
Thoughts on Multiagent Learning: From A Reinforcement
Learning Perspective

Lisa Jing Yan and Nick Cercone

Technical Report CSE-2010-07

November 2010

Department of Computer Science and Engineering
4700 Keele Street, Toronto, Ontario M3J 1P3 Canada

Thoughts on Multiagent Learning:

From A Reinforcement Learning Perspective

Lisa J. YAN

August 30, 2010

2

Contents

1 Artificial Intelligence Meets Game Theory 1

1.1 Rationale . 2

1.2 Objective . 2

1.3 Outline . 3

2 General Multiagent Learning Approaches 5

2.1 Model-based Approach . 6

2.2 Model-free Approach . 6

2.3 No-regret Learning . 7

2.4 Summary . 7

3 Multiagent Learning Framework and Preliminaries 9

3.1 Single Agent Learning . 10

3.1.1 Markov Decision Process . 10

3.1.2 Temporal Difference Learning 12

3.1.3 Q-learning . 14

3.2 General Framework of MAL . 14

3.2.1 Matrix Games . 16

3.2.2 Stochastic Games . 19

3.3 Summary . 21

4 Seminal Learning Techniques 23

4.1 Dynamic Learning . 23

4.1.1 Credit Assignment . 24

4.1.2 Dynamic Scenarios . 25

4.2 Finding Equilibria Algorithms in Game Theory 25

4.3 Learning Equilibria Algorithms . 26

4.3.1 Minimax-Q . 27

4.3.2 Nash-Q . 27

i

ii CONTENTS

4.3.3 Friend-or-Foe-Q . 28
4.3.4 Correlated-Q . 28

4.4 Learning Best-Response Algorithms 30
4.4.1 Q-learning . 30
4.4.2 Opponent Modeling . 30
4.4.3 Infinitesimal Gradient Ascent 32
4.4.4 Regret Minimization Approaches 33

4.5 Properties . 34
4.6 Summary . 34

5 Open Issues and Research Interests 35
5.1 Open Issues . 35

5.1.1 Scalability . 36
5.1.2 Adaptive Dynamics . 36
5.1.3 Communication . 36
5.1.4 Evaluation . 37

5.2 Our Research Interest . 37

Chapter 1

Artificial Intelligence Meets
Game Theory

How to choose an optimal strategy to solve a problem is our interest. Let us start
with a classic example: the Prisoner’s Dilemma.

Two suspects are arrested by the police. But, since the police have insuf-
ficient evidence for a conviction, prisoners are kept in separate room and
are offered the same deal. If one defects from the other for the prosecu-
tion against the other and the other remains silent (cooperates with the
other), the betrayer goes free and the silent accomplice receives the full
10-year sentence. If both remain silent, both prisoners are sentenced to
only six months in jail for a minor charge. If each betrays the other, each
receives a five-year sentence. Each prisoner must choose to betray the
other or to remain silent. Note that each one is assured that the other
would not know about the betrayal before the end of the investigation.
How should the prisoners act?

The prisoner’s dilemma is a fundamental problem in game theory that demon-
strates why two persons might not cooperate even if it is in both of their best
interests to do so. Game theory describes such a strategic situation mathemati-
cally, and Nash equilibria (Nash (1950)) famously captures this idea of how each
individual in the game would behave and adopt a strategy that players are unlikely
to change. This strategy is provided through game theory and known as a rational
choice. Since how to find an optimal strategy has always been an interest in artificial
intelligence (AI), this essense of game theory strongly influences AI researchers in
the multiagent learning area.

1

2 CHAPTER 1. ARTIFICIAL INTELLIGENCE MEETS GAME THEORY

1.1 Rationale

Multiple agents become increasingly required in various fields for both physical
robots and software agents, such as, robot soccer, search and rescue robots, auto-
mated driving, auctions and electronic commerce agents, and so on. The merits of
game theory influence computer science researchers in non-human-player game play-
ing. An agent, non-human player, observes the environment and chooses an action
to perform. Commonly, agents have goals, assumptions, algorithms for learning
and reasoning, and conventions. Learning in single agent task has been studied
extensively in the reinforcement learning field, in which an agent acts alone in a
stationary environment. In multiagent domains, agents interact with others, and
coadapt with others and act on the best choice available. Since all the agents are
evolving, the environment is no longer stationary, and this brings in a difficult learn-
ing problem that violates the basic stationary assumption of traditional techniques
for behavior learning. Each agent’s choice of policy depends on the others’ joint pol-
icy which also aims to achieve the best available performance. Our work focuses on
the strategic decision making and learning process of agents’ behaviors whose target
is to select the best strategies and adapt to unforeseen difficulties and changes in
the environment.

1.2 Objective

Our intention is to seek an answer to the following question:

How can an agent efficiently observe other agents behaviors, and learn
from its observation in order to act (or adapt) effectively in the complex
nonstationary environment? Ultimately, through a learning period and
a series of actions, this agent can achieve the top ranked performance,
assuming that all agents pursue the same goal.

An agent can learn through experience which is from its own actions and associ-
ated effects, while learning from observation of other agents’ experience. Note that
an agent should effectively associate similar patterns and build knowledge instead
of merely keeping a record of the rewards history for all the agents. By using this
knowledge, the agent can eliminate part of the search space which might have al-
ready been explored by others. Exploration vs. exploitation is a critical choice in
the agent learning process.

A complex nonstationary environment provides a dynamic learning domain. This
domain is composed of other agents’ diverse states. Thus, the complexity of the
domain increases with the increase of the number of agents.

1.3. OUTLINE 3

1.3 Outline

In this paper, we review seminal research on multiagent learning in general-sum
games, from a reinforcement learning perspective. Chapter 2 introduces general
research in computer science and game theory, also provides some general ideas
of major approaches. Chapter 3 examines the framework of multiagent learning
systems and related preliminary concepts. Chapter 4 studies the influential learning
techniques in multiagent learning. We end in Chapter 5 with a summary of the
main points of in this paper, and examine some open issues as our potential research
objectives.

4 CHAPTER 1. ARTIFICIAL INTELLIGENCE MEETS GAME THEORY

Chapter 2

General Multiagent Learning
Approaches

Multiagent learning (MAL) has a long history in the game theory field, as well as
in the machine learning community.

In machine learning, learning techniques are classified as supervised learning,
unsupervised learning and reward-based learning, utilizing feedback directed to the
learners. In multiagent learning, agents are given feedback about their behaviors as
rewards or penalties in a given situation. Thus, reward-based methods are widely
used in this field, including two major streams: reinforcement learning which esti-
mates value functions, and evolutionary computation which directly learn behaviors
using stochastic search methods. The similarities and differences between these two
classes of learning methodology have generated a rich literature, and some address
both classes, such as the bucket-brigade algorithm (Holland (1985)), the Samuel
system (Grefenstette et al. (1990)), and the recent Stochastic Direct Reinforcement
policy gradient algorithm (Moody et al. (2004)). In this paper, we focus on examin-
ing multiagent learning techniques from a reinforcement learning (RL) perspective.

Reinforcement learning (RL) methods are widely used where rewards and penal-
ties are given after a sequence of actions are performed in the environment. The
learning process is through defined formulas to update the expected utilities, and
based on the expected utility values to choose the most promising action to explore
the state space. Two common RL methods are Q-learning (Watkins (1989)) and
Temporal-Difference (TD(λ)) learning (Sutton (1988)). Q-learning learns the util-
ity of performing actions in states, also called an off-policy TD control algorithm;
while TD-learning learns the utility of being in the states. The difference between
on-policy and off-policy is that: the on-policy is aimed to control; while off-policy
can be used in control and predict, and it may learn some tactics which may not be

5

6 CHAPTER 2. GENERAL MULTIAGENT LEARNING APPROACHES

exhibited during the learning phase. (See Section 3.1 for details).

In the MAL literature, the AI community extends Bellman-style single-agent
reinforcement learning techniques to a multiagent setting, in particular Q-learning
(Watkins and Dayan (1992)). This technique has performed well in: a) zero-sum
repeated games (Littman (1994); Littman and Szepesvri (1996)), b) common-pay-off
(or team) repeated games (Claus and Boutilier (1998); Kapetanakis and Kudenko
(2004); Wang and Sandholm (2002);), but not so well in c) general-sum stochastic
games(Hu and Wellman (1998); Littman (2001); Greenwald and Hall (2003)).

In this chapter, we give a general introduction of learning approaches in the
field, according to a specific game (known or unknown), or play (observable or
unobservable). The literature divides into three major classes of techniques: one is
the model-based approach, one is the model-free approach, and the other approach
is no-regret learning.

2.1 Model-based Approach

The model-based approach is under the scenario of fully observable games. This
approach is, for an agent, firstly to learn from the opponents’ strategies as a model,
and then accordingly devise a best (or “optimal”) response. In other words, the
agent learns about the reward function and the state transition function, thereafter,
solves for its own optimal policy. The best-known work of this approach is fictitious
play (Brown (1951)). The general scheme is as follows:

Step 1 Start with model of the opponent’s strategy;

Step 2 Repeat:

• Compute and play the best response;

• Observe opponent’s play and update our model of the player’s strategy;

2.2 Model-free Approach

Model-free approaches are commonly used in the RL community (Kaelbling et al.
(1996)) which avoids building an explicit model of the opponent’s strategy. Instead,
the agent learns how well its own various possible actions fare over time. Without
knowing the reward function R or the transition function T , the agent can directly
learn about its optimal policy through observing other agents’ actions and immediate
payoff. This work has been explored intensively in the reinforcement learning area,
and the roots are Bellman equations (Bellman (1957)).

