
On Views and XML

Serge Abiteboul
I.N.R.I.A., 78153 Le Chesnay, France

Serge.Abiteboul@inria.fr

1 Introduction

The notion of views is essential in databases, see for in-
stance [29, 30, 5]. It allows various users to see data
from different viewpoints. In the present paper, we
informally present works of the author on the topic.
Instead of addressing the issue of views in a classical
database setting, the paper focuses on XML [32] and
looks at these various works in the context of a system
of views for XML.

The Web has revolutionized the electronic publica-
tion of data. It has relied primarily on HTML that
emphasizes a hypertext document approach. More re-
cently, XML, although originally a document mark-up
language, is promoting an approach more focused on
data exchange. In XML, explicit structuring is enforced
and presentation is separated from the data content.
For data sources containing information with some struc-
ture, it is therefore more appropriate to use XML rather
than HTML to export their data to the Web. When
data is exported via XML, the problem of views be-
comes essential. Indeed, views in this setting are even
more crucial than in standard database applications
because (i) one often has to integrate heterogeneous
sources and also (ii) views provide the means to add
a structured interface on top of some otherwise (more
chaotic) semistructured data.

In some sense, a language already allows to define
views for XML documents, namely XSL. XSL is the
current (still unstable) W3C proposal for expressing
stylesheets. Although primarily targeted towards pre-
sentation, XSL allows to transform/restructure XML
documents using templates rules. We are discussing
such restructuring here. However, we will ignore pre-
sentation issues and will consider more general views
than offered by XSL.

A view specification for XML data1 will primarily
1XML data for us refers to data in XML and not to the precursor

of DCD, a typing language for XML, that was called XML data. We
prefer to use the term XML data instead of XML document to stress
that our prime concern is in data exchange and not in document
management.

rely, like for relational views [14], on a data model and
a query language.

We will argue that the data model should be as the
ODMG model [11] based on objects. In general, we will
argue that XML view technology should borrow a lot
from the object database view technology. However,
XML data is not regular like in the relational or object
models, which leads to considering semistructured data
models [3, 1, 10, 28]. We will argue that this should not
be to the detriment of regularity and structure, when
it is known. Furthermore, we will argue that the data
model should allow the management of incomplete in-
formation.

A central issue for the definition of views for XML
data is the query language. Unfortunately, there is no
standard yet for such a language although the activ-
ity invested towards obtaining one is rather intense [33]
and a standard should emerge soon. This is a complex
issue that we will partially address here. We could have
stated some desiderata for an XML query language.
However, since we could not add much to [21], we prefer
to simply endorse that proposal.2

Finally, we believe that a declarative specification of
XML views should encompass aspects that are typically
not found in relational or object database views. This
comes from Web applications that are by nature dis-
tributed. So, for instance, a view should specify aspects
such as replication and provide active features such as
change notifications.

Although the main purpose was not to survey works
of the author on the topic, the paper is clearly influ-
enced by previous works at INRIA and Stanford. In
particular, we will briefly discuss O2-Views [27], a view
mechanism for ODMG databases, Ozone [19], a system
allowing to mix structured and semistructured data,
and ActiveView [2], a view system for XML data with
active features.

2We perhaps could add that ODMG [11] provides answers to many
problems that are raised by [21] and in particular to some of the
modeling and query language issues. Thus, we favor an approach in
the spirit of Ozone [19].

In Section 2, we discuss views of XML data. We
look at some existing relational database technologies
for views in Section 3. Section 4 deals with views of
object databases. Sections 5 and 6 deal, respectively,
with semistructured and structured data in an XML
context. Section 7 deals with the control of updates.
Section 8 considers problems related to seeing the view
as a workspace. Finally, in Section 9, we argue that a
proper data model for views should be based on incom-
plete information.

2 Views for XML

XML is still in its infancy and it is hard to predict
what it will become. For many people, XML is just a
document mark-up language. For us, XML data consist
in a forest of labeled (annotated) ordered trees with
references and in the possibility to type portions of the
data with DTD’s/DCD’s. More precisely, in each tree,
the children of internal vertices are ordered, the edges
are labeled, and the leaves may contain references to
vertices of the same or another tree. Clearly, XML is
much richer but, from a data exchange viewpoint, this
simple model will suffice for our discussion. This view
of XML elements with an object flavor is in the DOM
[16] spirit. If some features we will implicitly assume are
not yet supported by the standard, it is very likely that
they will soon, as well as (based for instance on SQL3
experience) many more that will not be considered here.

