average face size is around 75px). On
the other hand, Buffy has an average length of ∼40 minutes
per episode, with a main cast size around 12, while in spe-
cific episodes there are up to 18 important characters. Many
shots are set outside and at night, resulting in a large range
of different lighting conditions. However, it also contains a
sizable number of face close-up shots (the average face size
is around 116px).

For an overview on the data set see Table 1. Buffy
episodes contain on average less than double the amount of
face tracks compared to BBT due to the above mentioned
higher number of close-up shots in Buffy. Speaking-face
detection and naming performs equally well on both series,
with on average around 22% recall (of all face tracks) and
around 87% precision.

Table 2 shows the number of face tracks for each iden-
tity accumulated over the six episodes of BBT. The preci-
sion and recall of the speaking-face naming from subtitles
and transcripts reveal that there is a large variation in avail-
able training data across the main cast of Leonard, Sheldon,
Penny, Howard and Raj.

4Available at http://cvhci.anthropomatik.kit.edu/projects/mma



#FaceTr #Speak Spk-Prec Spk-Rec

Leonard 1070 281 91.46 24.02
Sheldon 945 323 90.09 30.79

Penny 512 178 87.08 30.27
Howard 299 78 85.90 22.41

Raj 279 43 69.77 10.75

Mary 95 39 100.00 41.05
Leslie 84 9 88.89 9.52

Kurt 32 8 87.50 21.88
Gabelhauser 16 3 100.00 18.75

Doug 8 0 – –
Summer 4 0 – –

Table 2: The cast list of BBT, the face tracks across all episodes,
and the performance of tagging speaking face tracks automatically.

Guest appearances usually play an important role in the
story of an episode, and identifying them correctly is im-
portant for applications such as video summarization and
multimedia understanding. Thus, we intend to identify all
people whose name is mentioned on screen at least once,
and label the ground truth accordingly. For example, in
BBT there are four minor named characters with less than
35 tracks. In BF-3 there is a double of the main character
“Xander” (played by his twin brother), and we label him as
such “Xander2”, since the role he plays and the distinction
between the two is important to the story of the episode. All
remaining characters (e.g., somebody in the background,
extras) are labeled as “unknown”.

Performance metric We evaluate our approach in terms
of identification accuracy in an open-set id context. We re-
quire all characters to be identified correctly, even when the
automatic speaker assignment does not provide any train-
ing data for them. Unknowns should be identified as “un-
known”. Both assigning a name to an “unknown”, and as-
signing “unknown” to a named character is counted as an
error.

4.2. Experiments

We perform a series of experiments in order to compare
our approach with other approaches and present results in
multiple steps of improvement. Table 3 shows the main
recognition results and we will refer back to it in the fol-
lowing.

Baseline results In order to establish a baseline, and also
compare with previous approaches, we use the automat-
ically generated weak face labels data to train different
supervised-only classifiers.

As the simplest method, we perform Nearest Neighbor
(NN) classification comparable to [5]. It achieves an accu-
racy of 64.2% on BBT and 56.5% on Buffy.

Further, we train Logistic Regression (LR) and Support
Vector Machine (SVM) classifiers in a one-vs-all scheme.
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Figure 3: Confusion matrix over all 6 episodes of BBT for
MLR + Lu + Lc. For Doug and Summer, the automatic labeling
did not find any tracks for training (c.f . Tbl. 2).

For both, we use a polynomial kernel of degree 2, cor-
responding to the setting in [15]. LR and SVM perform
roughly on par. Note that in [15], where also SVMs are
used, face labels were manually supplied, whereas we ob-
tain them automatically from the transcripts. When using
our SVM results as input to [15] (“SVM+MRF” in Table 3),
we obtain a significant improvement to about 82% accuracy
in face recognition. Since we do not have person tracks for
Buffy, we perform this evaluation only for BBT.

SS+Constraints MLR We evaluate our method starting
with the supervised loss only and then add the other loss
terms for incremental improvement. The MLR multi-class
classifier already outperforms both LR and SVM for both
series (77.4% for BBT and 65.82% for Buffy). By adding
additional (unlabeled) data and constraints, we can further
increase the identification accuracy. With the full loss term,
we reach on average about 79.5% accuracy for BBT (al-
most 90% on episode 1) and 66.37% on Buffy. In addition,
we perform 10 runs on 90% of the data (leave out 1 of 10
folds each) and perform a paired t-test against the baseline
(SVM), in which we are able to reject the null-hypothesis
of equal means (p < 0.01). The big drop in accuracy in
BBT-6 can be explained by the large number of unknowns
present in that episode (195 tracks, see Table 1), which are
harder to identify because there is usually no training data
for them. Also, speaking-face precision and recall are sig-
nificantly lower for BBT-6, which is in parts also caused by
unknowns which are incorrectly assumed to be speaking.
Figure 3 shows the confusion matrix over all 6 episodes
of BBT, which confirms the difficulty in identifying un-
knowns.

