
XPath Query Containment‡

Thomas Schwentick§

1 Introduction

Consider an XML publish-subscribe scenario with
hundreds of subscribers and tens of thousands of
XML documents to be delivered per day. Subscribers
specify the documents in which they are interested in
by means of XPath [8] expressions. If an expression
matches a (part of a) document it is delivered to the
subscriber. Naturally, it is desired that the decision
to which subscriber a document must be sent should
be taken quickly. Although the test whether a single
XPath expression matches can be done in polynomial
time, it is not efficient to test every such expression
for every document. Fortunately, there is a partial
order on expressions, i.e., for some expressions p, q it
might hold that whenever a document matches p it
also matches q (denoted p ⊆0 q). If we already know
that a document matches p, we do not need to test q
anymore, as it matches automatically. Correspond-
ingly, if we know that q does not match then p will not
match either. Hence, the inclusion structure of the
XPath expressions should be computed in advance to
decrease online computation time. This leads to the
algorithmic problem of XPath Query Containment,
i.e., checking whether p ⊆0 q (for a different, index-
based approach see, e.g., [6]).

The main idea of this article is to describe some
of the main algorithmic techniques that have been
proposed for XPath Query Containment. These tech-
niques are described in Section 5. Before that, in Sec-
tions 2 and 3 the basic definitions on XPath and the

‡Database Principles Column. Column editor: Leonid

Libkin, Department of Computer Science, University of

Toronto, Toronto, Ontario M5S 3H5, Canada. E-mail:

libkin@cs.toronto.edu.
§Philipps-Universität Marburg, FB Mathematik und In-

formatik, 35032 Marburg, Germany, tick@informatik.uni-

marburg.de

Query Containment Problem are given and in Sec-
tion 4 there is an overview of complexity results for
the problem. Finally, in Section 6 a couple of related
questions are discussed. Because of space limitations,
the examples in this survey are neither practical nor
entertaining but as small as possible, using only tags
like <a>, , etc.
There are more reasons to study the XPath

containment problem than the scenario mentioned
above. As XPath occurs as a sublanguage in other
XML languages (XQuery, XSLT, XLink, XPointer,
XML Schema,...) the problem of XPath query con-
tainment and the closely related questions of equiv-
alence and minimization are fundamental for query
optimization.
Further, as XPath is used to define keys in XML

Schema and other constraints can be specified by us-
ing fragments of XPath, understanding the key and
constraint implication problem requires an under-
standing of the XPath query containment problem
[4].
Compared to the classical containment problem for

relational conjunctive queries, the problem is on the
one hand easier, as the structures are trees rather
than arbitrary relational structures, but on the other
hand much harder, as the queries might involve recur-
sion (e.g., by navigation along the descendant-axis).

2 XPath

2.1 Data model

We model XML documents as rooted trees with la-
bels from an infinite (unranked) alphabet Σ. The
symbols from Σ correspond to XML tags. Every node
corresponds to an element The root of the tree cor-
responds to the root element of the document and is

denoted by root. Subelements are modelled by chil-
dren. We refer to such trees as XML trees. Figure
1 displays a simple example document and its corre-
sponding XML tree t0.

<a> <c></c>

<c>

</c>

<a>

 <d> </d>

<c> <c> </c>

</c>

root

a

c c

b

a

b b

d c

c

Figure 1: XML document and corresponding tree.

2.2 Syntax of XPath

In this article we only consider a fragment
of XPath. For our purposes, a step ex-
pression s is of the form axis ‘::’ expr pred∗,
where axis is one of the XPath axes self,
child, descendant, descendant-or-self, parent,
ancestor, ancestor-or-self, following-sibling,
preceding-sibling. Further, expr is a node test,
i.e., either a tag name or ∗. Finally pred∗ is a possi-
bly empty sequence of items of the form [p], where p
is an expression as defined below.

The syntax for expressions p is given by p ::= s |
s‘/’p | p‘|’p | ‘/’p, where s is a step expression. An
expression of the form /p is called absolute. Other
expressions are called relative.

An example expression p0 is
child::a[descendant::d]/child::∗/descendant::c.

2.3 Semantics of XPath

For each axis x and each XML tree t, we denote by
Ax(t) the set of all pairs (u, v) of nodes from t such
that u and v are in x-relation. E.g., Achild contains
all pairs (u, v), for which v is the child of u.