An example of some (untyped) XML data is shown
in Figure 1. Its representation under a graphical form
is also given there. We will assume the existence of
a “declarative” query language for XML in the style of
SQL or OQL hoping that a standard for such a language
will exist soon.

In this paper, we are interested in views of XML
data. The need for such a concept is first like in tra-
ditional databases: different users sharing XML data
may have different needs and may want to see the same
data differently, and this not only at the presentation
level. Furthermore, since XML data is primarily used
as a common model for otherwise heterogeneous data,
the use of views is even more essential than in classical
databases.

When considering XML views, it is worth mention-
ing briefly the architecture. A possible architecture is
shown Figure 2. It is based on three components:

• the data server that may be a database, an XML
repository, or any (possibly wrapped) source capa-
ble of exporting XML data.

• the view server that restructures data to construct
the view, possibly deals with access rights, and
integrates data from several sources.

<states>
<state id = "s1">

<scode> ID </scode>
<sname> Idaho </sname>
<capital idref="c1"/>
<cities-in idref="c1"/>
<cities-in idref="c3"/> ...

</state>
<state id="s2">

<scode> NE </scode>
<sname> Nevada </sname>
<capital idref="c2"/>
<gambling> many casinos ...

</gambling>
<cities-in idref="c2"/> ...

</state>
...
</states>
<cities>

<city id="c1">
<ccode> BOI </ccode>
<cname> Boise </cname>
<personal> don’t go </personal>
<state-of idref="s1"/>

</city>
...
</cities>

to c2

to c2

state state

citiesstates

scode capital
sname sname

scode capitalcities-in

cities-in

gambling

s1 s2

NE Nevada many casinos...

cities-in

city

ID Idaho

to c3

c1

ccode
cname

personal
state-of

BOI Boise don’t go

Figure 1: Some (rather regular) XML data

Other
sources

Other
Views

View
Pages

Browser
Web

Stylesheet
XML

(possibly
virtual)

View
Documents

View
Server

View
Specification

Server
Data

Code
DB Application

XML
repository

External
Application

Figure 2: View Architecture

• an XML view document that is handled by a stan-
dard Web browser and interacts with the view
server, e.g., to obtain data.

We will not elaborate on this architecture here. To illus-
trate it, we will mention the ActiveView system that is
being developed at INRIA. In ActiveView, the database
server is the Ardent Software XML repository (devel-
oped on the O2 system); the view server is a Java ap-
plication. The view document is for the moment in
dynamic HTML with embedded Java applets and will
move to XML as soon as XML browsers provide the
desired dynamic features. The protocol between the
repository and the view server used DOM. The proto-
col between the view server and the Web browser is
via Java Remote Method Invocation. We will discuss
further on some active features of the system.

Tag line Database folks should be interested in XML
(views) and more and more are.

Issues Protocols for specifying views, including the
specification of what is materialized and what is not,
maintenance policy, access rights for read and write,
etc.

3 View = Query

One of my first papers in databases was on views [7].
At that time, I believed this simple definition: a view
is just a function. (See Figure 3.) And yes indeed,
this definition remains true many years after3. But, the
devil is in the details and it is difficult to handle func-
tions when the world is changing and when applications
attempt to present rich data to demanding users.

In the relational world, a view is simply specified by
a query. We will be led to enrich this specification quite

3We have to be careful with the converse statement that a function
is just a view, so almost anything you can think of is a view.

dbstate1

dbstate2

dbstate3

dbstate4

dbstate5

dbstate6 viewstate3

viewstate2

viewstate1

Figure 3: A view is a function

a bit. However, a lot of the technology developed for
relational databases remains meaningful in the context
of views for XML data. Most of the work on relational
views deals with the propagation of updates:

db → v In one direction, when data change, incremen-
tal techniques have been developed to avoid en-
tirely recomputing the views. In a Web context,
suppose we are publishing a Web catalog of thou-
sands of articles. A customer may have loaded
portions of the catalog. If the price of a single
item changes, we do not want to reload the entire
catalog.

v → db In the other direction, we find the problem
of propagating view updates to the data sources.
This is sometimes considered less of an issue since
the Web is now viewed primarily as a “read-only”
resource. However, many Web applications do al-
low updates. Consider for instance a bug man-
agement system. A programmer may consult bug
reports, but may also edit them. If the program-
mer is presented with views of the bugs actually
stored by the system, we are led to a view update
problem.