2.3. NO-REGRET LEARNING 7

Q-learning (Watkins and Dayan (1992)) is a typical form of model-free learning
approach. The learning process is similar to Sutton’s (Sutton (1988)) temporal
difference (TD): an agent tries an action at a particular state, and evaluates its
consequences in terms of the immediate reward or penalty the agent receives and its
estimate of the value of the state of which the action is taken. By trying all actions
in all states repeatedly, an agent learns which are best overall, based on long-term
discounted rewards. We examine the details of Q-learning techniques in the next
chapter.

2.3 No-regret Learning

No-regret learning aims to seek to minimize regret, also known as regret minimiza-
tion approaches. Two important criteria of the learning rules are safe and consistent
(Fudenberg and Levine (1995)). No regret algorithms have been mainly explored in
single state games, and little work has been done in application in stochastic games
caused by the difficulties of extending this concept to stochastic games (Mannor and
Shimkin (2003)). The more detailed disscussion is given in Section 4.4.4.

2.4 Summary

In this chapter, we present general approaches for multiagent learning in the field of
reinforcement learning. According to the available game information, three major
classes of techniques have been explored: model-based approaches, model-free ap-
proaches and no-regret learning. In chapter 3 and chapter 4, we examine details for
seminal approaches in multiagent learning on how to find optimal policies.

8 CHAPTER 2. GENERAL MULTIAGENT LEARNING APPROACHES

Chapter 3

Multiagent Learning Framework
and Preliminaries

A multiagent system (MAS) has a broad set of definitions, of which each definition
leads to different constraints to solve the computational complexity of MAS. We
focus on the machine learning field; and the goal of machine learning is to build
intelligent programs which can solve problems after a learning and evolving process.
This intelligent program is often called a “agent”.

An agent is a computational application that is designed to automate certain
tasks, with a guiding intelligence to achieve a result. A multiagent environment
is one in which more than one agent acts and interacts with one another. More-
over, agents may or may not know everything about the environment. An agent
learns by interacting in its environment and by observing the effect of these in-
teractions. This learning, while performing in the environment, is typical. The
idea is commonly known as “cause and effect”, and this undoubtedly is the key to
accumulating experience and forming knowledge through performance.

Before we get into the learning process for multiple agents, we first examine how
a single agent learns and evolves in a certain environment. Thereafter, we study the
framework for multiagent learning systems.

Reinforcement learning is one approach to expedite the agent learning process,
especially in solving two complex problems: game playing and control problems.
Each agent learns through the reinforcement (rewards or penalties) from its envi-
ronment, and this learning process for an agent can be seen as a self-teaching process.
On the other hand, each agent learns to perform the best in the environment, this
is also an adaptation process.

9

10CHAPTER 3. MULTIAGENT LEARNING FRAMEWORKAND PRELIMINARIES

3.1 Single Agent Learning

One interesting problem arising along with this agent reinforcement learning process
is that the trade-off between exploration and exploitation. Once an agent learns a
certain action which has performed well, should an agent exploit this action since it
is known to receive a decent reward? Or should it explore other possibilities in order
to seek a better reward? Obviously, exploring is definitely a good tactic sometimes,
but without a balance between exploration and exploitation, agents will not learn
successfully. The common way to achieve a good balance is to try a variety of actions
while progressively favoring those producing the most reward.

In this section, we examine the most influential work in RL(Sutton and Barto
(1998)): temporal difference learning and Q-learning.

3.1.1 Markov Decision Process

An agent learning process can be separated into the following steps:

• Observe the surrounding environment;

• Decide an action (or “strategy”) according to certain criteria;

• Perform the action;

• Agent receives feedback, rewards or penalty, from the environment;

• Information about experience is recorded. In details, the experience includes
the environment situation, the action chosen, and the feedback received.

Eventually, an agent can learn an optimal decision policy which performs the best
in a certain environment, by performing actions and evaluating the results related.
Markov decision processes are the foundation for research in single agent learning.
A Markov decision process (MDP) (Sutton and Barto (1998);Bellman (1957)) is a
tuple, (S,A, T,R), where,

• S is the set of the states;

• A is the set of actions;

• T : S × A × S → [0, 1] is a transition function, which defines a probability
distribution over next states as a function of the current state and the agent’s
action:

∀s ∈ S, ∀a ∈ A,
∑
s′∈S

T (s, a, s′) = 1;

3.1. SINGLE AGENT LEARNING 11

• R : S × A → R is a reward function, which defines the reward received when
selecting an action from the given state.

At time t, the agent receives the reward rt = R(st, at), and the agent observes
a new state st+1, which is drawn from the probability distribution specified by
T (st, at, st+1).

In general, the transition function T and the reward function R are not known
in advance. Thus, the goal of a learning agent in an MDP is to learn a policy π
to maximize its long-term reward R based on the only samples received. A policy
π is defined to map the probability of selecting an action from a particular state.
Formally, π ∈ S ×A→ [0, 1], where ∀s ∈ S,

∑
a∈A π(s, a) = 1.

Two common ways to formulate the long-term reward are the discounted reward
function and the average reward function. Define V π(s) as a policy’s state value
function, and E(rt | s0 = s, π) as the expected reward received at time t given the
initial state s and the agent follows the policy π. The average reward is formed as:

V π(s) = lim
T→∞

T∑
t=0

1

T
E(rt | s0 = s, π), (3.1)

which is under a common assumption that the MDP is a unichain. The unichain
assumption is that the Markov chain induced by every stationary policy (perhaps
randomized) has only one ergodic class of states and, perhaps, some transient states.1

The discounted reward is described as follows:

V π(s) =

∞∑
t=0

γtE(rt | s0 = s, π), γ ∈ [0, 1). (3.2)

γ is a discount factor, which accumulates the immediate reward with probability γ
instead of a larger future utility. Temporal difference learning describes a class of
algorithms that adopt this discounted reward formulation. We discuss more details
in Section 3.1.2.

The Markov decision process is under the Markov assumption, which generally,
requires that the next state and reward to the agent depend only on the current
state and agent’s action. Formally, we state this property of MDP as follows.

Definition 1 A decision process is Markovian if and only if, the sequence of states
(st ∈ S), actions (at ∈ A), and the rewards (rti ∈ R), satisfies

Pr{st = s, rti = ri | st−1, at−1, . . . , s0, a0} = Pr{st = s, rti = ri | st−1, at−1}.
1An MDP is unichain if and only if, for all policies, there exists an ergodic set of states (i.e.

any state in the set can be reached with non-zero probability from any other state in the set), and
all states outside this set are transient (i.e. after some finite point in time it will never be visited
again).

12CHAPTER 3. MULTIAGENT LEARNING FRAMEWORKAND PRELIMINARIES

An agent’s selection of actions is Markovian if and only if,

Pr{at = a | st, st−1, at−1, . . . , s0, a0} = Pr{at = a | st};

that is, only if the agent’s next action depends only on the current state.2

We also refer to a Markovian process as stationary, and in the multiagent frame-
work of stochastic games, this property does not hold in a non-stationary environ-
ment.

3.1.2 Temporal Difference Learning

Temporal difference (TD) learning is a combination of Monte Carlo ideas and dy-
namic programming (DP) ideas, and is commonly used for prediction problems and
control problems. Both TD and Monte Carlo methods use experience to solve the
prediction problem. Given some experience following a policy π, the learning pro-
cedure updates its estimate V of V π. If a nonterminal state st is visited at time
t, then it is to update the estimate V (st) based on what happens after that visit.
Once the actual reward Rt at time t is received, a simple every-visit Monte Carlo
method suitable for nonstationary environment is

V (st)← V (st) + α[Rt − V (st)], (3.3)

where α is a constant step-size parameter, also known as the learning rate. Monte
Carlo methods must wait until the end of the episode to determine the increment
to V (st), since only then Rt is known. Whereas TD methods need wait only until
next time step. At time t + 1 they immediately form a target and make a useful
update using the observed reward rt+1 and the estimate V (st+1). The simplest TD
method, known as TD(0), is

V (st)← V (st) + α[rt+1 + γV (st+1)− V (st)]. (3.4)

In comparison, the target for the Monte Carlo update is Rt, whereas the update
for TD is rt+1 + γV (st+1). Here, γ is a discount parameter. The TD method is a
bootstrapping method as DP, since the update is based on an existing estimate, not
a final reward.

On-policy TD methods learn the value of the policy that is used to make deci-
sions. The value function is updated using results from executing actions determined
by some policy. Off-policy learning can learn different policies for behaviors and for

2Definition 1, 2, 3, 4, 5, 6, are adopted from the formulation presented in Bowling (2003), and
Definition 1, 6 are based on Sutton and Barto (1998), Bellman (1957).

3.1. SINGLE AGENT LEARNING 13

estimation. The update is estimated using hypothetical actions, which have not ac-
tually been executed. In contrast to on-policy methods strictly based on experience,
off-policy can separate exploration from control, but on-policy algorithms can not.

There are three common policies used for action selection in order to balance
the trade-off between exploration and exploitation, and it is not clear which policy
produces the best overall results.

• ε-greedy: most of the time, with a high probability 1− ε, the action with the
highest estimated reward is chosen, called the greediest action. Every once in
a while, say with a small probability ε, an action is selected at random. The
action is selected uniformly, independent of the action-value estimates. This
method ensures that if enough episodes are considered, each action will be
tried to ensure optimal actions are discovered.

• ε-soft: very similar to ε-greedy, the best action is selected with small probabil-
ity ε; while the rest of the time, with high probability 1− ε, a random action
is chosen uniformly.

• softmax: one drawback of ε-greedy and ε-soft is that they select random ac-
tions uniformly. The worst possible action is just as likely to be selected as
the second best action. Softmax remedies this case by assigning a random
or weight to each of the actions, according to their action-value estimate. A
random action is selected with regard to the weight associated with each ac-
tion, meaning the worst actions are unlikely to be chosen. The most common
softmax uses a Gibbs or Boltzmann distribution.

