
Reducing the Team Uncertainty Penalty: Empirical and
Theoretical Approaches

Scott Alfeld1, Kumera Berkele2, Stephen DeSalvo1, Tong Pham2,
Daniel Russo3, Lisa Jing Yan4, and Matthew E. Taylor2

1: University of Southern California, 2: Lafayette College, 3: University of Michigan, 4: York University,
Corresponding author: taylorm@lafayette.edu

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial Intelligence

General Terms
Algorithms, Experimentation, Performance

Keywords
DCEE, Team Uncertainty Penalty, Multiagent Exploration

ABSTRACT
While a significant body of work has examined the exploration /
exploitation tradeoff, little has focused on distributed settings. This
paper introduces two novel distributed algorithms that outperform
existing algorithms in this domain. Additionally, this paper pro-
vides a theoretical analysis of one of the algorithms and empiri-
cally validates the predictions, which is the first such analysis in
this problem setting.

1. INTRODUCTION
The tradeoff between exploration and exploitation is a common

topic of study in artificial intelligence, particularly in the context
of reinforcement learning [9] or multi-armed bandit problems [1].
However, such studies have typically focused on single-agent set-
tings. This paper instead examines the question in the context
of the distributed coordination of exploration and exploitation [4]
(DCEE) framework.

The DCEE framework is similar to that of distributed constraint
optimization problems [6, 8] (DCOPs) in that a team of distributed,
cooperative agents work together to maximize a team reward. How-
ever, in a DCEE, agents seek to maximize the team reward over
time (rather than the final reward), and must explore (rather than
having full knowledge provided). As in DCOPs, different amounts
of teamwork can be incorporated into DCEE algorithms, where in-
creased teamwork results in joint decisions between larger groups
of agents. However, unlike in DCOP algorithms [7], increasing
amounts of teamwork can actually decrease the team’s reward, even
without accounting for the increased communication and computa-
tion costs. This result was termed the team uncertainty penalty [10],
where increasing the teamwork can decrease the team’s total reward
in certain circumstances.

The primary contributions of this paper are to 1) discuss an exist-
ing algorithm and show how it may be improved, effectively reduc-

The Sixth Annual Workshop on Multiagent Sequential Decision-
Making in Uncertain Domains (MSDM-2011), held in conjunction
with AAMAS-2011 on May 3, 2011 in Taipei, Taiwan.

ing the team uncertainty penalty; 2) introduce a novel algorithm,
SE-OptimisticPairs, which outperforms existing methods; 3) ana-
lyze the SE-OptimisticPairs algorithm to predict the team perfor-
mance in different situations (the first such analysis for a DCEE
algorithm); 4) empirically show that the predictions are accurate;
and 5) help avoid the uncertainty penalty via these predictions.

2. BACKGROUND
In this section we introduce the DCEE framework, one type of

DCEE solution algorithm, and the team uncertainty penalty.

2.1 DCEE Framework
In a DCEE, there is a set of variables that can take on a range of

values, where each variable is controlled by a single agent. In an
experiment, agents are allowed a set number of rounds, in which
every agent can decide whether or not it should change the values
of the variable(s) it controls. For simplicity, we will assume that
an agent controls a single variable. There is a set of binary re-
ward functions between pairs of agents, where the reward on the
constraint between these two agents is determined by the agents’
variable settings. On any given round, the team’s reward is defined
as the sum of all binary rewards. The agents initially do not know
the matrices defining these different reward functions, but will re-
ceive a reward after setting their values (i.e., at the end of a round),
and thus learn the reward functions over time. The goal of the team
of agents is to maximize the on-line reward, such that the total re-
ward received over all rounds is maximized, necessarily balancing
exploring and exploiting the reward functions.

For example, consider Figure 1, which shows a three agent sys-
tem with two constraints. Currently, each of the three agents have
selected variable setting zero (i.e., x1 = 0, x2 = 0, x3 = 0), which
results in a team reward of 22. One or more of the agents may de-
cide to change their variable setting: agent 1 may select a setting in
[0, k], agent 2 in [0,m] and agent 3 in [0, n]. Rewards are assumed
to be iid with a (possibly known) Gaussian distribution and thus
agents have no reason to prefer one unexplored location over an-
other (represented in the figure as a question mark). Without loss of
generalization, an agent may exploit its past knowledge, or choose
to explore by setting its variable to the next unexplored entry in the
reward matrix.

More formally, a DCEE consists of a set V of n variables, {x1, x2,
. . . , xn}, assigned to a set of agents, where each agent controls one
(or, in the general case, more) variable’s assignment. Agents have
at most T rounds to modify their variables xi, which can take on
any value from the domain Di. The goal of such a problem is for
agents to choose values for the variables such that the cumulative
sum over a set of binary constraints and associated payoff or reward
functions, fij : Di × Dj → <, is maximized over time horizon

2 31

R
1,2 R

2,3
x

x
2

1

0 1

0 ?

?

...

n

? ? ? ?

?

?

?