The fact that the data is now in XML doesn’t eliminate
the problems although the use of (DOM) objects may
facilitate the support of update propagation in some
cases.

It is clearly possible to reuse results for relational
views in an XML-view context. We mentioned update
propagation but clearly query optimization for logically
accessing large collections is an indispensable technol-
ogy for Web applications. We should mention also more
recent results on answering queries using views, e.g.,
[12, 20, 34, 4, 25], often developed already with Web
applications in mind.

Tag line XML Views require standard database view
technology, but much more.

Tag line What databases can bring to XML is query
optimization and query rewriting.

Issues Query language for XML. In particular, the
management of links and order is not well understood.

Indexing and optimizations are key issues, as well as
the mathematical foundations of such languages and the
study of their expressive power.

4 View = World of Objects

We believe that XML data are by nature object-based
which strongly supports the DOM viewpoint. This will
be easily seen in an example. Suppose that a user checks
out Paragraph 3 of Section 4 of a large document while
others may be editing other portions of the document.
The system needs the means to refer to that particular
element. We are not talking about some identification of
the tree vertex such as “MyDoc.Section[4].Paragraph[3]”
since someone may be shuffling sections around, adding/
removing paragraphs, etc. The problem is even more
crucial in more typical database contexts with set col-
lections, e.g., editing the design of a part in the engine
of a car described as XML data.

Indeed, as discussed in [21], we need the means to
designate locations within some XML data. Such a con-
cept is called locator in [21]. This is really captured
by object identity irrespective of the presence or not
of some XML name to denote the element that is up-
dated. Thus, we prefer to think of XML as an object
model (in the DOM style) with object identities that
may be exported.

Since we have objects, we may as well introduce code
and methods. These are clearly useful, for instance, to
define virtual XML data or to use conversion functions.
So, based on the DTD/DCD, elements are seen as or-
ganized in classes. We will be less concerned here with
notions such as inheritance and late binding although
these are definitely nice to have around. This said we
are in a world very similar to the object database world
and most notions about views in object databases may
be imported to views of XML data.

This is what we do next primarily influenced by
works on O2-Views [27], C. Souza’s thesis and the sys-
tem he implemented.

O2-Views The goal of O2-Views was to propose a rich
view mechanism for ODMG databases. In O2Views,
three main mechanisms are used to define object data-
base views that are relevant for XML views as well:

• virtual values: these are essentially like relational
views. The notion carries immediately to having
virtual data in an XML view, from entire docu-
ments to virtual elements. For instance, suppose
that we have for each customer a list of the unpaid
orders of that customer. We could add a virtual
element that would contain the customer’s out-
standing balance.

• virtual classes: a set of database objects may be
logically grouped into a view class, and, as such,
they may acquire new interfaces. To see how this
carries to XML, suppose that an electronic cata-
log offers products sold by several companies and
each company uses a different DTD for describing
its products. The view may specify the mappings
between the products in original sources and the
products exported by the view. Then the view
provides a uniform access to all products using a
single DTD. Note that each exported product el-
ement corresponds to an existing product element
in the repository.

• imaginary classes: an imaginary class allows to
(virtually) create a set of objects that exist only
in the view and do not correspond to database
objects. This may be used, starting from a rela-
tional database, to (virtually) create some XML
data, with for instance, one element correspond-
ing to each tuple in the join of two relations. Note
that exported elements do not have corresponding
elements in the repository.

These notions probably do not sound new in a Web
context. It is more and more common to have HTML or
XML pages produced on demand, e.g., to have queries
embedded in documents. We wanted to stress that this
can be done more cleanly within a formal model.

Tag line The underlying XML model is an object-
based model and XML views should be founded on ob-
ject database views.

Issues Adapting the work on object database views.
Also, more work is needed on declarative specification
of object views, and on data conversion and data inte-
gration in the context of XML.