Each expression p defines, on each XML tree t, a
binary relation Rp(t) as follows. For a step expression

s = x :: e p1 · · · pk, the relation Rs(t) is defined as the
set of pairs (u, v) of nodes, for which

• (u, v) ∈ Ax(t),

• v matches e, i.e., e = ∗ or the label of v is e, and

• each set Rpi
(t) contains at least one pair (v, w).

For an expression p = s/q, where s is a step ex-
pression and q is an expression, the relation Rp(t) is
{(u, v) | u, v, w ∈ t, (u,w) ∈ Rs(t), (w, v) ∈ Rq(t)}.
Finally, Rp|q = Rp(t)∪Rq(t) and R/p is the set of all
pairs (root, v) from Rp(t).
Hence, the expression p0 above defines the set of all

pairs (u, v), where v is an element labelled c, which
is a descendant of an element with arbitrary label,
which in turn is a child of a child of u with label
a. Furthermore, this child has to possess a descen-
dant with label d. Evaluated on the tree t0 we get
the relation Rp0

= {(v1, v2), (v1, v3)}, where v1 is the
right child of the root node, v3 is the rightmost leaf,
labelled c, and v2 is its parent.

2.4 Abbreviated syntax

For the most frequently used kinds of steps along the
forward axes there exists an abbreviated syntax. We
write

• p/e/q instead of p/child :: e/q,

• p//e/q instead of p/descendant :: e/q,

• ./p instead of self :: ∗/p.

Hence, expression p0 can also be written as
a[.//d]/∗//c.

2.5 Pattern trees

Expressions p which only use the child and
descendant axes can be conveniently represented by
their pattern tree T (p). Each step of an expression
corresponds to a node, which is a child of the node
of the previous step. Steps along the child axis are
indicated by single lines, steps along the descendant
axis by double lines. We refer to edges of the first
kind as child edges and to the others as descendant

edges. A predicate expression of a step s gives rise
to a subtree of the node corresponding to s. The
node which corresponds to the last step of an expres-
sion (the selection node) is underlined to distinguish
it from the leaves that are obtained from predicates.
Hence, the tree depicted in Figure 2 is the pattern
tree T (p0).

a

d ∗

c

Figure 2: Pattern tree for p0

It should be stressed that the order in which the
children of a node are depicted does not carry any
meaning. In particular, this order does not need to
be matched in the document.

2.6 XPath fragments

Work on XPath query containment has mainly fo-
cussed on the two most important axes, child and
descendant. It even considered fragments, where
disjunction, predicates [q] and/or the wildcard ∗ are
not allowed. We refer to such fragments by writing
XP(L), where L is a list of the allowed components
in abbreviated notation. E.g., the fragment, where
only child, predicates1 and wildcard are allowed is
denoted by XP(/, [], ∗).

3 Containment

3.1 Simple containment

In this section we define the basic notions about
XPath query containment.
As explained in Section 2 an XPath expression p

defines a binary relation Rp(t), for every XML tree t.
The most general notion of containment to consider is
therefore based on binary relations. We write p ⊆2 q
if Rp(t) ⊆ Rq(t), for every XML tree t.

1If predicates are allowed the self axis can always be used

in predicate expressions.

An alternative notion of containment only consid-
ers whether nodes match relative to the root of the
tree. Here, we interpret an expression p as abso-
lute expression, defining the set Rroot

p (t) of nodes
v, for which (root, v) ∈ Rp(t). We write p ⊆1 q if
Rroot

p (t) ⊆ Rroot
q (t), for every XML tree t.

Finally, we define Boolean containment which only
asks whether p and q match at all, relative to the
root. We write t |= p, if Rroot

p (t) 6= ∅. If t |= p
implies t |= q, for every XML tree t, then we write
p ⊆0 q.
It turns out that all three containment notions are

strongly related. If only the child and descendant

axes are allowed ⊆2 and ⊆1 are actually equivalent.
If predicates are allowed then it is even sufficient to
consider Boolean queries. Figure 3 shows how the
tree pattern T (p0) can be modified into a new tree
pattern T (p′0) by adding a child to its selection node.
It holds that p ⊆1 q if and only p′ ⊆0 q′ [19]. In
the remainder of this article, we will only consider
Boolean containment ⊆0. Therefore, in pattern trees
we no longer distinguish a selection node.

a

d ∗

c

x

Figure 3: Pattern tree for p0

It is easy to verify that p1 ⊆0 q1 holds for the
expressions p1 and q1 underlying the tree patterns in
Figure 4. We will encounter several ways to prove
this fact in the next section.