3

?

15

m

x
2

x
1

0 1

0 7 ?

...

?

?

m

k ? ? ?

?

?

1 ? ?

Figure 1: This figure shows an example 3-agent DCEE. Each
agent controls one variable and the settings of these three vari-
ables determine the reward of the two constraints (and thus the
total team reward).

T ∈ N. The agents attempt to pick a set of assignments (one per
time step: A0, . . . , AT) such that the total reward (i.e., the return)
is maximized:

R =

T∑
t=0

∑
xi,xj∈V

fi,j(di,t, dj,t),

where

di,t ∈ Di, dj,t ∈ Dj , and (xi ← di,t, xj ← dj,t) ∈ At.

Because we assume the agents are distributed, agents may only
talk with their neighbors, or those agents with which they share a
binary reward (we assume that agents know who their neighbors
are, and thus who they share a constraint with). An agent knows
the value of its own variable setting, and it knows the reward of
any binary reward functions it is part of, but it must communicate
with its neighbors to learn their variable settings and/or their (non-
shared) rewards. Increasing amounts of teamwork in DCEE algo-
rithms means that increasing numbers of agents agree to take a joint
move, where the set of agents select new variables, and all agents
that neighbor this set do not change variable settings. Such coor-
dination is important — for instance, if every agent selected a new
variable setting on every turn, the team’s reward would not be ex-
pected to improve, even though the agents were gathering more and
more information about the reward functions.

Experiments in this paper use the released DCEE simulator1 for
its experiments. This simulator models a mobile wireless network
problem, where each agent has a wireless radio. The agents’ phys-
ical location is their variable setting, binary rewards are defined as
the signal strength between pairs of agents (some agents are unable
to communicate directly), and the signal strengths can be modeled
as being randomly drawn from a Gaussian distribution. The agents’
goal is to maximize the signal strength of the network, balancing
the need to maintain a high-quality network with the possibility of
exploring and finding improved settings. Full details of the domain
may be found elsewhere [4]. The details of the simulator are not
important for this paper, but the fact that it is based on a physically
motivated problem (and not written to fit the algorithms introduced
in this paper) bolsters our claim that the algorithms we introduce
and the conclusions we reach may be applicable in real-world sce-
narios.

2.2 SE-Optimistic
Static estimation (SE) DCEE algorithms are a class of approaches

that have been successful in both simulation and on physical robots [4].
SE-Optimistic-1 is a greedy approach where each agent assumes
that if it were allowed to change its variable, it would maximize
each of its binary rewards. Assuming all agents have the same

1http://teamcore.usc.edu/dcop/

Algorithm 1 SE-OPTIMISTIC-2
1: for each neighbor i do
2: Send variable assignment and reward matrices to i
3: Find maximum gain, g, the corresponding neighbor to pair

with, p, and the variable assignment, a:
g, p, a← getMaxGainAndAssignmentForPair()

4: Send OfferPair to agent p
5: doPair← False
6: for all OfferPair messages received do
7: if agent requesting to pair is p then
8: Send Accept to agent p
9: doPair← True

10: if (Did not received Accept from p) or (not doPair) then
11: p← ∅
12: Find max gain and preferred assignment:

g, a← getMaxGainAndAssignment()
13: Send Bid (g, p) to all neighbors
14: Receive n Bids from all neighbors, ignoring message from p
15: G← maxn Bidsn
16: if g > G then
17: UpdateAssignment(a)

number of binary reward functions, and that the maximum reward
is constant for all of these functions, only the agent with the lowest
total reward per neighborhood will be allowed to change its value.
Agents exchange information with those in their neighborhood, and
only a single agent per neighborhood is allowed to change its value.

SE-Optimistic-2 [10] is an extension of SE-Optimistic-1: two
agents can change variables as a pair and no agents that neighbor
the pair change values. The hope is that when agents exchange
more information they will be able to make larger joint moves and
achieve a higher team reward faster than SE-Optimistic-1. These
algorithms are reminiscent of the k-optimal algorithms in DCOPs,
where k agents per neighborhood can change values and higher
values of k result in improved team rewards [7].

The psudocode for SE-Optimistic-2 is shown in Algorithm 1,
where the methods getMaxGainAndAssignmentForPair() and get-
MaxGainAndAssignment() use the optimistic assumption to esti-
mate what their improvement would be if allowed to move. If the
algorithm is amended so that lines 1–9 are removed and doPair =
False, the psudocode is equivalent to SE-Optimistic-1.

2.3 Team Uncertainty Penalty
In DCOP problems, increasing the amount of teamwork would

typically lead to improved team reward, at the expense of additional
messages sent between agents and increased amounts of computa-
tional time. The team uncertainty penalty [10] was found to occur
in DCEE settings, where increasing the amount of teamwork would
sometimes decrease the team’s reward, even when not accounting
for the number of messages sent, nor the increased computation
time. The surprising phenomenon means that it may be very dif-
ficult to decide what algorithm will perform better in a given sit-
uation without empirically testing all candidate algorithms. While
some initial algorithms were introduced to reduce the affect of the
penalty, they all suffered from additional parameters, further in-
creasing the difficulty of using such algorithms in real-world situ-
ations. The penalty seemed to depend most heavily on the number
of binary rewards each agent was connected to: in graphs with few
links, low-teamwork algorithms outperform higher teamwork al-
gorithms. In graphs with many shared binary rewards, the penalty
did not surface and increased teamwork resulted in increased team
reward.