5 View = Semistructured data

As advocated by [21], there is a need for a model for
XML. We are not really talking here about all the bells
and whistles already in XML but about a model that
would capture the essence of data in XML. The use of
such a model seems to us a prerequisite for being able to
define queries with precise semantics, so views as well.
In the present section and in the following, we propose
elements of answers to this problem. We already men-
tioned that we see the model as object-based. It has
been argued that semistructured data models are ap-
propriate for XML. This is the point of view adopted
in this section. In the next section, we also argue that
the model should include structure as well, when some
structure is known.

There have been many recent reports promoting se-
mistructured data, and query languages for such data
[1, 10, 28]. We will assume here that the reader is con-
vinced of the need to manage such data, the prime moti-
vation being data exchange formats, in particular XML,
and irregular data resulting from the integration of het-
erogeneous sources. There has been a lot of work on
querying semistructured data (e.g., [22, 9, 23, 15]) that
will hopefully impact on query languages for XML [33].
We will use here the Lorel language [6] and not insist on
an XML-flavored syntax. (This is just an issue of syn-
tax relevant for a standardization committee but less so
to the research community.)

Although the data structure in semistructured data
models, roughly speaking a labeled graph, is certainly
not new, the management of such data yields novel is-
sues. Perhaps, a most important one is query optimiza-
tion with exciting problems in physical organization,
clustering or indexing. We will not address these issues
here.

There will be no tag line in this section since there
have been already too many beliefs expressed about
semistructured data. In the next section, we will ar-
gue that semistructured data should go together with
structured data as well, the corollary being that, for
data exchange, XML should encourage the use of types
ala ODMG even if totally untyped XML is fine.

6 View += Structured data

We want to insist here on the need for XML to sup-
port simultaneously structured and semistructured data
with cross references between these two worlds. In short,
the motivations for handling structured data are as fol-
lows:

1. if we know about some structure in some of the
data we are managing (e.g., that we have a large
collection of similar tuples), then not using such
information may seriously damage performance.

2. we can use a regular structure as access struc-
ture over some existing XML data to boost per-
formance. (For instance, if we manage a set of
thousands of home-pages, it may be appropriate
to introduce a relation4 or a class Person with at-
tributes name, address, phone number, picture as
an access structure.)

3. the use of structure facilitates the programming of
applications since languages such as Java or C++
do expect typed data.

4This is not a departure from the XML world since the regular
structure of a relation may be captured by a strict DTD and DCD-
like typing.

In (1) and (2), we end up having to write applica-
tions where some data is structured and some semi-
structured. More motivations, a query language, and
a system, namely Ozone, for such hybrid data are de-
scribed in [19]. We next briefly present the Ozone ap-
proach.

The Ozone model Rather than starting from scratch,
Ozone extends the ODMG model with a class for semi-
structured data inspired by the OEM model [24]. More
precisely, the semantics of a semistructured object is ei-
ther complex (a collection of pairs 〈label, oem〉), or is
a container for a typed value (int, real, reference to an
OEM). Collections in complex semistructured objects
of Ozone may be sets or lists. The use of container
allows to capture the distinction in XML between at-
tributes/subelements and references. Consider the ex-
ample of Figure 1. For instance, s1 will be represented
by a complex OEM object whose value is a list of 5
(label, value) pairs. The first one is (scode, o) where o
is an atomic object containing the string ID. The last
one is (cities-in, o′) where o′ contains a reference to the
object c3.

The query language Here also, rather than starting
from scratch, Ozone extends the OQL language. The
language is in the style of many languages for semi-
structured data, and in particular can be viewed also as
an extension of Lorel. The novelty of the language re-
sides in the possibility to query hybrid data, with struc-
tured portions referencing semistructured ones, and vice
versa.

A key notion towards this goal is that of proxy that
is a structured interface to semistructured data, or a
semistructured interface to structured data. In one di-
rection, we may want to use objects with regular struc-
ture as proxies for irregular objects, e.g., have proxies
with structure

struct(name:string,
address:string,
phone: string,
picture:gif)

for thousands of Person objects that may exist in the
repository containing such information and more. This
may allow (i) to improve performance, e.g., by having
an index on name, and (ii) to facilitates the develop-
ment of application code, e.g., in Java or C++. In
the other direction, semistructured (logical) proxies to
structured data allow to provide a semistructured view
of structured data and thus allows ignoring (some of)
the structure when querying such data.