3.2 Containment under constraints

In general, p2 ⊆0 q2 does not hold for the expres-
sions p2 = /a/b//d and q2 = /a//c. Nevertheless,
it holds for documents like the example document
above which conform to the following DTD d2.

root→ a∗

a→ b∗ | c∗

b→ d+c+

c→ b?c?

We say that p ⊆0 q under DTD d, if t |= p implies
t |= q, for all trees t that are valid w.r.t. d.
The containment problem has been studied in the

presence of DTDs and of several other types of con-
straints [26, 2, 22]. A very general class of constraints,
simple XPath Integrity Constraints (SXICs) were in-
troduced in [9]. They are reminiscent of embedded
dependencies in relational databases (cf. [1]).

4 Complexity results

There are many complexity results for XPath con-
tainment, most of them with matching upper and
lower bounds. Some upper bound techniques will be
discussed in the next section. For space reasons we
cannot touch techniques for lower bounds here. In
Table 1 we list some of the main results, grouped
by complexity. All complexities for coNP and the
higher classes are tight, i.e., the problems are com-
plete for the respective class.
In [19] the borderline between tractable and in-

tractable fragments inside XP(/, //, [], ∗) is studied.
In particular, it is shown that the containment prob-
lem becomes tractable if the number of //-edges in
the pattern q is bounded, but it remains coNP-
complete if only the number of wildcards or predicate
occurences is bounded.

Other axes. As already mentioned, most work
concentrated on the forward axes. Some results from
[9] concerning backward axes are mentioned in the
table. In [24] it is shown that each XPath expression
has an equivalent expression without backward axes.
However, this expression might have exponential size.

5 Some algorithmic techniques

In this section a couple of techniques will be presented
that were used to obtain upper bounds for various
fragments of XPath. These techniques are based on
canonical models, homomorphisms, the chase proce-
dure, and on tree automata, respectively.
All these techniques use the simple but fundamen-

tal fact that p 6⊆0 q if and only if there is a counter-

PTIME XP(/, //, ∗) [21]
XP(/, [], ∗) (see [19])
XP(/, //, []) [2], with fixed bounded
SXICs [9]
XP(/, //) + DTDs [22]
XP[/, []] + DTDs [22]

coNP XP(/, //, [], ∗) [19]
XP(/, //, [], ∗, |), XP(/, |), XP(//, |) [22]
XP(/, []) + DTDs [22]
XP(//, []) + DTDs [22]

Πp
2

XP(/, //, [], |) + existential variables
+ path equality + ancestor-or-self

axis + fixed bounded SXICs [9]
XP(/, //, [], ∗, |) + existential variables
+ all backward axes + fixed bounded
SXICs [9]
XP(/, //, [], |) + existential variables
with inequality [22]

PSPACE XP(/, //, [], ∗, |) and XP(/, //, |) if the
alphabet is finite [22]
XP(/, //, [], ∗, |) + variables with
XPath semantics [22]

EXPTIME XP(/, //, [], |) + existential variables +
bounded SXICs [9]
XP(/, //, [], ∗, |) + DTDs [22]
XP(/, //, |) + DTDs [22]
XP(/, //, [], ∗) + DTDs [22]

Undecidable XP(/, //, [], |) + existential variables +
unbounded SXICs [9]
XP(/, //, [], |) + existential variables +
bounded SXICs + DTDs [9]
XP(/, //, [], ∗, |) + nodeset equality +
simple DTDs [22]
XP(/, //, [], ∗, |) + existential variables
with inequality[22]

Table 1: Complexity results for XPath containment.

example, i.e., a tree t such that t |= p but t 6|= q.