0

0.2

0.4

0.6

0.8

1

1.2

Ring Reg 3 Reg 5 Reg 10 Reg 15 Reg 20 Complete

Sc
al

e
d

 N
et

 G
ai

n

Graph Topology

Evaluating Solo Moves in SE-Optimistic-2

SE-Optimistic-1

SE-Optimistic-2

No Solo

Solo1 -only

Solo2 -only

Figure 2: The y-axis shows the total net gain for each algorithm
(higher is better), scaled so that SE-Optimistic-1 is 1.0.

3. SOLO MOVES IN SE-OPTIMISTIC-2
In DCOP algorithms, increasing the amount of teamwork (i.e.,

increasing k) generally increases the value of the solution found. If
a solution is 2-optimal, it is by definition also 1-optimal. Similarly,
DCEE algorithms were designed so that they were able to use dif-
ferent values of k [4]. In Algorithm 1, line 12, agents can bid to
change their variable without a teammate. If the single agent wins
the bid to change its variable, we term this a Type 1 Solo Move.
The other case in which we found an agent could change variables
alone in a k = 2 algorithm is when two agents successfully pair
(line 9) and one agent wins the bid within its neighborhood, but
the other does not — when one agent in a pair moves but the other
does not, we term this outcome a Type 2 Solo Move. In both cases,
we empirically found that such variable changes happen less than
5% of the time, but they had a non-trivial effect on the algorithm’s
performance, as discussed next.

Figure 2 shows how teamwork and solo movements can affect
the team’s performance. Each bar in the graph summarizes results
from 30 independent trials of 40 agents acting over 100 time steps.
The y-axis shows the net gain of the algorithms, which summa-
rizes the team’s performance, after being scaled so that the net gain
of SE-Optimistic-1 is 1.0. We examine seven different topologies
from a ring graph (2 neighbors per agent) and a 3-regular graph (3
neighbors each) up through a complete graph (39 neighbors each).

First, that the team uncertainty penalty is clearly exhibited in the
algorithm, consistent with previous work. As the number of neigh-
bors per agent increases, the performance of SE-Optimistic-2 in-
creases relative to SE-Optimistic-1. In a ring graph, SE-Optimistic-
2 receives roughly 60% of the SE-Optimistic-1’s net gain, while it
receives roughly 120% in a complete graph. Second, this figure
shows that solo moves can decrease the team performance, par-
ticularly at low graph densities. For instance, in a ring topology,
disabling type 1 solo moves (labeled “Solo2-only”) results in an
improvement over SE-Optimistic-2. Disabling type 2 solo moves
(labeled “Solo1-only”) results in increased team rewards, and dis-
abling both types of solo movements (labeled “No Solo”) signifi-
cantly improves the reward relative to SE-Optimistic-2. For graphs
where there are fewer than 15 neighbors per agent, removing the
solo moves improves the performance of SE-Optimistic-2. For
regular-15 through complete graphs, removing the solo moves de-
creases team performance slightly, or has a negligible effect. Third,
the performance of No Solo algorithm does not suffer as much
from the team uncertainty penalty as SE-Optimistic-2. In particu-
lar, the No Solo algorithm continues to outperform SE-Optimistic-1
in high density graphs, but does not underperform SE-Optimistic-1

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Chain, 10
agents

Chain, 15
agents

Complete, 10
agents

Complete, 15
agents

Hybrid, 10
agents

Hybrid, 15
agents

Sc
al

e
d

 N
et

 G
ai

n

Graph Topology

Evaluating SE-Adaptive

SE-Optimistic-1

SE-Optimistic-2

SE-Adaptive

Figure 3: The scaled gain of the SE-Adaptive algorithm
can match, or outperform, both SE-Optimistic-1 and SE-
Optimistic-2.

in low density graphs as much as SE-Optimistic-2 underperforms
SE-Optimistic-1. Thus, No Solo may be a better choice when the
graph density is initially unknown — without other information, it
may be better to use the No Solo algorithm, rather than risk per-
forming poorly with SE-Optimistic-1 or SE-Optimistic-2.

4. AN ADAPTIVE TEAMWORK ALGORITHM
Others [10] have designed algorithms to mediate the team un-

certainty penalty. However, these algorithms have relied on a pa-
rameter that must be manually tuned per graph type, significantly
limiting their usefulness. No Solo is an improvement over these
previous methods because no additional parameter need be tuned.
In this section we introduce SE-Adaptive, which can run either SE-
Optimistic-1 or SE-Optimistic-2 per agent, improving the overall
performance of the team.