Note that proxies as used in Ozone can be seen as
view mechanisms that blur the distinction between struc-
tured data and semistructured ones.

What is the impact of this on XML views? Data
sources do provide data organized in relations, in typed
collections of objects, etc. We believe that ignoring such
structure (when it exists) is a bad idea for performance
as well as logical reasons. Thus XML (in its general
context with DTD and DCD) should provide the means
to export both structured and semistructured data.

Tag line XML should allow the exchange of structured
data as in the relational and ODMG models.

Issues for these last two sections are:

Issues Typing in XML that would range from very
permissive typing to very strict typing. Also, we need
to consider features that would allow one to view the
same data with various types. Query languages and
optimization are again central issues here.

Issues Programming language (Java) bindings to fa-
cilitate designing applications with hybrid data (XML
with strict structure or not).

7 View = Changing World

Users are now used to seeing HTML/XML data on the
Web. To a certain extent, more and more want to see
only such data, which is certainly a solution to many
problems coming from data exchange format hetero-
geneity. The massive diffusion of data in the Web is
often performed without the use of database systems.
This may be because the data are relatively small and
a heavy duty DBMS would be overkill or because the
data are too large and for performance reasons, require
tailored systems (e.g., indexes in Web search engines).
However, data used by Web applications are by defini-
tion accessed by many users and it is often the case that
data are also updated by many users. When we start
dealing with changes in shared data, this becomes even
more a database issue and database solutions become
more compelling. Indeed, this explains why databases
are used more and more in Web sites. The management
of changes in an XML view environment is the topic of
the present section.

We have been working recently on a system called
ActiveView [2]. The idea is to offer a declarative defini-
tion of Web views of some XML data with change con-
trol and active features. We illustrate this work next.

ActiveView The following simple statement may be
part of a definition of the customer view of an electronic
catalog:

let monitored catalog : CatalogElem
be RepCatalog
with catalog.*

mode append catalog.product.opinions

The specification of view data is based on XML queries.
The only query here is extremely simple, RepCatalog,
i.e., the name of a document in the repository. The
with clause specifies to import all the elements in this
document. (The reader will ignore the particular syn-
tax. We use a Lorel/OQL style syntax until a standard
query language arises.) The type of the answer and
thus of the catalog as viewed by a customer is a DTD,
namely CatalogElem. The access mode for the data is
defined by a mode clause. Here the entire catalog will
be in read mode (the default), and the view user will
also be allowed to add opinions about products. The
keyword monitored specifies that the view has to be no-
tified when the catalog changes, so that the view may
request, if desired, an incremental update.

More generally, the ActiveView system can be seen
as a database application generator. The system enables
a declarative specification of certain kinds of views. By
declarative, we mean here that there is little (or no pro-
gram) to write and that the description of the applica-
tion is in a high level language (or via a graphical user
interface). The specification of an application includes
definitions of the main actors involved in the applica-
tion. For each actor, we specify:

1. the data and operations available to this partic-
ular actor (a view mechanism) and these with a
sophisticate access control;

2. the activities this actor may be engaged in and the
data and operations available in each;

3. some active rules that notably specify the sequenc-
ing of activities (a workflow component) but also
the events this actor wants to be notified of (a
subscription component) and those that have to
be logged (a tracing component).

To see an example, suppose a product is added to the
catalog. A notification is issued to all actors that are in-
terested in this event, i.e., a change in the catalog. The
specification may also include an active rule to specify
that, when such an event occurs, their view of the cata-
log should be updated. Observe that both the detection
of the event and the maintenance may take advantage
of incremental techniques.

The focus in the ActiveView system is on the control
of updates and on a declarative specification of views.
Note also that users often want to query changes. For
instance, one might want to ask a query such as what
are the books by South American authors entered since
January 16th, 1998. This introduces standard issues in
temporal databases, see [26]. The management of tem-
poral semistructured data is the topic of Chawathe’s
thesis [13] and the DOEM/Chorel framework. Such ca-

pabilities will probably be the basis of a number of new
services such as query subscription systems.