5.1 The canonical model technique

Unfortunately, the fundamental equivalence does not
directly provide an algorithm for testing contain-
ment, as the set of possible trees t is infinite. Nev-
ertheless, if for a fragment X it holds that p 6⊆0 q if
and only if there is a counter-example t of polyno-
mial size in p and q, then the containment test for X
is in coNP (as the test for the complement of con-
tainment is then in NP). Accordingly, an exponential
size bound for counter-example trees gives rise to a
coNEXPTIME algorithm and so on.

The method of canonical models, introduced in
[19, 20], tries to prune the search space by showing
that there are always counter-examples (if any) with
a similar shape as the pattern p. As an illustration of
this technique we consider the following result [19].

Theorem 5.1 Containment of XP(/, //, [], ∗) ex-
pressions can be tested in coNP.

The proof shows that p 6⊆0 q only holds if there is
a counter-example t obtained from p as follows. Let
z be a new symbol not occuring in p and q. Every
∗ in the pattern tree T (p) is replaced by z. Every
descendant edge is replaced by a chain of at most
m(q) + 1 child edges with interior nodes labelled by
z. Here, m(q) is the maximum length of a chain in
T (q) consisting solely of child edges and ∗-nodes. It
is clear that all these trees match p. It should be
noted that the proof relies on the existence of a new
symbol z.

As an example we consider the patterns p1 and q1
of Figure 4.

a

b

d ∗

c
Pattern tree T (p1)

a

d ∗

c
Pattern tree T (q1)

Figure 4: Patterns p1 and q1 with p1 ⊆0 q1.

Note that m(q1) = 1. Therefore in order to verify
p1 ⊆0 q1 it is sufficient to check that the trees listed
in Figure 5 match q. To get an idea why the way

a

b

d z

c

a

b

z

d

z

c

a

b

z

z

d

z

c

Figure 5: Trees to be tested to ensure p1 ⊆0 q1

m(q) was defined is suitable, consider the patterns p3
and q3 in Figure 6. Replacing the descendant edges
of p3 by ∗-chains of length 3 = m(q3) + 1 results in
a counter-example. Replacing them uniformly with
shorter ∗-chains does not. In general though, it might
be necessary to replace some edges by shorter paths.

a

b

c c d

c

b

c c d

d

c

b

c d

c

d

d

c
Pattern tree T (p3)

a

b

c ∗

c

∗

∗

c
Pattern tree T (q3)

Figure 6: Patterns p3 and q3 with p3 6⊆0 q3.

5.2 The homomorphism technique

There is a classical characterization result for con-
junctive queries against relational databases. A

query p is contained in a query q if and only if there
is a homomorphism from q to p [7]. Similar char-
acterizations can also be given for some XPath frag-
ments. For simplicity we define homomorphisms only
via pattern trees although they can also be directly
defined for expressions. A homomorphism h from q
to p maps each node of T (q) to a node of T (p) such
that the following conditions hold.

(i) The root of T (q) must be mapped to the root
of T (p).

(ii) If (u, v) is a child-edge of T (q) then (h(u), h(v))
is a child-edge of T (p).

(iii) If (u, v) is a descendant-edge of T (q) then h(v)
has to be below h(u) in T (p).

(iv) If u is labelled with e 6= ∗ then h(u) also has to
carry label e.

E.g., the mapping which maps the a-node of T (q1)
to the a-node of T (p1), the d-node to the d-node,
the c-node to the c-node and the ∗-node to the b-
node is a homomorphism from T (q1) to T (p1). Note
that, in general, a homomorphism does not need to
be injective. If there exists a homomorphism from
T (q) to T (p) then p ⊆0 q. For some fragments also
‘only if’ holds as the following result from [26, 2, 19]
shows.

Theorem 5.2 Let p, q be expressions from
XP(/, //, []) (or from XP(/, [], ∗)). Then p ⊆0 q if
and only if there is a homomorphism from T (q) to
T (p).