An agent running SE-Adaptive can decide whether to use SE-
Optimistic-1 or SE-Optimistic-2, depending on the number of neigh-
bors it has. We use a heuristic based on a per-agent ratio, r =
neighbors / total # of agents. If r < 1

3
, then the agent uses

SE-Optimistic-1. Otherwise, the agent tries to run SE-Optimistic-2
with any neighbors able to reciprocate, and if that fails, fall back on
SE-Optimistic-1.

Our hypothesis is the per-agent ratio, r, is an important poten-
tial factor in determining the level of teamwork required. We con-
ducted two sets of experiments which include same number of rounds
and variable settings: one set tested the full graph (where each
agent has n− 1 connections), while the other testsed chain graphs.
The number of agents ranged from 3–15. Comparing the perfor-
mance of each test on SE-1 and SE-2, the threshold value of 1

3
was

found empirically.
Figure 3 shows the results of using different numbers of agents

running on different graph topologies for 50 rounds. SE-Adaptive
performs as well as the best of SE-Optimistic-1 and SE-Optimistic-
2 on chain and complete graphs. “Hybrid” graphs are constructed
such that b 1

2
c of the agents form a connected clique, and the re-

mainder of the agents form a chain connected to one agent in the
clique — SE-Adaptive agents in the clique use SE-Optimistic-2 and
SE-Adaptive agents in the chain use SE-Optimistic-1, outperform-
ing both algorithms individually.

5. SE-OPTIMISTICPAIRS
The adaptive algorithm presented in the previous section out-

performs both SE-Optimistic-1 and SE-Optimistic-2. However, it
must be trained on values from a particular reward distribution —

Algorithm 2 SE-OptimisticPairs(a)
Require: a – The agent to check
1: T∀a ← PairsOf(a)
2: for T ∈ T∀a do
3: NT ← NeighborsOf(T)
4: WinsBid← True
5: for n ∈ NT do
6: T∀n ← PairsOf(n)
7: for Tn ∈ T∀n do
8: if Gain(T) < Gain(Tn) then
9: WinsBid← False

10: if WinsBid then
11: return True
12: return False

if the distribution of rewards is not known ahead of time, such
training data may be hard or impossible to come by. This section
introduces the SE-OptimisticPairs algorithm, which constrains the
SE-Optimistic-2 algorithm to dis-allow solo moves. Unlike the No
Solo algorithm, SE-OptimisticPairs uses an extra layer of reasoning
as only pairs of agents change values.

Most significantly, the algorithm SE-OptimisticPairs has been
designed so that it can be theoretically analyzed. To this point,
previous work in the DCEE domain has been strictly empirical.
By providing an algorithmic analysis for SE-Optimistic-1 and SE-
OptimisticPairs, we show that questions in DCEE domains can be
addressed with theoretical, as well as empirical, techniques.

5.1 Pseudocode
SE-OptimisticPairs can be summarized as follows. A team of

two agents will win the ability to change its values if none of its
neighbors change values, which in turn happens if no neighbor is
part of a team with a higher expected gain. In other words, any par
of agents that has the lowest value in its neighborhood will win the
bid to change its values.

The per-agent reasoning in SE-Optimistic-Pairs is summarized
in Algorithm 2. The function PairsOf(a) returns a set of all pos-
sible pairings for agent a. NeighborsOf(T) returns the set of all
agents that are neighbors with either agent in team T . Finally, Gain
is calculated as in SE-Optimistic-2: the pair of agents (optimisti-
cally) assume that if they are allowed to change their values, all
of their rewards will be set to the maximum value. Ties should be
broken consistently (line 8) (our implementation uses unique agent
identifiers).

5.2 Theoretical Analysis of SE-OptimisticPairs
To analyze the SE-OptimisticPairs algorithm, and its relation-

ship to SE-Optimistic-1, we consider the first round of the DCEE
algorithm SE-Optimistic-1 and SE-OptimisticPairs run on DCEE
graphs. We assume that all rewards are drawn i.i.d. from a discrete
distribution that is well approximated by a Gaussian with known
mean µ and variance σ2. We assume rewards to be continuous
values rather than integers so as to remain general, and avoid tie-
breaking issues. In order to conform to the floored Gaussian used in
the simulator [4], we approximate a floored Gaussian with a mean
µ as a continuous Gaussian with mean µ− 0.5 [5].