TD(λ)

In TD(λ) algorithms, λ refers to the use of an eligibility trace. Eligibility traces
are one of the basic mechanisms of reinforcement learning, and often can accelerate
TD learning. When the TD algorithm, described in Section 3.1.2, receives input
(yt+1, xt+1), it updates only for the immediately preceding signal xt. That is, the
algorithm modifies only the immediately preceding prediction, here λ = 0. But
since yt+1 provides useful information for learning earlier predictions as well, one
can extend TD learning so it updates a collection of many earlier predictions at
each step, 0 ≤ λ ≤ 1. Eligibility traces do this by providing a short-term mem-
ory of many previous input signals so that each new observation can update the
parameters related to these signals. Eligibility traces are usually implemented by
an exponentially-decaying memory trace, as decay parameter λ. This generates a
family of TD algorithms TD(λ), 0 ≤ λ ≤ 1, with TD(0) corresponding to updating

14CHAPTER 3. MULTIAGENT LEARNING FRAMEWORKAND PRELIMINARIES

only the immediately preceding prediction as described in Eq. 3.4, and TD(1) corre-
sponding to equally updating all the preceding predictions. This also applies to non-
lookup-table versions of TD learning, where traces of the components of the input
vectors are maintained. Eligibility traces do not have to be exponentially-decaying
traces, but these are usually used since they are relatively easy to implement and
to understand theoretically.

3.1.3 Q-learning

Q-learning is the most significant breakthrough as an off-policy TD control algo-
rithm. The simplest, one-step Q-learning is defined as follows:

Q(st, at)← Q(st, at) + α[rt+1 + γmax
a

Q(st+1, a)−Q(st, at)], (3.5)

where α is the learning rate, 0 < α < 1; When α is set to 0, it means that the
Q-value is never updated and nothing is learnt; while α is set to 0.9, it means that
learning can occur quickly. Q(st, at) is the expected value of performing action a
in state s; and maxaQ(s, a) is the maximum reward received and then follows the
optimal policy. The Q-learning algorithm is shown in Alg. 1.

Algorithm 1: Q-learning: An off-policy TD control algorithm

Initialize Q(s, a) arbitrarily;
repeat for each episode:

Initialize s;
repeat for each step of episode:

Choose a from s using policy derived from Q;
Take action a, observe r, s′;
Q(s, a)← Q(s, a) + α[r + γmaxa′ Q(s′, a′)−Q(s, a)];
s← s′;

until s is terminal ;

until;

3.2 General Framework of MAL

In a multiagent learning framework, agents process three classes of activities: per-
ception, reasoning and action (see Fig. 3.1). First, each agent observes other agents
and collect information in the environment, called “perception”. Second, agents
conduct reasoning according to their own preference and knowledge to decide an
optimal strategy; thereafter, agents perform their actions and receive feedback re-
spectively.

3.2. GENERAL FRAMEWORK OF MAL 15

Figure 3.1: Multiagent Framework

Stochastic games are defined as multiple agents with a multiple states frame-
work, which can be viewed as a synthesis of Markov decision processes and matrix
games. MDPs model a single agent, multiple states model, which have been explored
prominently in the field of reinforcement learning (see Section 3.1.1). On the other
hand, matrix games describe a multiagent system with single state model, which are
the foundational concepts in the game theory field. Since stochastic games share
concepts with these two simpler frameworks, it is useful to consider them indepen-
dently to analyze the core concepts while addressing the critical issues existing in
stochastic games only. Fig. 3.2 illustrates the relations among these three concepts.
In Section 3.1, we discuss MDP as a single agent reinforcement learning; then, we
examine matrix games, a multiagent, single-state learning process.

Figure 3.2: Stochastic Games = MDPs + Matrix Games

16CHAPTER 3. MULTIAGENT LEARNING FRAMEWORKAND PRELIMINARIES

3.2.1 Matrix Games

Matrix games were first examined in the field of game theory to model strategic
interactions of many decision makers (von Neumann and Morgenstern (1944); Os-
borne and Rubinstein (1994)). Mathematically, a matrix game (or strategic game)
is a tuple (A,R), where A = Ai×· · ·×An is the action space for each player; player i
chooses an action Ai, and receives the payoff Ri, i ∈ [1, n], which depends on all the
players’ actions. R is normally written as n-dimensional matrices, and each entry
in the reward matrices corresponds to the joint actions taken. The learning process
in matrix games means that agents repeatedly play the same matrix game, which is
also called a repeated game. Agents learn through experience from observation of
other agents’ behaviors and their rewards, to maximize its own reward.

Examples

As follows, we list several matrix games and the payoff function matrices. Note that
R1 is for player 1 and R2 is for player 2. In each game matrix, the row represents
player 1, and the column represents player 2.

• (a) Rock-Paper-Scissors
Two players with each having three options: “Rock”, “Paper” and “Scissors”,
and the rules are: “Rock” loses to “Paper”, “Paper” loses to “Scissors”, and
“Scissors” loses to “Rock”; otherwise, it is a tie. The winner gains one dollar
from the loser, while the loser loses one dollar. For example, player 1 plays P
while player 2 plays S, and the reward is −1 for player 1 and 1 for player 2.

R1 =

R P S

R 0 −1 1
P 1 0 −1
S −1 1 0

 , R2 =

R P S

R 0 1 −1
P −1 0 1
S 1 −1 0

• (b) Coordination Game

Two players simply both desire to agree on their action choice, but with no
preferences between them.

R1 =

 A B
A 1 0
B 0 1

 , R2 =

 A B
A 1 0
B 0 1

• (c) Stackelberg Stage Game

The players of this game are a leader and a follower and they compete on re-

3.2. GENERAL FRAMEWORK OF MAL 17

ward quantity; the leader moves first and then the follower moves sequentially.

R1 =

 Left Right
Up 1 3

Down 2 4

 , R2 =

 Left Right
Up 0 2

Down 1 0

Matrix games can be classified according to their payoff function. If one agent’s

gain is other agents’ loss, we call this type of game as general-sum games. For
example game (a), the sum of player 1’s gain and player 2’s loss equals zero, we
also call this zero-sum game. Another common type of matrix game is team game,
i.e. game (b), in which all agents have the same payoff function, in other words, one
agent’s best interest is the best interest of all others. Game (c) looks similar to the
general-sum game and team game, but it is neither of them.

What we can learn in game (c) is as follows: imagine a repeated version of this
game, and assume that the column player (secondary player: follower) is paying
attention to the row player’s (first player: leader) strategy and the rewards after
each move. The two players will end up in a repeated (Down, Left) play and (Up,
Right) play, since this is a way that benefits both. We conclude from this example:
that learning and teaching happens at the same time: the row player has taught the
column player to play in a way that benefits both most. Or, we can see this as an
adaptation rather than a learning process. Note that the concept of strategy is not
the same as a move. A move refers to an action taken by a player at the certain
point during the game; while a strategy means a complete algorithm for playing the
game which then tells a player what to do throughout the game.

Nevertheless, the learning agent’s goal is to learn a strategy that maximizes its
reward, using either pure strategies or mixed strategies. A pure strategy provides a
complete set of how a player plays a game; while a mixed strategy is a probability of
each pure strategy. An arbitrary finite matrix game may not have a pure strategy
Nash equilibrium, but it always has a mixed strategy Nash equilibrium(Nash (1951)).
Therefore, in our research, we focus on mixed strategies, and the definition is given
as below.

A mixed strategy refers to a joint strategy σ for all n players. One player i’s
strategy σi, specifies a probability distribution over all actions A, and its reward
function Ri is defined over mixed strategy as follows:

Ri(σ) =
∑
a∈A

Ri(a)Πn
i=1σi(a). (3.6)

Ri(a) is the reward received by player i when playing action a, and σi(a) is the
probability distribution of playing action a.

18CHAPTER 3. MULTIAGENT LEARNING FRAMEWORKAND PRELIMINARIES

In matrix games, one player’s optimal strategy can only be evaluated if the
other players’ strategies are known. So, this is an opponent-dependent solution,
also called best-response. We use < σi, σ−i > to represent the joint strategy where
player i follows σi while others follow σ−i. σ−i refers to a joint strategy for all the
players except player i.

Definition 2 For a matrix game, the best-response function for player i, BRi(σ−i),
is the set of all strategies that are optimal given the other player(s) play the joint
strategy σ−i. Formally, σ?i ∈ BRi(σ−i), if and only if,

∀σi ∈ PD(Ai) Ri(< σ?i , σ−i >) ≥ Ri(< σi, σ−i >)

where PD(Ai) is the set of all probability distributions over the set Ai (the set of all
mixed strategies for player i).3

One most critical notion in matrix game and game theory is a best-response
equilibrium, also called Nash Equilibrium(Nash (1950)).

Definition 3 A Nash equilibrium is a collection of strategies for all players, σi,
with

σi ∈ BRi(σ−i).

Therefore, no player can do better by changing strategies given that the other players
continue to follow the equilibrium strategy.

All matrix games have a Nash equilibrium, and there may be more than one. In
zero-sum games, one appealing feature is that there is a unique Nash equilibrium,
and this equilibrium corresponds to the games’ minmax solution. In other words,
this mixed strategy maximizes the worst-case expected reward. This solution can
be found in a linear program as illustrated in Eq. 3.7.

Maximize: mina2∈A2

∑
a1∈A1

σ(a1)R(< a1, a2 >), (3.7)

Subject to:
∑

a1∈A1
σ(a1) = 1,

σ(a1) ≥ 0, ∀a1 ∈ A1.

This solution is player 1’s equilibrium strategy, where this linear program has
‖A1‖ parameters. Player 2’s strategy can be solved similarly. In Rock-paper-scissors
game, there is a unique Nash equilibrium in which each player selects their actions
with equal probability (as mixed strategy Nash equilibrium). But, if one player sim-
ply adopts this equilibrium strategy, will the player win the competition of a tour-
nament? The answer is no, because a Nash equilibrium provides a rational strategy,

3Defnition 2, 3, 4, 5 are based on Nash (1950).