Beyond the specific issues mentioned here, what we
wanted to stress is that the control of changes in shared
data yields a number of issues where technologies devel-
oped in databases fit nicely. New issues also arise. For
instance, the introduction of workflows (see, e.g., [31])
to control these changes is a challenging issue.

Tag line What databases can bring to XML is also the
control of updates.

Issues Adapt to the XML context techniques from the
relational model such as view maintenance, answering
queries using views, etc.

Issues Languages for temporal queries, query subscrip-
tion and other new services involving change control.

Issues Consistency when different versions of data ex-
ist. In particular, such aspects become very complex
when typing (DTD) may change.

8 View = Workspace

We are primarily interested here by distributed data. In
particular, a view will typically be on a different ma-
chine than the data sources. Thus, a view should be
thought of as a workspace that in particular may con-
tain previous queries and the results of these queries.
This raises a number of issues such as (again) the prob-
lem of answering queries using views and the manage-
ment of replicated data. To illustrate the issues related
the management of the view workspace, we consider in
more detail the semantics of XML queries.

Consider the query

Who are the authors of papers on XML?:

Q: select P
from Mybiblio.paper P
where P.keyword contains "XML"

Ignoring that we are using here an OQL syntax, sup-
pose that the source consists of XML data and the query
output is also in XML. (It seems well-accepted that an
XML query returns some XML output – a closure prop-
erty.)

In an “object-based” language (say OQL or Lorel),
this is returning a collection of objects, each correspond-
ing to one paper. In DOM terminology, the answer to
this query may be thought of as an entry point to a
set of elements stored in the repository (assuming some
locators for these elements.) However, in a workspace
context, the situation is somewhat different. We would

like to specify the data that should be transferred to-
gether with the objects, i.e., to save on communications,
we may wish the XML data returned by the query to
be more than just a bunch of locators.

In ODMG, it is easy to specify that we want the
query to return the value of each object as well. In a
semistructured context, there is one notion of “value”
of a complex object, i.e., a collection of (label,object)
pairs. But this is not what we mean here, we would like
to return specific data we know about each particular
paper. A particular syntax for that is used in Lorel.
One may use a with clause to specify what exactly to
return [8] for each P element selected by the query. For
instance, one could use the following query:

select P
from Mybiblio.paper P
where P.keyword contains ‘‘XML’’
with P.title, P.abstract, P.author.*

that requires to glue the title, abstract, and all data
reachable from attributes author. (Note that the with
clause is a non standard syntax. We believe that a query
language for XML would have some syntax to express
this notion of gluing data with the result of a query.
This may be like here in a with clause or elsewhere,
e.g., as part of the select clause.)

Thus, a first solution, is to specify explicitly what
to return. Let us move closer to XML to see a possible
solution XML suggests for this problem. In the un-
derlying XML model, there are two kinds of links: (i)
an element may be a component of another; and (ii) an
element may reference another. Intuitively, elements to-
gether with their components and this recursively seem
the natural atomic unit of transfer. So, if we consider
query Q above, a natural XML solution may be to im-
port the entire paper element. If the XML style solution
is often appropriate, it may be too constraining in some
situations. In many cases, we may prefer a tighter con-
trol of what is transmitted.

There are many other issues when we start consid-
ering a view as a workspace such as where some code is
executed. To a large extent, a lot of the technology for
that exists but needs to be reconsidered.

Tag line A query language and the specification of
views should take into account distribution.

Issues Many technical issues related to mobility and
replication have to be resolved.

9 View = Incomplete World

Incomplete information is not a very active topic these
days. Important results were obtained in the past, but
the database field has more and more a tendency to go

according to Web time and ignore them as “too old”.
In this last section, we briefly argue (by example) that
views (in particular in a Web context) should be ap-
proached with an incomplete information model and
recall a model for incomplete information of Lipski and
Imielinski that is somewhat typical of great tools that
remain unfortunately mostly unused.

To be able to use directly previous works on incom-
plete information, we present here relational examples.
Clearly similar examples can be given with XML data
sources.