Unfortunately, even for XP(/, //, [], ∗) the exis-
tence of a homomorphism is not necessary for con-
tainment, as exemplified by the patterns p4 and q4
in Figure 7. Although there seem to be two possible
targets for the upper b-node of q4, none of them really
makes a homomorphism. Nevertheless, by reasoning
on the possible lengths of a path in a tree t that is
matched with the left descendent edge of p4, it is easy
to show that indeed p4 ⊆0 q4 holds.
A closer inspection shows that, at least for

XP(/, //, [], ∗) and its fragments, the homomorphism
technique is essentially a special case of the canoni-
cal model technique, in which only one tree has to

a

b

b

b

c

c

∗

c

Pattern tree T (p4)

a

b

b

c

∗

c
Pattern tree T (q4)

Figure 7: Patterns p4 and q4: p4 ⊆0 q4, but there is
no corresponding homomorphism.

be tested. Let p and q be two expressions. We
call a chain with two edges and an intermediate
node labelled with a new symbol y a special chain.
Let the tree t(p) be obtained from T (p) by replac-
ing every child-edge with a special chain and each
descendant-edge with a (normal) edge. Let q′ be
the expression corresponding to the pattern tree ob-
tained from T (q) by replacing every child-edge with
a special chain. Then there is a homomorphism from
T (q) to T (p) if and only if t(p) |= q′.

5.3 The automata technique

The basic idea of the next approach is very sim-
ple: compute the set C of all counter-examples and
check whether C is empty. This looks impossible at
first sight, as C might be infinite. But it turns out
that C can often be represented by a finite device, a
tree automaton. The containment question can then
be solved by suitably combining the tree automata
corresponding to the involved expressions (and con-
straints) and checking whether the resulting automa-
ton accepts a non-empty set. For a gentle introduc-
tion to tree automata in the XML context see [23].
As a simple example for this technique, we con-

sider XP(/, //) in the presence of DTDs. We first
describe the construction of a top-down automaton
Ap2

for the expression p2 = a/b//d. Ap2
shall ac-

cept a tree t if and only if t |= p2. It traverses t
from the root to the leaves. While doing so it non-
deterministically selects one path from the root. On
this path, it computes, for each node v, the furthest
position in p2 which is matched by the path from the

root to v. Hence, on this path the states of Ap2
are

basically positions of p2, i.e., s0, sa, sb, sd. For nodes
not on the path the automaton enters a dummy state
s∗. The accepting states of Ap2

are sc and s∗. The
automaton accepts a tree t if there is a run, which has
only accepting states at the leaves of t, hence, if there
is a path matching p2. Figure 8 repesents an accept-
ing run of Ap2

on the tree t0 of Figure 1. It is also

root : s0

a:s∗

c:s∗ c:s∗

b:s∗

a:sa

b:s∗ b:sb

d:sd c:s∗

c:s∗

Figure 8: Accepting run of Ap2
on t0.

easy to construct an automaton Aq̄2
which accepts all

trees which do not match q2 = /a//c. This automa-
ton uses only states s0, sa, sc and accepts, if no leave
gets the state sc, i.e., if no path matches q2. The
general construction for expressions from XP(/, //) is
slightly more involved, but for each expression p one
can get polynomial-size non-deterministic top-down
automata Ap and Ap̄. Finally, from a DTD d, a non-
deterministic top-down automatonAd (of polynomial
size in d) which accepts exactly the trees conforming
to d can easily be constructed. By taking the product
of Ap, Aq̄ and Ad we get an automaton which accepts
all counter-example trees t conforming to d. Whether
this automaton accepts any tree can then be tested in
polynomial time. Hence we get the following theorem
from [22].

Theorem 5.3 Containment of XP(/, //) expres-
sions in the presence of DTDs can be tested in
PTIME.

It should be noted that, as the example p2, q2 and d2
shows, the expressions p and q might be matched to
different paths in a tree.
The automata technique can also be used for more

expressive XPath fragments, involving, e.g., pred-
icates and disjunction, but the corresponding au-
tomata can become larger. The basic idea is to as-

sociate with an expression p a bottom-up automaton
which computes, for each node v of a tree t, the set
of subexpressions of p that match the subtree of t
rooted at v. As the states are now sets of subpat-
terns as opposed to single subpatterns (or positions
in patterns), the automata have exponential size in
worst case. Therefore this approach only gives an
EXPTIME algorithm for XPath containment in the
presence of DTDs. But, as was shown in [22], this is
optimal.

Theorem 5.4 Containment test of XP(/, //, [], ∗, |)
expressions in the presence of DTDs is complete for
EXPTIME.

Without DTD constraints the complexity is consid-
erably smaller and, surprisingly, depends on whether
the alphabet Σ is finite or infinite [22].