3.2. GENERAL FRAMEWORK OF MAL 19

not necessary a best benefit one. Furthermore, in a general matrix game, finding a
Nash equilibrium is known to be NP-hard, yet is still an open question(Gilboa and
Zemel (1988); Conitzer and Sandholm (2008)).

3.2.2 Stochastic Games

Stochastic games are an extension of a combination of matrix games and MDPs,
which include multiple agents with multiple stages. Formally, a stochastic game
(Shapley (1953))can be represented as a tuple: (n, S,A, T,R), where

• n is the number of agents;

• S is a set of stages;

• A is a set of actions, A = A1, · · · , An; Ai is player i’s action. (We assume
that each player has the same strategy space in all games. This is a notational
convenience, not a substantive restriction.)

• T is a transition function specifying the probability of the next stage game to
be played based on the game just played and the action taken in it: S×A×S →
[0, 1], such that,

∀s ∈ S, ∀a ∈ A,
∑
s′∈S

T (s, a, s′) = 1.

• R is the reward function, R = R1, · · · , Rn. Ri is the immediate reward func-
tion of player i for at the stage S: S × A→ R. Note that each player has its
own independent reward function.

When n = 1, stochastic games are MDPs; when ‖S‖ = 1, they are matrix games
or repeated games. The goal for player i in a stochastic game is to learn a policy
that maximizes long-term reward, same as MDPs. A policy for player i, πi is a
mapping that defines the probability of selecting an action from a particular stage.
Formally, πi ∈ S ×A→ [0, 1], where

∀s ∈ S,
∑
a∈A

πi(s, a) = 1.

We use π to refer to a joint policy for all the players, and Πi refers to the set of all
possible stochastic policies available to player i, while Π = Π1 × · · · × Πn refers to
the set of joint policies for all the players. π−i refer to a particular joint policy of all
the players except player i, and Π−i refers to the set of such joint policies. Finally,
the notion < πi, π−i > refers to the joint policy where player i follows πi while the
other players follow their policy from π−i.

20CHAPTER 3. MULTIAGENT LEARNING FRAMEWORKAND PRELIMINARIES

Next, similar to MDPs, we need to define how to aggregate the set of the imme-
diate rewards received in each stage for each agent in order to quantify the value of
a policy. For finitely repeated games, we can simply use the sum or average reward
which is the typical approach. For infinitely repeated games, the most common ap-
proaches are to use either the limit average or the sum of discounted rewards. The
limit average reward function V of player i in stochastic games is defined similarly
to MDPs, as follows,

V π
i (s) = lim

T→∞

T∑
t=0

1

T
E(rti | s0 = s, π) (3.8)

where E(rti | s0 = s, π) as the expected reward to player i received at time t given the
initial state s and the agents follow the policy π. Similarly, the sum of discounted
award function is defined with discount factor γ, γ ∈ [0, 1), as,

V π
i (s) =

∞∑
t=0

γtE(rti | s0 = s, π). (3.9)

Notice that this reward function for each agent i is dependent on the joint policy
of the other agents. As in MDPs, we can also define Q-values for a given agent for
a particular joint policy. For the discounted reward framework, Q-values can be
formulated as,

Qπi (s, a) = Ri(s, a) + γ
∑
s′∈S

T (s, a, s′)V π
i (s′).

On the other hand, similar to matrix games, there is a best-response in stochastic
games. Notice that a policy for a player can only be evaluated in the context of all
the players’ policies.

Definition 4 For a stochastic game, the best-response function for player i, BRi(π−i),
is the set of all policies that are optimal given the other player(s) play the joint policy
π−i. Formally, π?i ∈ BRi(π−i), if and only if,

∀πi ∈ Πi, ∀s ∈ S, V
<π?

i ,π−i>
i (s) ≥ V <πi,π−i>

i (s)

where PD(Ai) is the set of all probability distributions over the set Ai (the set of all
mixed strategies for player i).

We can also define the most critical notion: a best-response equilibrium or Nash
Equilibrium, similar to matrix games in game theory.

3.3. SUMMARY 21

Definition 5 For a stochastic game, a Nash equilibrium is a collection of policies,
one for each player, πi, such that,

πi ∈ BRi(π−i).

Therefore, no player can do better by changing policies given that the other players
continue to follow the equilibrium policy.

Stochastic games can be classified the same way as matrix games. Team games
are the ones where all the agents receive the same reward function. General-sum
games are the ones where one player’s gain means other players’ loss. Zero-sum
games refer to the sum of total rewards equals to zero. Like matrix games, zero-sum
stochastic games have a unique Nash equilibrium, and we examine some seminal
learning techniques to solving such stochastic games in the next chapter.

In stochastic games, the Markov assumption still holds, but it has a different
form, as follows.

Definition 6 A multiagent decision problem is Markovian if and only if, the se-
quence of states (st ∈ S), actions (at ∈ A), and the rewards (rti ∈ R), satisfies

Pr{st = s, rti = ri | st−1, at−1, . . . , s0, a0} = Pr{st = s, rti = ri | st−1, at−1}.

that is, if the next state and rewards depend only on the previous state and all of
the agents’ actions, but not on the history of states and actions.

From the game’s perspective, stochastic games are Markovian, but from a single
agent’s perspective, the process is no longer stationary or Markovian (versus “be-
havior strategy”4). It is because the transition probabilities associated with a single
agent’s action from a state are not stationary and change over time as the other
agents’ action choices change. This property is critical to single-agent reinforcement
learning research, and this violation of basic assumptions require new techniques to
be developed to learn effective policies in stochastic games.

3.3 Summary

In this chapter, we described the single agent learning process and examine most
critical techniques TD learning and Q-learning in the reinforcement learning field.
Thereafter, we introduce MDPs and matrix games, since stochastic games can be
seen as a merging of both. Through detailed analysis of MDPs and matrix games, we

4A behavior strategy is defined if πt = f(ht) where ht is the history up to time t; a makovian
or stationary strategy is a special case of behavior strategy when ht = φ.

22CHAPTER 3. MULTIAGENT LEARNING FRAMEWORKAND PRELIMINARIES

present the general framework for multiagent learning, and some important concepts
in stochastic games and in game theory. In the next chapter, we examine seminal
learning techniques for finding solutions in stochastic games.

Chapter 4

Seminal Learning Techniques

Autonomous agents are the agents who can sense the environment, act on it, and
pursue their own agenda. These autonomous agents include intelligent agents, au-
tonomous robots, even artificial life agents, and many computer viruses. This re-
search involves a spectrum of areas, including reinforcement learning, evolutionary
computation, game theory, complex systems, agent modeling and robotics. From
the learning task perspective, this research leads to two learning branches: team
learning and concurrent learning. Team learning applies to a single learner, to
discover joint solutions for multiagents problems; concurrent learning (also called
distributed learning) states that multiple agents learn simultaneously. With the
process of learning, agents communicate directly or indirectly. Our interest focuses
on the dynamic learning process appearing in the multiagent system.

Many dynamic learning studies come from the game theory perspective. An
important concept in game theory is the Nash equilibrium which provides a joint
overall strategy for learners. As the learners do not normally have control over
others, no single agent has any rational incentive to change its strategy away from
the equilibrium. Thus, many dynamic learning methods converge to Nash equilibria.
This paper analyzes multiagent learning problems starting from stochastic games,
which focus on finding a Nash equilibrium. In this chapter, we first present the
first algorithm proposed to find equilibria in game theory. Thereafter, we examine
seminal learning approaches about how to learn a Nash equilibrium or find the best
responses in stochastic games.

4.1 Dynamic Learning

The multiagent learning process is a dynamic learning process, rather than a sta-
tionary learning process in which a single-agent explores the static environment and

23

24 CHAPTER 4. SEMINAL LEARNING TECHNIQUES

discovers a globally optimal behavior. In a dynamic environment, all agents are
constantly alert for environment changes and adapt their own optimal behaviors to
each other’s learning process. That is, each learner coadapts its behaviors in the
context of others; accordingly this co-adaptation brings in a complicated dynamic
environment for each learner to act in it with others. Thus, in dynamic learning,
since each agent is free to learn and act separately towards achieving its goal; an in-
herent critical problem is how to assign credit to each agent after reward obtained at
a team level. In this section, we discuss credit assignment and dynamic environment.

4.1.1 Credit Assignment

For a task involving multiple agents’ joint actions, the simple solution called global
reward is to divide the total rewards equally, and assign each share to each learner.
However, there are two problems associated with this method: one is that in certain
situations, the global reward cannot be efficiently computed, particularly in dis-
tributed environments. The other problem is that, without sufficient feedback from
each learner’s action, should it be more helpful if we reward those who perform
actions and punish those for laziness? In these two situations, equally dividing the
share for each learner is not practical. One approach is called local rewards which
accesses each agent’s performance based merely on its individual behavior. This
approach discourages laziness because it only rewards agents who actually act, but,
this also may cause greediness.

Balch (Balch (1997, 1999)) states that different credit assignment strategies
should be chosen, depending on the problem domain. His experiments explain that
the local rewards lead to faster learning rates and fast policy convergence with
fully homogeneous behavior, but not necessarily to better performance than global
rewards, which lead to greater diversity but with poor convergence policy. For ex-
ample, in a foraging problem, local rewards produce better results, while in a soccer
game, global rewards is better. Balch claims that the more local reinforcement sig-
nal increases the homogeneity of the final learned team, which in turn suggest that
the credit assignment range can form a certain homogeneity or a certain degree of
specialization.