Let A be the set of all agents and the random variable ri,j be the
reward on the constraint between agents i and j (i.e., between Ai
and Aj). Ri is the total reward of Ai:

Ri ≡
∑
j

ri,j ,where Aj is a neighbor of Ai

We focus on analyzing the first round of the algorithms, when all
rewards are drawn from the Gaussian and are i.i.d. By analyzing
the first round, exact probabilities can be found for any graph. Sub-
sequent rounds, however, will depend heavily on the graph struc-
ture, which makes any explicit analysis difficult in general. In this
paper, we provide a method of analyzing the first-round behavior
given an arbitrary graph. For demonstration, we focus specifically
on Ring and Complete graphs, and note that analysis of of rounds
beyond the first round is left as future work. We define Ai to be
the event that Ai changes values on the first round. For example,
in SE-Optimistic-1, Ai occurs if Ri < Rj , ∀j ∈ Neighbors(Ai),
where Neighbors(Ai) is the set of agents which neighbor Ai.2

We define an agent to be “good” if its current total reward is
above some value g. That is to say Ai is “good” iff Ri ≥ g. One
natural choice of g arises when all agents have the same degree
(number of neighbors).3 Let g = dµ, where d is the degree of
agents; we say an agents is “good” if it is above the expected (ran-
dom) reward.

Below we will consider multiple graph structures and values of
g, finding P (Ai ∧ Ri ≥ g). The notation Ai means that agent
i is allowed to change its variable, meaning that the previous ex-
pression is the probability that agent Ai is both good and changes
values. We will show that, in ring graphs, the expected number
of good agents that change value (on the first round) is higher in
SE-OptimisticPairs than in SE-Optimistic-1. This is significant be-
cause it helps explain the team uncertainty penalty — an increase in
the size of the team (i.e., k) results in an increase of agents changing
variables even when they are in a high-reward position. Further, we
will show that this is not the case in complete graphs. Additionally,
we show how to determine the probability both of an agent moving,
and of that agent moving given that it’s “good” for a general graph.

First, we find the probability that agentAi changes values on the
first round, which is used no find the expected number of agents
that change value. We then find the probability that agent Ai both
change values, and is good, as well as the expected number of
such agents. We compare the results of SE-Optimistic-1 and SE-
OptimisticPairs for several graph topologies and values of k.

5.3 Probability an Agent Changes Values
To determine the probability that agent Ai changes values, de-

noted P (Ai), we exploit the fact that this decision is made locally.
When k = 1, Ai changes values if it could gain more total reward
than any of its neighbors. For higher values of k, however, Ai will
changes value if any of the connected k-tuples of agents containing
Ai decide to change value.

Let T1 and T2 denote two teams of size k that both contain agent
Ai. If the agents in T1 are able to change values then T2 cannot,
due to the shared agent. Let T be the event that team T changes its
value. We therefore observe that

P (Ai) =
∑

T∈TeamsOf(i)

P (T)

where TeamsOf(i) is the set of all k-sized connected teams contain-
ing Ai.

We now describe a process by which we calculate the probability
that some team T changes values on the first round. Consider a
ring graph (see Figure 4) with agents ordered A1 through A8 when
the agents use SE-OptimisticPairs. Let T = (Ai, Aj) be written
as Ti,j and the value of the constraint between them ri,j . To find
the probability that agents A4 and A5 change value, P (T4,5), we

2More formally, Neighbors(Ai) = {Aj ∈ A | ∃ri,j}.
3With minor alterations, g can vary from agent to agent.

A1
A2

A3

A4
A5

A6

A7

A8

Figure 4: A ring graph with eight agents

first note that T4,5 occurs iff none of {T2,3, T3,4, T5,6, T6,7} occur.
P (T4,5) =

P


r3,4 + r4,5 + r5,6 < r1,2 + r2,3 + r3,4 ∧
r3,4 + r4,5 + r5,6 < r2,3 + r3,4 + r4,5 ∧
r3,4 + r4,5 + r5,6 < r4,5 + r5,6 + r6,7 ∧
r3,4 + r4,5 + r5,6 < r5,6 + r6,7 + r7,8


Simplifying, we obtain:

P (T4,5) = P


−r4,5 − r5,6 + r1,2 + r2,3 > 0 ∧
−r5,6 + r2,3 > 0 ∧
−r3,4 + r6,7 > 0 ∧
−r3,4 − r4,5 + r6,7 + r7,8 > 0


We then rewrite this probability as

P (T4,5) = P


Y1 > 0 ∧
Y2 > 0 ∧
Y3 > 0 ∧
Y4 > 0


for appropriate values of Yi. Because each Yi is a sum of indepen-
dent Gaussians, they are themselves drawn from a Gaussian. How-
ever, the Yi’s are not independent due to the overlap of constraints.
Thus: Y1 ∼ N(0, 4σ2), Y2 ∼ N(0, 2σ2), Y3 ∼ N(0, 2σ2), Y4 ∼
N(0, 4σ2), and the covariance of the random variables are deter-
mined by the number of shared variables. Therefore we have a
vector Y = (Y1, Y2, Y3, Y4)T drawn from a multivariate Gaussian
with mean vector θ = (0, 0, 0, 0) and covariance matrix

Σ = σ2


4 2 0 1
2 2 0 0
0 0 2 2
1 0 2 4


In general, we calculate the mean vector by counting the number

of constraints in each Yi, and construct the covariance matrix by
counting the number of constraints shared pairs of Yi’s. Algorithm
3 (in the Appendix) returns the covariance matrix for any graph,
not just ring graphs. The following is the density function for the
multivariate normal

f(Y|θ,Σ) =
1

2π
α
2 |Σ| 12

exp
(

1

2
(Y− θ)TΣ−1(Y− θ)