Theorem 5.5 Containment test of XP(/, //, [], ∗, |)
is complete for coNP. It becomes complete for
PSPACE, if the alphabet Σ is finite.

Note that the proof idea of Theorem 5.1 above does
not work in the case of a finite alphabet as there
might not exist an unused symbol z.

5.4 The chase technique

In the relational case the homomorphism technique
can be extended by the chase [17] to check query
containment in the presence of integrity constraints.
This approach can also be used for XML. In [9] the
queries p and q are translated into relational queries
p′ and q′. The relational chase is then applied to p′

with the relational translation of the given XML con-
straints together with additional general constraints
that are needed to recover some of the information
lost by the translation.
In other work the chase is directly applied to pat-

tern trees [26, 2, 28]. We illustrate the basic idea
using the simple example from above. The DTD d2
implies that each b element has a d-child as well as
a c-child. We can write this as the two constraints
b→ d and b→ c. Applying the chase procedure with
these two constraints to the pattern tree of p2 will
add a d- and a c-child to the node b resulting in the

a

b

d d c

Figure 9: Pattern tree after chasing p2

pattern shown in Figure 9. As there is an obvious ho-
momorphism from T (q2) we get (again) that p2 ⊆0 q2
in the presence of d2.

6 Related work

XPath equivalence. Of course, equivalence of
XPath expressions can be reduced to containment.
In [19] it is shown that, for forward axes and in the
presence of predicates, these two problems are actu-
ally equivalent. Essentially, p ⊆0 q if and only if p and
p[/q] are equivalent. A different approach to XPath
equivalence via Datalog has been taken in [27].

XPath minimization. A related problem is the
minimization of XPath queries, i.e., given an expres-
sion p to find a minimal equivalent expression p′.
As pointed out in [10], minimization is possible in
polynomial time for an XP-fragment, if containment
for this fragment can be decided via homomorphisms
and it always holds that p′ is essentially a subpattern
of p. In this way, PTIME-minimization was proved
for XP(/, [], ∗) [26] and for XP(/, //, []) [2]. In [10]
it is shown that XP(/, //, [], ∗) also has the subpat-
tern property. We already saw that it does not have
the homomorphism property though, therefore the
minimization problem is coNP-hard. Nevertheless,
a PTIME-algorithm can be obtained for expressions
from XP(/, //, [], ∗) in which, for each node, all but
one subtrees are linear. A general framework for op-
timization of XPath expressions has been studied in
[16].

XPath evaluation. In [11] it was shown that
XPath expressions can be evaluated in polynomial
time (combined complexity), for a much larger frag-
ment of XPath than the one considered here. This

result was improved both in theory (precise complex-
ity results) [12] and pratice [13]. A quick introduction
to this topic can be found in [14].

Characterizing XPath. In [3] XPath fragments
are characterized in terms of existential first-order
logic. Furthermore closure properties and axiomati-
zability of many fragments are studied. An elegant
characterization and an extension of XPath by so-
called conditional axes can be found in [18]. The
containment problem is also studied.

Containment for path queries on graphs. A
lot of work has been done on containment for reg-
ular path queries in the more general framework of
semistructured data, see e.g. [5, 15] and citations
therein.

Tree pattern matching. An overview of algo-
rithms for pattern matching in trees and graphs can
be found in [25].

Acknowledgement The author thanks Frank
Neven for many useful comments on an early draft
of this article.

References

[1] S. Abiteboul, R. Hull, and V. Vianu. Foundations of
Databases. Addison-Wesley, 1995.

[2] Sihem Amer-Yahia, SungRan Cho, Laks V. S. Laksh-
manan, and Divesh Srivastava. Tree pattern query
minimization. The VLDB Journal, 11(4):315–331,
2002.

[3] Michael Benedikt, Wenfei Fan, and Gabriel M. Ku-
per. Structural properties of XPath fragments. In
ICDT 2003, page ?, 2003.

[4] Peter Buneman, Wenfei Fan, and Scott Weinstein.
Interaction between path and type constraints. ACM
Trans. Comput. Logic, 4(4):530–577, 2003.

[5] D. Calvanese, G. DeGiacomo, and M. Vardi. De-
cidable containment of recursive queries. In Proc.
Database Theory - ICDT ’03, 9th International Con-
ference, pages 330–345, 2003.