Mataric (Mataric (1994)) specifies in the learning process and promotes agents
learning from others as type of local reinforcement, called social reinforcement. In
this type of reward, agents obtain observational reinforcement through observing
others and imitating them. This process can improve the overall team behavior by
promoting anomalous as well as contributory behaviors. Agents can also receive ad-
ditional vicarious reinforcement whenever others are directly rewarded. A weighted
combination of social reinforcement, observational reinforcement and vicarious re-
inforcement balances local rewards and global rewards, and produces a better result

4.2. FINDING EQUILIBRIA ALGORITHMS IN GAME THEORY 25

in a foraging application.
There are a number of credit assignment strategies in Panait and Luke (2005)

which can favor agents’ dynamic learning process, which may also result in dynamics
resembling general-sum or even competitive games. Thus, just as in social science,
credit assignment policy can complicate the dynamic learning and lead to the co-
operator’s dilemma (Lichbach (1996)): whether to cooperate or compete. In our
research, the credit assignment problems are handled by either the assigning rules
which are already known in the stochastic games, or where the reward credit func-
tion is defined. Generally, credit assignment problems are more addressed by team
cooperative learning communities, rather than those in the reinforcement learning
field.

4.1.2 Dynamic Scenarios

Since various credit assignment policies exist, we can divide dynamic learning into
two different scenarios: the fully-cooperative scenario and the general-sum game
scenario. In a fully-cooperative scenario with only global rewards, if the rewards
received by one agent will increase everyone else’s reward, it is relatively straight-
forward to converge to a globally optimal Nash equilibrium in the learning process.
Another case is the general-sum, which means that each agent’s reward is not less
clear, and one agent’s gain means the loss of other agent(s). In this situation, the
learning process is in a non-global credit assignment policies, and it may include
both competing and cooperative scenarios when rewards are involved. We present
the influential work on how to find optimal policies in the next part of this chap-
ter, and our research is more focused on general-sum games which involve typically
unequal share credit policies.

4.2 Finding Equilibria Algorithms in Game Theory

The algorithms from game theory focus on computing the reward value for the
players and a Nash equilibrium, which is used to predict behaviors in stochastic
games. The approaches from game theory have some very strong assumptions,
which require the game (n, S,A, T,R) to be fully known and observable. Thus, we
also call these approaches “model-based”. The goal is to compute the value of a
Nash equilibrium and the expected reward value for all the players, and in general,
without concern for the interaction among players.

There are many approaches for finding algorithms in the game theory field.
We mainly discuss the first proposed technique in this paper: fictitious play. Fic-
titious play was the first proposed technique to find equilibria in matrix games
(Brown (1949); Robinson (1951)), and later was extended to stochastic games

26 CHAPTER 4. SEMINAL LEARNING TECHNIQUES

(Vrieze (1987)). Note that, fictitious play assumes opponents play stationary or
mixed strategies. At each round, each player simulates play of the game and plays
the best response to the empirical frequency of the other player’s play, Qi(s,ai)

t . We
describe the learning procedure of fictitious play in Alg. 2.

Algorithm 2: Fictitious play for two player, zero-sum stochastic games

1. Initialize Qi(s, ai), s ∈ S, ai ∈ Ai, and t← 0;

2. Repeat for each sate, s ∈ S,

(a) Let ai = argmaxai∈AiQi(s, ai);

(b) Update Qi(s, ai), ∀s ∈ S, ∀a′i ∈ Ai:

Qi(s, a
′
i)← Qi(s, a

′
i) +R(s,< a−i, a

′
i >) + γ

(∑
s′∈S

T (s, a, s′)V (s′)

)
,

where,

V (s) = max
ai∈Ai

Qi(s, ai)

t
.

(c) t← t+ 1.

4.3 Learning Equilibria Algorithms

In the reinforcement learning communities, learning equilibria presents a different
diagram where the goal is to learn through interaction rather than solve an equi-
librium. The algorithms, also called as “model-free” approaches, avoid building an
explicit model of the opponent’s strategy. In general, the agent learns through ob-
servation and experience over time and select actions in the environment based on
observations of T and Ri, especially T and Ri are not known in advance. Compared
with algorithms in game theory field, this model-free approach is more concerned
with “play” in stochastic games, to find a solution. The goal of these algorithms
is to estimate and converge to a policy in one of the game’s Nash equilibria. We
review these algorithms of learning equilibrium techniques, as well as determining
their conditions for convergence. Note that all the algorithms have a nearly identi-
cal structure (see in Alg. 3). These algorithms tend to solve each state as a matrix
game, and find equilibrium for the stochastic game. They mainly differ on the value
operator definition V in the Step2(b).

4.3. LEARNING EQUILIBRIA ALGORITHMS 27

Algorithm 3: Equilibrium Learning Algorithm: two players a1, a2.

1. Initialize Q(s,< a1, a2 >), s ∈ S, a1, a2 ∈ A, and set α to be the learning rate;

2. Repeat for each state, s ∈ S,

(a) From state s, select actions a that solve the matrix game
u[Q(s,< a1, a2 >)a1,a2∈A], with some exploration;

(b) Observe joint-action < a1, a2 >, reward r, and next state s′, update
Q(s,< a1, a2 >):

Q(s,< a1, a2 >)← (1− α)Q(s,< a1, a2 >) + α
(
r + γV (s′)

)
,

where,

V (s) = V alue

(
[Q(s,< a1, a2 >)a1,a2∈A]

)
.

4.3.1 Minimax-Q

Littman (Littman (1994)) extended the traditional Q-Learning algorithm for MDPs
to zero-sum stochastic games. Instead of using the maxai∈A in Step2(b) of Alg. 2,
the value operator V computes the unique equilibrium value for the zero-sum matrix
game defined by the Q value at the current state (see Eq. 4.1). The solution of the
zero-sum matrix game is computed using the linear program from Section 3.2.1
which is a minmax function:

V1(s) = max
π∈Π(A1)

(
min
a2∈A2

∑
a1∈A1

π(a1)Q1(s,< a1, a2 >)

)
= −V2(s), (4.1)

where, player 1’s reward value V1 is the opposite of player 2’s reward value V2. The
idea of minmax is to behave to maximize the reward (maxπ∈Π(A1)) under the worst
case (mina2∈A2), see Alg. 3.

4.3.2 Nash-Q

Hu & Wellman (Hu and Wellman (1998)) extended the Minimax-Q algorithm to
two player, general-sum stochastic games. The extension requires that each agent
maintain the Q value for all the agents since the reward value is no longer opposite.
Similar to the Alg. 3 structure, the Value operator in Step2(b) is the quadratic pro-
gramming solution for finding a Nash equilibrium in two player general-sum games
(see Eq. 4.2), instead of the linear programming solution to find the equilibrium only
for zero-sum games. On the other hand, Littman’s Minimax-Q learning algorithm

28 CHAPTER 4. SEMINAL LEARNING TECHNIQUES

assumes that the other agent will always choose a pure Nash equilibrium strategy;
instead, this algorithm will choose a mixed strategy.

Vi(s) ∈ Nash
(
Q1(s), · · · , Qn(s)

)
(4.2)

The Nash-Q learning algorithm is highly general and is guaranteed to converge
to the equilibrium, but with restrictive assumptions. The most critical one is that
all the intermediate games must have a single equilibrium; and in addition, this
equilibrium in all these intermediate games must be a global optimum, which is a
joint action that maximizes each agent’s payoff.

4.3.3 Friend-or-Foe-Q

Littman’s Friend-or-Foe-Q (FFQ) (Littman (2001)) is an equilibrium learner that
extends Minimax-Q to include a small class of general-sum games. This algorithm
assumes there are two kinds of competing agent in the stochastic games from one
agent’s perspective: either a friend or a foe. Knowing the labeling or inferring from
the observed rewards, equilibrium policies can be learned in restricted classes of
games: e.g. two-player, zero-sum stochastic games, which computes the basic zero-
sum linear program of the minimax equilibria (foe-Q) (see Eq. 4.4); e.g., coordination
games with uniquely-valued equilibria (friend-Q) (see Eq. 4.3).

Vi(s) = max
a1∈A1,a2∈A2

(
Q(s,< a1, a2 >)

)
(4.3)

V1(s) = max
π∈Π(A1)

(
min
a2∈A2

∑
a1∈A1

π(a1)Q1(s,< a1, a2 >)

)
(4.4)

4.3.4 Correlated-Q

The final equilibrium learning technique is Greenwald & Hall’s Correlated-Q (CE-
Q) (Greenwald and Hall (2003)) in order to generalize both Nash-Q and Friend-
and-Foe-Q. CE-Q indicates four variants: utilitarian (uCE-Q), egalitarian (eCE-
Q), republican (rCE-Q) and libertarian (lCE-Q), which also demonstrate empirical
convergence to equilibrium policies on a testbed of general-sum Markov games. The
four correlated equilibrium selection mechanisms are the objective choice of the
following functions respectively,

• uCE-Q: maximize the sum of the players’ rewards:

σ ∈ max
σ∈CE

∑
i

∑
a∈A

σ(a)Qi(s, a) (4.5)

4.3. LEARNING EQUILIBRIA ALGORITHMS 29

• eCE-Q: maximize the minimum of the players’ rewards:

σ ∈ max
σ∈CE

min
i

∑
a∈A

σ(a)Qi(s, a) (4.6)

• rCE-Q: maximize the maximum of the players’ rewards:

σ ∈ max
σ∈CE

max
i

∑
a∈A

σ(a)Qi(s, a) (4.7)

• lCE-Q: maximize the maximum of each player i’s rewards:

σ = Πiσi, σi ∈ max
σ∈CE

∑
a∈A

σ(a)Qi(s, a) (4.8)

Using the same algorithm structure in Alg. 3, the Value operator is replaced by
Eq. 4.9, where σ satisfies either Eq. 4.5, 4.6, 4.7, 4.8.