)
where α is the length of Y (in our example, α = 4). Thus:

P (T4,5) =

∫
Rα+

f(Y|θ,Σ)dY

Plugging this into the previous equation, and letting YT , θT , and ΣT
denote Y, θ, and Σ created by a k-tuple T :

P (Ai) =
∑

T∈TeamsOf(i)

∫
Rα+

f(YT |θT ,ΣT)dYT

where TeamsOf(i) is the set of all k-sized connected tuples that
contain agentAi. Rα+ is the region defined by (0,∞)× . . . (0,∞),
the cross product taken α times over the positive region of each di-
mension. The function f can be thought of as a multi-dimensional
bell curve that is stretched and compressed in each dimension ac-
cording to the entries in the covariance matrix.

5.4 Calculating the Number of Agents Updat-
ing

We now consider calculating the expected number of agents that
change values on the first round (this method is summarized in Al-
gorithm 4 in the appendix). We will use this value, along with the
expected number of good agents that change values, to compute the
proportion of agents that change values for various values of k and
graph topologies. Let 1Ai be the indicator function of Ai, that is
to say that 1Ai = 1 if Ai occurs and 0 otherwise. Let the random
variable |A| be the number of agents that change value. We observe
that

E(|A|) =

n∑
i

1Ai =

n∑
i

∑
T∈TeamsOf(i)

∫
Rα+

f(YT |θT ,ΣT)dYT

We now find the probability that an agent both changes values, and
is in a good position before doing so. This will let us compute the
proportion of moving agents that are good, which depends heavily
on the value of k and the graph topology.

Consider the example from the previous subsection:

P (A4 ∧R4 ≥ g) = P (T4,5 ∧R4 ≥ g) + P (T3,4 ∧R4 ≥ g)

In general we see that

P (Ai ∧Ri ≥ g) =
∑

T∈TeamsOf(i)

P (T ∧Ri ≥ g)

which is calculated similar to P (Ai). In our example:

P (T4,5 ∧R4 ≥ g) =

P


r3,4 + r4,5 ≥ g ∧
−r4,5 − r5,6 + r1,2 + r2,3 > 0 ∧
−r5,6 + r2,3 > 0 ∧
−r3,4 + r6,7 > 0 ∧
−r3,4 − r4,5 + r6,7 + r7,8 > 0


Let Y0 = r3,4 + r4,5, or in general Y0 = Ri. We note that

Y0 ∼ N(2µ, 2σ2), or in general Ri is drawn from N(dµ, dσ2)
where d is the degree of Ai. We then let Y = (Y0, Y1, Y2, . . .)

T,
and construct Σ as we did previously. Again as before, f(Y|θ,Σ)
is defined as the multivariate Gaussian’s density function.

The integration over the multivariate Gaussian differs slightly
from the previous case because Ri ≥ g whereas all other Yi >
0. We must integrate over the region of the multivariate Gaus-
sian where Y0 ≥ g, and all other Yi > 0. Therefore we let
Ȳ = (Y1, Y2, . . .)

T be the mean vector without the Y0 element,
and obtain

P (T4,5 ∧R4 ≥ g) =

∫ ∞
g

∫
Rα−1
+

f(Y|θ,Σ)dȲdY0

And in the general case we let YT denote the value Y created by
the connected k-tuple T and obtain

P (Ai ∧Ri ≥ g) =
∑
T∈Ti

∫ ∞
g

∫
RαT−1
+

f(YT |θT ,ΣT)dȲT dYT 0

Similarly to how we calculated the expected number of agents
that change value, we now compute the expected number of agents
that both change values and are good (denoted |Ag|):

E(|Ag|)=

n∑
i

∑
T∈TeamsOf(i)

∫ ∞
g

∫
RαT−1
+

f(YT |θT ,ΣT)dȲT dYT 0

5.5 Results
We have described above how to obtain both the expected num-

ber of agents that change value, and the expected number of agents
that both change value and are good. A procedural approach for ob-
taining these numbers is outlined in the Appendix (if accepted, we
will additionally release the code used to calculate these numbers).
We implemented this algorithm in Python, and used numerical in-
tegration techniques implemented using the R library mvtnorm [3]
to determine the quantities for varying values of g.

Our implementation works for general graphs, and we obtained
numbers for ring and complete graphs with various numbers of
agents. We used the rewards distributionsN(0, 1) andN(100, 162)
to be consistent with past work in the DCEE domain [4]. It is worth
noting that if X is a normal random variable drawn from N(µ, σ2)
then it can be rescaled arbitrarily ((X − µ)/σ is a random variable
drawn from N(0, 1)). Further, we note that the expected number
of agents that change values is independent of the distribution and
its parameters, as no agent is more likely to change values than any
other (assuming all agents have the same number of edges in the
graph and all have the same reward distribution).