[6] Chee Yong Chan, Pascal Felber, Minos N. Garo-
falakis, and Rajeev Rastogi. Efficient Filtering of
XML Documents with XPath Expressions. In Proc.
28th International Conference on Very Large Data
Bases (VLDB), Hongkong, pages 235–244, 2002.

[7] Ashok K. Chandra and Philip M. Merlin. Optimal
implementation of conjunctive queries in relational
data bases. In STOC 1977, pages 77–90.

[8] World Wide Web Consortium. XML Path Language
(XPath), Version 1.0. W3C Recommendation, 16
November 1999. http://www.w3.org/TR/xpath.

[9] A. Deutsch and V. Tannen. Containment and in-
tegrity constraints for XPath. Proceedings of the 8th
International Workshop on Knowledge Representa-
tion meets Databases (KRDB 2001).

[10] S. Flesca, F. Furfaro, and E. Masciari. On the
minimization of XPath queries. In Proc. 29th In-
ternational Conference on Very Large Data Bases
(VLDB), Berlin, pages 153–164, 2003.

[11] G. Gottlob, C. Koch, and R. Pichler. Efficient al-
gorithms for processing XPath queries. In Proc. of
28th Conf. on VLDB, 2002.

[12] G. Gottlob, C. Koch, and R. Pichler. The complex-
ity of XPath query evaluation. In Proc. 22nd Sym-
posium on Principles of Database Systems (PODS),
San Diego, 2003.

[13] G. Gottlob, C. Koch, and R. Pichler. XPath query
evaluation: Improving time and space efficiency. In
19th International Conference on Data Engineering
(ICDE), Bangalore, 2003.

[14] Georg Gottlob, Christoph Koch, and Reinhard Pich-
ler. XPath processing in a nutshell. ACM SIGMOD
Record, 32(2):21–27, 2003.

[15] G. Grahne and Alex Thomo. Query containment and
rewriting using views for regular path queries under
constraints. In Proc. 22nd Symposium on Principles
of Database Systems (PODS), San Diego, pages 111–
122, 2003.

[16] April Kwong and Michael Gertz. Schema-based op-
timization of XPath expressions. 2002.

[17] David Maier, Alberto O. Mendelzon, and Yehoshua
Sagiv. Testing implications of data dependencies.
ACM Trans. Database Syst., 4(4):455–469, 1979.

[18] Maarten Marx. XPath with conditional axes. To
appear in EDBT 2004.

[19] G. Miklau and D. Suciu. Containment and equiv-
alence for an XPath fragment. In Proc. 21th Sym-
posium on Principles of Database Systems (PODS
2002), pages 65–76, 2002.

[20] G. Miklau and D. Suciu. Containment and equiva-
lence for a fragment of XPath. Journal of the ACM,
51(1):2–45, 2004. Full version of [19].

[21] Tova Milo and Dan Suciu. Index structures for path
expressions. In Proc. Database Theory - ICDT ’99,
7th International Conference, pages 277–295, 1999.

[22] F. Neven and T. Schwentick. XPath containment
in the presence of disjunction, DTDs, and variables.
In Proc. 9th Int. Conf. on Database Theory (ICDT),
Siena, pages 315–329, 2003.

[23] Frank Neven. Automata theory for XML researchers.
SIGMOD Record, 31(3):39–46, 2002.

[24] Dan Olteanu, Holger Meuss, Tim Furche, and Fran-
cois Bry. XPath: Looking forward. In EDBT Work-
shops 2002, pages 109–127, 2002.

[25] Dennis Shasha, Jason Tsong-Li Wang, and Rosalba
Giugno. Algorithmics and applications of tree and
graph searching. In Proc. 21st ACM Symp. on Prin-
ciples of Database Systems, pages 39–52, 2002.

[26] P. T. Wood. Minimising simple XPath expressions.
WebDB informal proceedings, 2001.

[27] P. T. Wood. On the equivalence of XML patterns.
In Lloyd et al., editor, Computational Logic – CL
2000, volume 1861 of Lecture Notes in Artificial In-
telligence, pages 1152–1166. Springer, 2000.

[28] Peter Wood. Containment for XPath fragments un-
der DTD constraints. In Proc. Database Theory -
ICDT ’03, 9th International Conference, pages 300–
314, 2003.