First, consider the following scenario. A view is built
from a set of vendors that sell products on the Web.
More precisely, the view consists of (i) the collection
(i, v, p) such that item i is sold by v at price p, (ii) the
collection (v, c) such that the vendor is located in city
c. (Let us assume that all vendors publish prices for all
their products.) Suppose we first ask for the vendors
of some Gismo45 product in Paris. We may obtain the
table in Figure 4 (a). We decide next to ask for the
price listed by each vendor. Suppose that the source
that provides the prices for some vendors (say v2, v5)
is temporarily unavailable. The answer should contain
incomplete information as in Figure 4 (b) or otherwise
would be inconsistent with the previous answer. (In
the figure, variables start with capital letters.) Such in-
completeness is easily captured with the simplest kinds
of conditional tables [18] (as in Figure 4 (b)). Further-
more, suppose that the user wants to restrict the answer
to Gismo45’s under $100. Then again conditional tables
allow the representation of that uncertainty. (See Fig-
ure 4 (c)). Depending on the application, we may want
to see or not incompleteness in the answer. However,
it is essential to consider it in the view since the Web
naturally yields incompleteness because of the unavail-
ability of sources.

To see another example, consider the problem of
data expiration for instance studied in [17]. In [17],
data is expired from a view explicitly, e.g., to save on
storage space. One may also consider that some data
is expired because some validity time is attached to it.
Some of this data may only then exist off-line or may be
temporarily unavailable. Suppose for instance that we
have some large quantity of technical reports and that
we decide to keep only the title and authors of tech re-
ports before 1990. (The expiration policy may be much
more complex, e.g., depend on the topic of the reports,
the issuing institution, the authors, etc.) We need a
model of incomplete information to represent such data
and query it. The fact that we are dealing with possibly
semistructured data instead of structured data does not
change much the problem. A more essential difference
is that incompleteness becomes a more dynamic notion
since data may be constantly added/removed from the
view.

company

v1
v2
v3
v4
v5

company price

v1 109
v2 X
v3 99
v4 89
v5 Y

(a) (b)

company price (condition)

v2 X if X < 100
v3 99
v4 89
v5 Y if Y < 100

(c)

Figure 4: Conditional Tables

Tag line Using a data model for views allowing incom-
plete information is necessary in a Web context.

Issues Study a model of incomplete information for
XML and consider incomplete answers. Also, we should
study how to issue queries to complete the answers, i.e.
complement the view at the minimal cost.

Acknowledgments We want to thank D. Suciu, J. Wi-
dom, P. Buneman, S. Cluet, T. Lahiri, A. Mendelzon,
L. Mignet, J. Simeon, C. Souza, R. Topor and A.M.
Vercoustre for discussions or comments on (parts of)
this paper.

References

[1] S. Abiteboul. Querying semistructured data. In Proc.
Int. Conf. on Database Theory (ICDT), 1997.

[2] S. Abiteboul, B. Amann, S. Cluet, T. Milo, and
V. Vianu. Active views for electronic commerce. In
Conférence sur les Bases de Données, 1998. www-
rocq.inria.fr/verso/ACTIVEVIEWS/paper/av.pdf.

[3] S. Abiteboul, P. Buneman, and D. Suciu. Data on the
Web. Morgan Kaufmann Publishers, San Francisco,
CA, 1999.

[4] S. Abiteboul and O. Duschka. Answering queries using
materialized views. In Proc. ACM SIGMOD/SIGACT
Conf. on Princ. of Database Syst. (PODS), 1998.

[5] S. Abiteboul, R. Hull, and V. Vianu. Foundations
of Databases. Addison-Wesley, Reading-Massachusetts,
1995.

[6] S. Abiteboul, D. Quass, J. McHugh, J. Widom, and
J. Wiener. The Lorel query language for semistruc-
tured data. International Journal on Digital Libraries,
1, 1997.

[7] S. Abiteboul and N. Spyratos. Information theoretic as-
pects of databases. In Proc. ACM SIGMOD/SIGACT
Conf. on Princ. of Database Syst. (PODS), 1983.

[8] S. Abiteboul, J. Mc Hugh, M. Rys, V. Vassalos, and
J. Wiener. Incremental maintenance for materialized
views over semistructured data. In Proc. Int. Conf. on
Very Large Data Bases (VLDB), 1998.