We first find P (Ri ≥ g,Ai) for different numbers of agents and
values of g. We normalize these values to obtain P (Ri ≥ g | Ai).
For ring graphs, the number of agents does not matter. This is be-
cause the decision of whether or not to change values is determined
purely by a limited section of the graph, and thus the induced co-
variance matrix is of fixed size. In a complete graph, however, all
agents interact when determining which change values, and the co-
variance matrix grows with the number of agents.
E(|A|) and E(|Ag|) for ring and complete graphs and various

(k, g) were then calculated. Let σ̄ be the variance of Ri and µ̄ its
mean, determined by the graph. In a ring graph, µ̄ is 2µ as every
agent is a part of two constraints, each with mean µ. Similarly, σ̄ is√

2σ. In a complete graph with n agents, µ̄ is (n − 1)µ, and σ̄ is√
(n− 1)σ.
In all cases, more good agents will change value in ring graphs

than in complete. However, more agents in total change value in
ring graphs. In complete graphs, exactly k agents will change value
in each round. Table 2 shows the expected number of agents chang-
ing values in ring graphs, and empirical results show that the pre-
dictions are accurate. Empirical results are averaged over 1,000
independent trials, and the standard error is shown.

Of the agents that change value, we then find the expected per-
centage of them that are good, shown in Table 1. In the same table,
we show the results from running 1,000 simulations and recording
the percentage of agents that moved for different values of g. The
recorded mean and standard errors show that the theoretical cal-
culations match the empirical results. These results help explain
the team uncertainty penalty. In ring graphs, SE-Optimistic-1 will
allow fewer agents to move that are in “good” positions, relative
to SE-OptimisticPairs, while in complete graphs, the opposite is

Table 2: |A| for ring graphs, 40 agents
k = 1 k = 2

Calculated 10.000 12.121
n = 10 2.500 3.032
Empirical 9.987 ± 0.037 12.240 ± 0.059

0

0.2

0.4

0.6

0.8

1

1.2

Ring Reg 3 Reg 5 Reg 10 Reg 15 Reg 20 Complete

Sc
al

e
d

 N
et

 G
ai

n

Graph Topology

Evaluating SE-Optimistic-Pairs

SE-Optimistic-1

SE-Optimistic-2

No Solo

SE-Optimistic-Pairs

Figure 5: SE-OptimisticPairs outperforms SE-Optimistic-2
when agents have few neighbors, outperforms SE-Optimistic-
1 when agents have many neighbors, and is competitive with
No Solo.

true. Further, in Figure 5, we see that SE-OptimisticPairs suffers
less from the team uncertainty penalty than SE-Optimistic-2, and
is competitive with No Solo, even though SE-OptimisticPairs has
no tunable parameters.

6. CONCLUSION AND FUTURE WORK
This paper has introduced two novel DCEE algorithms which

reduce the effect of the team uncertainty penalty. In SE-Adaptive,
agents can individually decide on the appropriate level of team-
work, where the decision rule has been empirically pre-determined,
based on the distribution of rewards. In SE-OptimisticPairs, the
agents have no tunable parameters, which is a significant improve-
ment over existing algorithms designed to avoid the penalty. More
importantly, the SE-OptimisticPairs algorithm has been theoreti-
cally analyzed so that we may predict whether agents should pair
or not, and these predictions are confirmed empirically.

In the future, we would like to extend our analysis so that it is
easy to compute E(|Ag|) for arbitrary graphs. We intend apply
the insights regarding solo moves to a different type of DCEE al-
gorithms, termed Balanced Exploration algorithms. This paper fo-
cused on different levels of teamwork, but did not explicitly analyze
communication overheads — such an analysis may prove useful
for better quantifying the benefits of different algorithms. Finally,
it would be interesting to see if the insights about the amount of
teamwork in DCEE problems can be applied to DisCSP (distributed
constraint satisfaction problems), similar to DisCSPs work [2] that
focused on algorithmic run time, rather than the performance.

Acknowledgements
This research was supported in part by the United States Depart-
ment of Homeland Security through the Center for Risk and Eco-
nomic Analysis of Terrorism Events (CREATE). The authors would
like to thank Milind Tambe and Manish Jain for their help on pre-
vious DCEE research, and the anonymous reviewers for their com-
ments and suggestions.