Curiously, while adding constraints helps more for BBT,



BBT-1 BBT-2 BBT-3 BBT-4 BBT-5 BBT-6 BBT Avg. BF-1 BF-2 BF-3 BF-4 BF-5 BF-6 BF Avg.

Max Prior 37.94 33.98 34.42 17.56 24.19 23.66 28.63 29.97 19.31 18.69 25.75 35.24 14.58 23.92

baseline: NN [5] 72.19 71.86 66.88 59.04 59.50 55.98 64.24 60.34 51.92 55.13 58.92 61.96 50.74 56.50
baseline: one-vs-all LR 88.42 84.60 73.57 73.84 70.97 65.73 76.19 69.50 59.29 66.05 65.87 67.56 60.33 64.77
baseline: one-vs-all SVM [15] 87.46 84.96 74.06 74.87 70.25 66.46 76.34 69.90 59.71 66.23 66.47 68.07 61.44 65.30
baseline: one-vs-all SVM + MRF [15] 94.05 92.21 76.18 79.00 75.63 74.51 81.93 – – – – – – –

ours: MLR 88.59 87.61 76.18 74.01 72.76 65.24 77.40 68.85 61.37 65.96 67.19 69.85 61.72 65.82
ours: MLR + Lu 88.59 87.61 76.35 74.01 72.94 65.24 77.46 71.60 60.54 66.42 67.78 70.10 61.44 66.31
ours: MLR + Lu + Lc 89.23 89.20 78.47 76.59 75.09 68.05 79.44 71.99 61.27 66.60 67.07 69.59 61.72 66.37
ours: MLR + Lu + Lc + MRF [15] 95.18 94.16 77.81 79.35 79.93 75.85 83.71 – – – – – – –

Table 3: Evaluation results. The first line shows the accuracy that could be achieved by assigning each track the most often appearing
person in the series (Leonard for BBT, and Buffy for Buffy). In the middle section of the table, we report baseline results of different
methods on our data set. The bottom section shows the performance of our approach in multiple steps of improvement. MLR denotes the
basic supervised multinomial logistic regression classifier, and Lu and Lc denote the additionally incorporated loss terms.

for Buffy adding unlabeled data helps. The importance of
constraints in BBT can be explained from the fact that BBT
contains many shots with multiple faces, thus allowing con-
straints such as uniqueness to be useful. On the other hand,
Buffy favors close-up face shots, which also results in much
fewer and less diverse constraints. The lack of influence of
unlabeled data in BBT can be explained by the relatively
small cast compared to Buffy, while at the same time hav-
ing many training samples for each of the main characters.

Finally, if we use the face identification results from our
best-performing method as input to the clothing-based MRF
model of [15], we can further increase the performance to
83.71% and thus achieve the best results on the BBT data
set.

Failure analysis We already identified the naming of un-
knowns as one of the error sources (see also Fig. 4 (a)). A
refusal-to-predict scheme, as used for example in [5, 10],
could help to reduce the number of falsely accepted/named
unknowns.

Second, our employed DCT features are – despite the
pre-processing alignment to a normalized pose – far from
pose-invariant. We analyze the identification accuracy de-
pending on the mean pan-angle of the face tracks (see
Fig. 4 (b)). The performance drops significantly for greater
pan angles to about 50% rank-1 performance for |pan| > 75
for BBT. However, at rank 3, we consistently reach around
80% for all pan angles. Pose independent face recognition
has been an active research area for many years, and a more
robust feature should directly have an impact on our recog-
nition performance.

Curiously, there is a drop in performance for frontal
faces. This can be explained by a similar drop in speaker as-
signment recall for those pose angles (see Fig. 4 (c)), which
again can be explained from wide angle shots where usually
multiple persons in near-frontal poses are present, but just
one is speaking.

Similar to the dependency on the average pan angle,
there is a dependency on track length and average face size.

We observe that the identification accuracy decreases for
shorter tracks or tracks with a small average face size.

Finally, for some minor characters we are unable to find
any speaking tracks, e.g. for Doug and Summer, see Tbl. 2.
Therefore, we are unable to correctly identify any face track
that belongs to these characters (see Fig. 3). However, these
only represent a very small portion of the data set (about
0.4%).

5. Conclusion

In this paper, we address the problem of person identi-
fication in multimedia data. We propose to use a unified
learning framework combining both labeled and unlabeled
data, along with their constraints in a principled manner,
and apply it to train multinomial logistic regression classi-
fiers. We also set our goal to identify all the people named
in the video, thus providing full coverage even for guest
appearances. The methods are tested on six episodes each
of two TV series – The Big Bang Theory and Buffy the
Vampire Slayer – and we obtain state-of-the-art results for
person identification.
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