[9] P. Buneman, S. Davidson, G. Hillebrand, and D. Suciu.
A query language and optimization techniques for un-
structured data. In Proc. of the ACM SIGMOD Conf.
on Management of Data, pages 505–516, 1996.

[10] P. Buneman. Semistructured data. In Proc. ACM
SIGMOD/SIGACT Conf. on Princ. of Database Syst.
(PODS), 1997.

[11] R. G. Cattell. The Object Database Standard: ODMG
2.0. Morgan Kaufmann, 1997.

[12] S. Chaudhuri, R. Krishnamurthy, S. Potamianos, and
K. Shim. Optimizing queries with materialized views.
In Proc. IEEE Intl. Conf. on Data Engineering, 1995.

[13] S. Chawathe, S. Abiteboul, and J. Widom. Represent-
ing and querying changes in semistructured data. In
Proc. IEEE Intl. Conf. on Data Engineering, 1998.

[14] E. F. Codd. A relational model of data for large shared
data banks. Comm. of the ACM, 13(6):377–387, 1970.

[15] A. Deutsch, M. Fernandez, D. Florescu, A. Levy,
and D Suciu. Xml-ql: A query language for xml.
www.w3.org/TR/1998/NOTE-xml-ql-19980819/.

[16] The world wide web consortium (w3c)’s dom (docu-
ment object model) web page. www.w3.org/DOM/.

[17] H. Garcia-Molina, W.J. Labio, and J. Yang. Expiring
data in a warehouse. In Proc. Int. Conf. on Very Large
Data Bases (VLDB), 1998.

[18] T. Imieliński and W. Lipski. Incomplete information in
relational databases. J. ACM, 31(4):761–791, 1984.

[19] T. Lahiri, S. Abiteboul, and J. Widom. Ozone: In-
tegrating structured and semistructured data. www-
db.stanford.edu/ tlahiri/ozone.pdf.

[20] A. Levy, A.O. Mendelzon, D. Srivastava, and Y. Sa-
giv. Answering queries using views. In Proc. ACM
SIGMOD/SIGACT Conf. on Princ. of Database Syst.
(PODS), 1995.

[21] D. Maier. Database desiderata for an xml query lan-
guage. www.w3.org/TandS/QL/QL98/pp/maier.html.

[22] J. McHugh, S. Abiteboul, R. Goldman, D. Quass, and
J. Widom. Lore: A database management system for
semistructured data. SIGMOD Record, 26(3):54–66,
1997.

[23] M.Fernandez, D.Florescu, J.Kang, A.Levy, and
D.Suciu. Strudel: A web site management system. In
Proc. of the ACM SIGMOD Conf. on Management of
Data, 1997.

[24] Y. Papakonstantinou, H. Garcia-Molina, and J.
Widom. Object exchange across heterogeneous infor-
mation sources. In International Conference on Data
Engineering, 1995.

[25] Y. Papakonstantinou and V. Vassalos. Query rewrit-
ing using semistructured views. In Proc. of the ACM
SIGMOD Conf. on Management of Data, 1999.

[26] M. Soo. Bibliography on temporal databases. In Proc.
ACM SIGMOD Symp. on the Management of Data,
pages 14–23, 1991.

[27] C. Souza, S. Abiteboul, and C. Delobel. Virtual
schemas and bases. In Proc. EDBT, Cambridge, 1994.

[28] D. Suciu. An overview of semistructured data. Database
Theory Column (ed V. Vianu), Sigact News, 29(4):28–
38, 1998.

[29] J.D. Ullman. Principles of Database and Knowledge
Base Systems, Volume I. Computer Science Press,
1988.

[30] J.D. Ullman. Principles of Database and Knowledge
Base Systems, Volume II: The New Technologies. Com-
puter Science Press, 1989.

[31] Special issue on workflow and extended transaction sys-
tems. Data Engineering Bulletin, 16(2), 1993.

[32] The world wide web consortium (w3c)’s xml web page.
www.w3.org/XML/.

[33] Query for xml: position papers.
www.w3.org/TandS/QL/QL98/pp.html.

[34] H.Z. Yang and P.-Å. Larson. Query transformation for
PSJ-queries. In Proc. Int. Conf. on Very Large Data
Bases (VLDB), 1987.