Table 1: |Ag|: Rewards drawn from N(100, 162) for 40 agents. Empirical results display the standard error.
g = µ̄− 3σ̄ g = µ̄− 2σ̄ g = µ̄− σ̄ g = µ̄ g = µ̄+ σ̄

E(|Ag|)
Ring k = 1 0.994 0.917 0.583 0.153 0.011

k = 2 0.995 0.927 0.606 0.161 0.010

Complete k = 1 0.907 0.266 0.001 4× 10−11 3× 10−24

k = 2 0.945 0.461 0.005 2× 10−8 2× 10−17

Empirical
Ring k = 1 0.993 ± 0.012 0.921 ± 0.016 0.580 ± 0.02 0.159 ± 0.013 0.012 ± 0.004

k = 2 0.994 ± 0.016 0.931 ± 0.017 0.605 ± 0.022 0.170 ± 0.014 0.012 ± 0.004

Complete k = 1 0.904 ± 0.007 0.224 ± 0.011 0 0 0
k = 2 0.949 ± 0.005 0.426 ± 0.012 0.003 ± 0.002 0 0

7. REFERENCES
[1] R. E. Bellman. A problem in the sequential design of

experiments. Sankhya, 16:221–229, 1956.
[2] M. Benisch and N. Sadeh. Examining DCSP coordination

tradeoffs. In AAMAS, 2006.
[3] A. Genz and F. Bretz. Computation of Multivariate Normal

and t Probabilities. Lecture Notes in Statistics.
Springer-Verlag, 2009.

[4] M. Jain, M. E. Taylor, M. Yokoo, and M. Tambe. DCOPs
meet the real world: Exploring unknown reward matrices
with applications to mobile sensor networks. In IJCAI, 2009.

[5] A. A. Kulikova and Y. V. Prokhorov. Distribution of the
fractional parts of random vectors: The Gaussian case I.
Theory of Probability and its Applications, 48(2):355–359,
2004.

[6] R. Mailler and V. Lesser. Solving distributed constraint
optimization problems using cooperatve mediation. In
AAMAS, 2004.

[7] J. P. Pearce, M. Tambe, and R. Maheswaran. Solving
multiagent networks using distributed constraint
optimization. AI Magazine, 29(3), 2008.

[8] A. Petcu and B. Faltings. A scalable method for multiagent
constraint optimization. In IJCAI, 2005.

[9] R. S. Sutton and A. G. Barto. Introduction to Reinforcement
Learning. MIT Press, 1998.

[10] M. E. Taylor, M. Jain, Y. Jin, M. Yooko, and M. Tambe.
When should there be a “me” in “team”? distributed
multi-agent optimization under uncertainty. In AAMAS, 2010.

APPENDIX
A. ADDITIONAL ALGORITHMS

Here we provide pseudo-code for the algorithms used to compute
the values presented earlier in the paper. Note that these algorithms
compute the number of agents moving, with no notion of g. To
incorporate g, minor modifications must be made to the covariance
matrix (Algorithm 3), and the integration in Algorithm 4.

Given a graph, Algorithm 4 computes the expected number of
agents that will changes value on the first round. It loops through
every agent, and for each agent it must calculate a covariance ma-
trix, and then integrate over a multivariate Gaussian. Note that,
for ring and complete graphs, the probability that an agent changes
values is the same for all agents due to symmetry. Thus the algo-
rithm can be optimized by calculating the probability that agentA1

changes values, and multiplying it by n.
To construct the covariance matrix for a team T , we loop over

all teams ‘touching’ T , and calculate the involved random variables
for each. We will use this matrix to define a multi-variate Gaussian
which we integrate over in Algorithm 4. The mean of the multi-

variate Gaussian is calculated with Algorithm 5. Note that there
may be many teams that share an constraint with T , and we are
looping over all of them.

Given a team and a graph, EdgesTouching(T,G) returns the set
of constraints that would be resampled if T were to changes value.
More formally, EdgesTouching(T,G) returns

{e = (a, b) ∈ E | a ∈ T ∨ b ∈ T}

The function AllTeamsTouching(T,G) returns the set of all con-
nected teams (of size k) which cannot change value if team T
changes values. Note that in k-dependent DCEE algorithms, two
teams cannot both change value if they share a constraint. More
formally, AllTeamsTouching(T,G) returns

{T ′ ⊂ V | |T ′| = k ∧ (EdgesTouching(T ′, G)
∩ EdgesTouching(T,G)) 6= ∅}

Algorithm 3 CreateCovarianceMatrix(T,G)
Require: G = {V, E} - The input graph
Require: T ⊂ V - The team to changes value (|T | = k)
1: ET ← EdgesTouching(T,G)
2: A← AllTeamsTouching(T,G)
3: for i = 1 . . . |A| do
4: for j = 1 . . . |A| do
5: C[i][j] = |(EdgesTouching(Ai, G) 4 ET) ∩

(EdgesTouching(Aj , G)4 ET)|
6: return C

Algorithm 4 GetExpectedNumberOfAgentsChanging(G)
1: E ← 0
2: for Ai in A do
3: P ← 0
4: for T in Ti do
5: Σ← CreateCovarianceMatrix(T,G)
6: θ ← GetMeanVector(T,G)
7: P ← P +

∫
Rα+
f(YT |θ,Σ)dYT

8: E ← E + P
9: return E

Algorithm 5 GetMeanVector(T,G)
1: O← AllTeamsTouching(T, G)
2: for i = 1 . . . |O| do
3: θi ← µ(|EdgesTouching(Oi) \ EdgesTouching(T)| −

|EdgesTouching(T) \ EdgesTouching(Oi)|)
4: return θ