Vi(s) ∈ CEi
(
Q1(s), · · · , Qn(s)

)
=
∑
a∈A

σ(a)Qi(s, a) (4.9)

A correlated equilibrium is a more general concept, and all Nash equilibria are
correlated equilibria. A correlated joint policy is an equilibrium if and only if, for
each player i, each state s, and each action ai, the following holds. Let σ−i(a−i | ai)
be the conditional probability that the other agents select action a−i, given agents
are following the correlated joint policy π and agent i is playing action ai. Then,
for all a′i, the following must be true,

∑
a−i∈A−i

σ−i(a−i | ai)Qπ(s,< ai, a−i >) ≥
∑

a−i∈A−i

σ−i(a−i | ai)Qπ(s,< a′i, a−i >).

From another perspective, given the knowledge about other players’ distribution
gained from one agent’s own prescribed action, that agent gains no increase in
expected payoff by playing an action different from its prescribed action. This
correlated joint policy is more efficient than Nash-Q, since it does not require the
complex quadratic programming Nash equilibrium solver. Instead, according to
conditional probability rule: π(a1, a2) = π(a1 | a2) ∗ π(a2) = π(a2 | a1) ∗ π(a1),
correlated equilibruia can be computed via linear programming by treating one
player’s action as a conditional constraint.

30 CHAPTER 4. SEMINAL LEARNING TECHNIQUES

4.4 Learning Best-Response Algorithms

Learning best-response algorithms means directly to learn and play a best-response
to other players’ policies. Even though these algorithms are not explicitly related to
equilibrium, best-response learning algorithms have strong connections to equilibria
in terms of the rationality property of the learning algorithms. Two important prop-
erties are mentioned by Bowling (Bowling (2003)): convergence and rationality. We
will discuss these two concepts in Section 4.5. Two major kinds best-response learn-
ing algorithms in RL field, opponent modeling algorithms and infinitesimal gradient
ascent algorithms, are similar to fictitious play, which requires observations of the
opponent’s actions, while the reinforcement learning methods require to maintain
different information regarding to reservation over the other players’ behaviors. In
fictitious play, each player maintains a model of the mixed strategy of the other
players based on the empirical play so far, and always plays the best response to
this model at each iteration.

4.4.1 Q-learning

Q-learning (Watkins (1989)) was originally designed to find optimal policies in MDPs
in single-agent learning. However, despite this, it has been widely used for multia-
gent learning with certain success. Moreover, if the other players play a stationary
strategy, the stochastic games can be seen as a MDP; and therefore, Q-learning
learns to play an optimal response to the other players. In other words, Q-learning
traditionally can not learn or play stochastic policies.

4.4.2 Opponent Modeling

Opponent modeling reinforcement learning algorithms require observations of the
opponent’s actions, similar to fictitious play. There are two major algorithms: oppo-
nent modeling Q-learning (Uther and Veloso (2003)) and joint action learners (JALs)
(Claus and Boutilier (1998)), which aim to learn opponents’ stationary distributions
over their actions but not their individual rewards (different from fictitious play), see
Alg. 4. The learned opponents’ distribution combined with the joint-action value,
are used to select an action. The difference is that Uther & Veloso focused on a
zero-sum domain, while Claus & Boutilier investigated team matrix games.

Note that in Alg. 4, C(s, a−i)/n(s) denotes the probability that the other players
will select joint action a−i based on the past experience. C(s, a−i) is the frequency
number of playing action a−i at stage s, and n(s) is the totoal number of stage s
appears.

4.4. LEARNING BEST-RESPONSE ALGORITHMS 31

Algorithm 4: Opponent modeling Q-learning Algorithm

1. Initialize Q,∀s ∈ S,C(s)← 0, n(s)← 0.;

2. Repeat for each sate, s ∈ S,

(a) From state s, select actions ai that maximizes,∑
a−i

C(s, a−i)

n(s)
Q(s,< ai, a−i >)

(b) Observe other agents’ joint-actions a−i, reward r, and next state s′,
update Q(s, a):

Q(s, a) ← (1− α)Q(s, a) + α
(
r + γV (s′)

)
,

C(s, a−i) ← C(s, a−i) + 1,

n(s) ← n(s) + 1

where,

a = < ai, a−i >

V (s) = max
ai

∑
a−i

C(s, a−i)

n(s)
Q(s,< ai, a−i >).

32 CHAPTER 4. SEMINAL LEARNING TECHNIQUES

4.4.3 Infinitesimal Gradient Ascent

Infinitesimal Gradient Ascent (IGA) (Singh et al. (2000)) is the last best-response
learning algorithm. The basic idea is for an agent to adjust its policy in the direction
of the gradient of the value function. Agents incrementally adapt their strategy
through gradient ascent to an expected payoff. IGA has been proved that, in the
simple setting of two-play, two-action, iterated general-sum games, the agents will
converge to a Nash equilibrium, or if the strategies may not always converge, their
average payoffs will nevertheless converge to the payoffs of a Nash equilibrium. Note
that the gradient ascent algorithm assumes a full information game, that is, both
players know both game matrices, and can see the mixed strategy of their opponent
at the previous step (only if the actual previous move played is visible, a stochastic
gradient ascent algorithm can be defined).

Similar in structure to Alg. 4, joint-actions < ai, a−i > here are replaced by a
strategy pair < α, β >. Assume that two-player, r, c, with two-action, and their
payoffs in a general-sum game in matrices as:

R =

[
r11 r12

r21 r22

]
, C =

[
c11 c12

c21 c22

]
in which the row specifies player 1 and the column indicates the player 2, respectively.
The value (or payoff) of the strategy pair < α, β > to the row player Vr(α, β) and
the column player Vc(α, β), respectively, are:

Vr(α, β) = r11 · (αβ) + r22 · (1− α)(1− β) + r12 · α(1− β) + r21 · (1− α)β,

Vc(α, β) = c11 · (αβ) + c22 · (1− α)(1− β) + c12 · α(1− β) + c21 · (1− α)β.

In the infinitesimal gradient ascent algorithm, each player repeatedly adjusts
their strategy in the direction of their current gradient with some step size η, limη→0,

αk+1 = αk + η
∂Vr(αk, βk)

∂α

βk+1 = βk + η
∂Vc(αk, βk)

∂β
(4.10)

Accordingly, the process updates strategy pair < α, β > and the Q value, similar
to Alg. 4. Here,

∂Vr(α, β)

∂α
= βu− (r22 − r12),

∂Vc(α, β)

∂β
= αu′ − (c22 − c21). (4.11)

4.4. LEARNING BEST-RESPONSE ALGORITHMS 33

in which, letting u = (r11 + r22)− (r21 + r12), and u′ = (c11 + c22)− (c21 + c12).

Bowling and Veloso (Bowling and Veloso (2002)) describe two important prop-
erties for learning agents: rationality and convergence. They introduce the Win
or Learn Fast (WoLF) algorithm, which varies the learning rate from small and
cautious values when winning, to large and aggressive values when losing to the
others.

4.4.4 Regret Minimization Approaches

Regret minimization approaches seek to minimize regret, not directly learn an equi-
librium nor play a best-response, also known as no-regret learning. Described in
Eq. 4.12, regret at time T is the difference between the total reward received in
T playings and the value of the best stationary strategy over those same playings.
Here, rt is the actual value the player received at time, and NT (a−i) is the number of
times the other players played the joint action a−i in the first T trials of a repeated
matrix game for player i.

Regreti(T) = max
ai∈Ai

(∑
a−i∈A−i

NT (a−i)Ri(< ai, a−i >)

)
−
(T∑
t=1

rt
)

(4.12)

An algorithm achieves no-regret if and only if,

lim
T→∞

Regreti(T) ≤ 0.

In other words, the total amount of reward received by the player must be at least
as much as if the player have known the distribution of the other agents’ actions
ahead of time, but not the order. Notice that the other agents’ actions is a fixed
strategy, and the algorithm is guaranteed to converge in payoff to the value of the
best-response strategy.

No-regret algorithms have been mainly explored in single-state games, such as
k-armed bandit problems and matrix games. Two important criteria of the learning
rules are safe and consistent (Fudenberg and Levine (1995)). The first rule, “safe”,
is defined as the requirement that guarantee at least the minimax payoff of the
game. The minimax payoff is the maximum expected value a player gained against
any opponent. Then the “universal consistency” rule defines that a learning rule
do at least as well as the best response to the empirical distribution, regardless of
the actual strategy that the opponent is employing. Little work has been done in
application of stochastic games. The difficulties of extending this concept to stochas-
tic games are discussed in Mannor and Shimkin (2003). One exception is Manor

34 CHAPTER 4. SEMINAL LEARNING TECHNIQUES

(Mannor and Shimkin (2001)) who extends no-regret properties to average-reward
stochastic games. More work needs to generalize these approaches to discounted
reward stochastic games.

4.5 Properties

In the literature, with respect to the learning algorithms, typical results are eval-
uated from three properties: convergence of the strategy to equilibria, successfully
learning of opponent’s strategy, and obtaining optimal payoffs.

First, convergence is the most common one in both game theory and AI liter-
ature. Many approaches in AI literature, such as, minimax-Q learning, Nash-Q,
FFQ, CE-Q, etc., are respectively proven to converge to a Nash equilibrium in cer-
tain types of stochastic games under certain conditions.

Second, rationality is shown as the results of successfully learning opponents’
strategies. Since each agent adopts a best response to their beliefs about other
agent’, the agents will converge to a Nash equilibrium, of the repeated game. How-
ever, this result is under the assumption that if the history is observable given the
strategies, the agents’ belief will only correctly converge .

No-regret learning exemplifies the results of the last property. Two criteria for
no-regret learning are safe and consistent. A large number of algorithms have been
shown to satisfy universal consistency (no-regret) requirements. Bowling (Bowling
(2005)) combines these criteria in a no-regret learning algorithm, GIGA-WoLF, that
provably convergence to a Nash equilibrium, in two-player, two-action stochastic
games.

4.6 Summary

In this chapter, we analyze the seminal approaches in multiagent learning research.
The multiagent learning process is known as non-stationary, dynamic. First, we
illustrate a critical problem along with dynamic learning: credit assignment, and
then we present the cooperative scenarios and competing scenarios in the learning
problem. Thereafter, we study influential work in MAL on how to learn optimal
policies in games. We end this chapter by analyzing important common properties
in these proposed learning approaches: convergence, rationality and payoffs. In the
next chapter, we will discuss some open issues in the study of MAL and state our
research interest.

Chapter 5

Open Issues and Research
Interests

As early as 1951, fictitious play as the first learning algorithm was proposed to com-
pute equilibria in games, and there have been numerous proposals regarding learning
techniques in stochastic games. The MAL research has produced some inspiring re-
sults, yet, it is important to examine the foundations of MAL, and consider some
relevant questions. What question exactly is MAL addressing? What is there to
learn in stochastic games? What are the yardsticks by which to measure answers to
these questions? How can we evaluate the success of learning rules?

Do the agents know the stochastic game, including the stage game and the
transition probability? More specifically, the information regarding the following:
stochastic stages, transition probabilities, specific actions at each stage, actions
available according to the agents, transparent (or not) for all the agents stages,
action/strategies, rewards, and so on. These all are rather important factors in the
whole process of agents’ learning. In general, this learning process can be classified
as known or unknown games, observable, partial observable or unobservable play.
In broader settings, there is more to learn, not restricted to learning opponents’
strategies or the agent’ own strategy for proceeding well against opponents.

5.1 Open Issues

In the literature, for the known, fully observable games, there are two aspects to
learn in this restricted setting: one is that an agent learns opponents’ strategies as
a model, so the agent can devise a best (or at least “good”) response, (also known
as “model-based” learning), for example, fictitious play (Brown (1951)). The other
one is that an agent can learn a strategy of its own which does well against the

35

36 CHAPTER 5. OPEN ISSUES AND RESEARCH INTERESTS

opponents, without explicitly learning the opponents’ strategies, (also known as
“model-free” learning), for example, Q-learning (Watkins (1989)).

Multiagent learning research still has open issues. Multiple agents act jointly
in a common environment to achieve their own agenda, through interaction, either
cooperative or in competing with one another. This brings in issues of scalabil-
ity, adaptive dynamics, and communication. In this chapter, we will discuss them
respectively.

5.1.1 Scalability

Scalability is a critical problem for multiagent learning. Multiagent learning involves
multiple agents’ behaviors in order to solve a common task, thus, the search space
can grow exponentially according to the number of agents and the complexity of
agent behavior. The evaluating criteria for learning methods should be standardized
with respect to their scalability. In a general-sum learning process, especially with
partially observed stochastic games, research usually involves studies in two-agent
scenarios with two or three actions for each agent. When scaled up to include more
agents, current methods are unlikely to work in practice.

5.1.2 Adaptive Dynamics

Due to the small changes caused by agents, multiagent learning can result in an
unpredictable global, emergent effect. How does a learning algorithm proceed to
discover an optimal solution in a search space with the presence of emergent effect?

5.1.3 Communication

Communication is one means to effectively improve performance and help solve
tasks. However, it can increase the learning process search space. The interaction
can help solving task through passing or sharing information, but, it can also increase
the complexity rapidly, with the number of agents and their sophisticated behaviors.

Still, much research on multiagent communication has been conducted from two
perspectives: direct communication and indirect communication. Direct communi-
cation is a way for an agent to inform other agents about the past experience which
can effectively improve team performance; methods include blackboards (posting
and modifying information), messages. Notably, reinforcement learning methods
have presumed that the agents have access to a joint policy table to which each
agent can contribute. From another perspective, indirect communication uses a
third party, such as marking in the environment, to pass information to the others.
Most indirect communication is inspired from social insects, such as ants, who utilize

5.2. OUR RESEARCH INTEREST 37

pheromones to mark trails to lead others. One agent broadcasts the information in
the environment, and the others can exploit it.

Yet, in a multiagent system, (just like any social system), communication is re-
stricted by environment. Researchers claim that unrestricted communication brings
the multiagent system back to a single-agent system (Stone and Veloso (2000)).
Thus, how to define the communication among agents and allow agents to commu-
nicate according to adaptation to the environment is still an open question which
needs to be addressed.

5.1.4 Evaluation

In a multiple agents learning process, each agent can constrain, adapt, evolve in the
environment of other agents, which are not yet fully understood in game theory,
and brings in unknown complexity to computation. How do we set up standard
evaluation criteria for learning methods?

5.2 Our Research Interest

In MAL, many aspects have achieved results, such as when all agents adopt the
learning procedure under consideration (also called “self play”), the strategy con-
verges to Nash equilibrium of the stage game; agents can learn opponents’ strategies
(rational learning) successfully. On the other hand, no-regret learning has provided
results that the obtained payoffs exceed a specified threshold. However, some ob-
servation of the constraints in the literature leads us to some questions:

• While learning procedures apply broadly, the results focus on stochastic games
with only two agents. Is this a technical convenience or can we still apply this
learning technique to more agents, giving consideration to communication in
between?

• With the exception of the work in no-regret learning, the research is mostly
focused on investigating convergence to equilibrium play of the stage game.
What if the process does not converge to equilibrium play? Should we be
concerned, even though better payoffs can be obtained?

• Measuring the performance only against stationary opponents, and not allow-
ing for the possibility of opponents adaptation or learning; this does not seem
to be adequate criteria.

• In an infinitely repeated Prisoner’s Dilemma game, no-regret dictates the strat-
egy of always defecting, precluding the possibility of cooperation. Should we
be concerned?

38 CHAPTER 5. OPEN ISSUES AND RESEARCH INTERESTS

Seeking answers to these questions will bring us to a new research direction,
to learn a robust strategy in certain types of stochastic games, or with minimum
adaptation when it comes to different types of stochastic games.

Bibliography

Andre, D. and Teller, A. (1999). Evolving team darwin united. In RoboCup-98:
Robot Soccer World Cup II, pages 346–351, London, UK. Springer-Verlag.

Axelrod, R. and Hamilton, W. (1981). The evolution of cooperation. Science,
211(4489):1390–1396.

Balch, T. (1997). Learning roles: Behavioral diversity in robot teams. pages 7–12.
AAAI.

Balch, T. (1999). Reward and diversity in multirobot foraging. In In IJCAI-99
Workshop on Agents Learning About, From and With other Agents.

Banerjee, B. and Peng, J. (2005). Efficient no-regret multiagent learning. In Pro-
ceedings of the Twentieth National Conference on Artificial Intelligence.

Bellman, R. (1957). Dynamic programming. Princeton University Press, Princeton.

Bowling, M. (2003). Multiagent learning in the presence of agents with limitations.
PhD thesis, Pittsburgh, PA, USA. Chair-Veloso, Manuela.

Bowling, M. (2005). Convergence and no-regret in multiagent learning. In In Ad-
vances in Neural Information Processing Systems 17, pages 209–216. MIT Press.

Bowling, M. and Veloso, M. (2002). Multiagent learning using a variable learning
rate. Artificial Intelligence, 136:215–250.

Brown, G. W. (1949). Some notes on computation of games solutions. In Rand
report, page 78, Santa Monica, California.

Brown, G. W. (1951). Iterative solutions of games by fictitious play. In Activity
Analysis of Production and Allocation, pages 367–383. Wiley.

Claus, C. and Boutilier, C. (1998). The dynamics of reinforcement learning in coop-
erative multiagent systems. In In Proceedings of the Fifteenth National Conference
on Artificial Intelligence, pages 746–752. AAAI Press.

39

40 BIBLIOGRAPHY

Conitzer, V. and Sandholm, T. (2008). New complexity results about nash equilibria.
Games and Economic Behavior, 63(2):621 – 641. Second World Congress of the
Game Theory Society.

Ficici, S. G. and Pollack, J. B. (2000). A game-theoretic approach to the simple
coevolutionary algorithm. In PPSN VI: Proceedings of the 6th International Con-
ference on Parallel Problem Solving from Nature, pages 467–476, London, UK.
Springer-Verlag.

Fudenberg, D. and Levine, D. K. (1995). Consistency and cautious fictitious play.
Journal of Economic Dynamics and Control, 19(5-7):1065 – 1089.

Gilboa, I. and Zemel, E. (1988). Nash and correlated equilibria: Some complex-
ity considerations. Discussion Papers 777, Northwestern University, Center for
Mathematical Studies in Economics and Management Science.

Greenwald, A. and Hall, K. (2003). Correlated-q learning. In In AAAI Spring
Symposium, pages 242–249. AAAI Press.

Grefenstette, J., Ramsey, C. L., and Schultz, A. C. (1990). Learning sequential
decision rules using simulation models and competition.

Hara, A. and Nagao, T. (1999). Emergence of cooperative behavior using adg; auto-
matically defined groups. In Banzhaf, W., Daida, J., Eiben, A. E., Garzon, M. H.,
Honavar, V., Jakiela, M., and Smith, R. E., editors, Proc. of the Genetic and Evo-
lutionary Computation Conf. GECCO-99, pages 1039–1046, San Francisco, CA.
Morgan Kaufmann.

Haynes, T. and Sen, S. (1996a). Cooperation of the fittest. Technical Report
UTULSA-MCS-96-09, The University of Tulsa.

Haynes, T. and Sen, S. (1996b). Evolving behavioral strategies in predators and
prey. In ADAPTATION AND LEARNING IN MULTIAGENT SYSTEMS, pages
113–126. Springer Verlag.

Haynes, T. and Sen, S. (1997a). Crossover operators for evolving a team. In Genetic
Programming 1997: Proceedings of the Second Annual Conference, pages 162–167.
Morgan Kaufmann Publishers.

Haynes, T. D. and Sen, S. (1997b). Co-adaptation in a team. INTERNA-
TIONAL JOURNAL OF COMPUTATIONAL INTELLIGENCE AND ORGA-
NIZATIONS, 1:1–4.

BIBLIOGRAPHY 41

Holland, J. H. (1985). Properties of the bucket brigade. In Proceedings of the 1st
International Conference on Genetic Algorithms, pages 1–7, Hillsdale, NJ, USA.
L. Erlbaum Associates Inc.

Holland, J. H. and Miller, J. H. (1991). Artificial adaptive agents in economic theory.
American Economic Review, 81(2):365–71.

Hu, J. and Wellman, M. P. (1998). Multiagent reinforcement learning: Theoretical
framework and an algorithm. In IN PROCEEDINGS OF THE FIFTEENTH IN-
TERNATIONAL CONFERENCE ON MACHINE LEARNING, pages 242–250.
Morgan Kaufmann.

Hu, J. and Wellman, M. P. (2003). Nash Q-learning for general-sum stochastic
games. J. Mach. Learn. Res., 4:1039–1069.

Kaelbling, L. P., Littman, M. L., and Moore, A. W. (1996). Reinforcement learning:
A survey. JOURNAL OF ARTIFICIAL INTELLIGENCE RESEARCH, 4:237–
285.

Kapetanakis, S. and Kudenko, D. (2004). Reinforcement learning of coordination in
heterogeneous cooperative multi-agent systems. In AAMAS ’04: Proceedings of
the Third International Joint Conference on Autonomous Agents and Multiagent
Systems, pages 1258–1259, Washington, DC, USA. IEEE Computer Society.

Lichbach, M. I. (1996). The cooperator’s dilemma / Mark Irving Lichbach. University
of Michigan Press, Ann Arbor :.

Littman, M. L. (1994). Markov games as a framework for multi-agent reinforcement
learning. In In Proceedings of the Eleventh International Conference on Machine
Learning, pages 157–163. Morgan Kaufmann.

Littman, M. L. (2001). Friend-or-foe Q-learning in general-sum games. In ICML
’01: Proceedings of the Eighteenth International Conference on Machine Learning,
pages 322–328, San Francisco, CA, USA. Morgan Kaufmann Publishers Inc.

Littman, M. L. and Szepesvri, C. (1996). A generalized reinforcement-learning
model: Convergence and applications. In In Proceedings of the 13th International
Conference on Machine Learning, pages 310–318. Morgan Kaufmann.

Luke, S. and Spector, L. (1996). Evolving teamwork and coordination with genetic
programming. In GECCO ’96: Proceedings of the First Annual Conference on
Genetic Programming, pages 150–156, Cambridge, MA, USA. MIT Press.

42 BIBLIOGRAPHY

Mannor, S. and Shimkin, N. (2001). Adaptive strategies and regret minimization
in arbitrarily varying markov environments. In In Proc. of 14th COLT, pages
128–142.

Mannor, S. and Shimkin, N. (2003). The empirical bayes envelope and regret mini-
mization in competitive markov decision processes. Math. Oper. Res., 28(2):327–
345.

Mataric, M. J. (1994). Interaction and intelligent behavior. Technical report, Cam-
bridge, MA, USA.

Moody, J., Liu, Y., Saffell, M., and Youn, K. (2004). Stochastic direct reinforcement:
Application to simple games with recurrence. Technical report, In Proceedings of
Artificial Multiagent Learning. Papers from the 2004 AAAI Fall Symposium.

Nash, J. F. (1950). Equilibrium points in n-person games. Proceedings of the Na-
tional Academy of Sciences of the United States of America, 36(1):48–49.

Nash, J. F. (1951). Non-cooperative games. The Annals of Mathematics, 54(2):286–
295.

Osborne, M. J. and Rubinstein, A. (1994). A Course in Game Theory, volume 1 of
MIT Press Books. The MIT Press.

Panait, L. and Luke, S. (2005). Cooperative multi-agent learning: The state of the
art. Autonomous Agents and Multi-Agent Systems, 11(3):387–434.

Panait, L., Wieg, R. P., and Luke, S. (2004a). A sensitivity analysis of a cooperative
coevolutionary algorithm biased for optimization. In Genetic and Evolutionary
Computation Conference GECCO 2004, volume 3102 of Lecture Notes in Com-
puter Science, pages 573–584. Springer.

Panait, L., Wieg, R. P., and Luke, S. (2004b). A visual demonstration of convergence
properties of cooperative coevolution. In In Parallel Problem Solving from Nature
PPSN-2004, pages 892–901. Springer.

Panait, L., Wiegand, R. P., and Luke, S. (2003). Improving coevolutionary search for
optimal multiagent behaviors. In IJCAI’03: Proceedings of the 18th international
joint conference on Artificial intelligence, pages 653–658, San Francisco, CA, USA.
Morgan Kaufmann Publishers Inc.

Potter, M. A. and De Jong, K. A. (2000). Cooperative coevolution: An architecture
for evolving coadapted subcomponents. Evol. Comput., 8(1):1–29.

BIBLIOGRAPHY 43

Puppala, N., Sen, S., and Gordin, M. (1998). Shared memory based cooperative
coevolution. In Proceedings of the 1998 IEEE World Congress on Computational
Intelligence, pages 570–574, Anchorage, Alaska, USA. IEEE Press.

Quinn, M. (2001). A comparison of approaches to the evolution of homogeneous
multi-robot teams. In Evolutionary Computation, 2001. Proceedings of the 2001
Congress on, volume 1, pages 128–135 vol. 1.

Quinn, M., Smith, L., Mayley, G., and Husbands, P. (2003). Evolving teamwork
and role-allocation with real robots. In ICAL 2003: Proceedings of the eighth
international conference on Artificial life, pages 302–311, Cambridge, MA, USA.
MIT Press.

Rider, R. (1984). The evolution of cooperation : Axelrod, robert, (basic books, inc.,
1984) pp. 256. Journal of Economic Behavior & Organization, 5(3-4):406–409.

Robinson, J. (1951). An iterative method of solving a game. The Annals of Mathe-
matics, 54(2):296–301.

Salustowicz, R. P., Wiering, M. A., and Schmidhuber, J. (1998). Learning team
strategies: Soccer case studies. Mach. Learn., 33(2-3):263–282.

Shapley, L. S. (1953). Stochastic Games. Proceedings of the National Academy of
Sciences of the United States of America, 39(10):1095–1100.

Shoham, Y., Powers, R., and Grenager, T. (2007). If multi-agent learning is the
answer, what is the question? Artif. Intell., 171(7):365–377.

Singh, S. P., Kearns, M. J., and Mansour, Y. (2000). Nash convergence of gradient
dynamics in general-sum games. In UAI ’00: Proceedings of the 16th Conference
on Uncertainty in Artificial Intelligence, pages 541–548, San Francisco, CA, USA.
Morgan Kaufmann Publishers Inc.

Stone, P. and Veloso, M. (2000). Multiagent systems: A survey from a machine
learning perspective. Auton. Robots, 8(3):345–383.

Sutton, R. S. (1988). Learning to predict by the methods of temporal differences.
Mach. Learn., 3(1):9–44.

Sutton, R. S. (1989). Implementation details of the TD(λ) procedure for the case
of vector predictions and backpropagation. Technical report.

Sutton, R. S. and Barto, A. G. (1998). Introduction to Reinforcement Learning.
MIT Press, Cambridge, MA, USA.

44 BIBLIOGRAPHY

t Hoen, P. J. and Tuyls, K. (2004). Analyzing multi-agent reinforcement learning us-
ing evolutionary dynamics. In MACHINE LEARNING: ECML 2004, PROCEED-
INGS, pages 168–179. Springer. LECTURE NOTES IN COMPUTER SCIENCE,
3201.

Tuyls, K., Verbeeck, K., and Lenaerts, T. (2003). A selection-mutation model for
q-learning in multi-agent systems. In AAMAS ’03: Proceedings of the second in-
ternational joint conference on Autonomous agents and multiagent systems, pages
693–700, New York, NY, USA. ACM.

Uther, W. T. B. and Veloso, M. M. (2003). Adversarial reinforcement learning.
Technical Report CMU-CS-03-107, Carnegie Mellon University.

Vidal, J. and Durfee, E. (1998). The moving target function problem in multi-agent
learning. In ICMAS ’98: Proceedings of the 3rd International Conference on Multi
Agent Systems, page 317, Washington, DC, USA. IEEE Computer Society.

Vidal, J. M. and Durfee, E. H. (2003). Predicting the expected behavior of agents
that learn about agents: The clri framework. Autonomous Agents and Multi-Agent
Systems, 6(1):77–107.

von Neumann, J. and Morgenstern, O. (1944). Theory of Games and Economic
Behavior. Princeton University Press.

Vrieze, O. (1987). Stochastic games with finite state and action spaces. CWI tracts.

Wang, X. and Sandholm, T. (2002). Reinforcement learning to play an optimal
nash equilibrium in team markov games. In in Advances in Neural Information
Processing Systems, volume 15, pages 1571–1578.

Watkins, C. (1989). Learning from Delayed Rewards. PhD thesis, Cambridge Uni-
versity, England.

Watkins, C. J. C. H. and Dayan, P. (1992). Technical note: Q-learning. Mach.
Learn., 8(3-4):279–292.

Wiegand, R. P. (2004). An analysis of cooperative coevolutionary algorithms. PhD
thesis, Fairfax, VA, USA. Director-Jong, Kenneth A.

Wiering, M., Salustowicz, R., and Schmidhuber, J. (1999). Reinforcement learning
soccer teams with incomplete world models. Auton. Robots, 7(1):77–88.

