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ABSTRACT
We review the notion of hypertree width, a measure of the degree
of cyclicity of hypergraphs that is useful for identifying and solv-
ing efficiently easy instances of hard problems, by exploiting their
structural properties. Indeed, a number of relevant problems from
different areas, such as database theory, artificial intelligence, and
game theory, are tractable when their underlying hypergraphs have
small (i.e., bounded by some fixed constant) hypertree width. In
particular, we describe how this notion may be used for identifying
tractable classes of database queries and answering such queries in
an efficient way.

1. INTRODUCTION
In this paper we deal with the fundamental problem of evaluating
queries in relational databases, focusing on recently proposed tech-
niques based on structural properties of the queries. For the sake
of simplicity, we consider conjunctive queries (CQs), though most
results may be easily extended to more general queries. The class
CQ, equivalent in expressive power to the class of Select-Project-
Join queries, is probably the most thoroughly analyzed class of
database queries. Note that the great interest in conjunctive queries
is also due to the fact that CQ evaluation is essentially the same
problem as conjunctive query containment [6], which is of central
importance in view-based query processing [2], and constraint sat-
isfaction, which is one of the major problems studied in the field of
AI (see, e.g., Vardi’s survey paper [47] on the interactions between
the areas of query evaluation and constraint satisfaction).

Recall that database management systems (DBMSs) have special-
ized modules, called query optimizers, looking for good ways to
deal with any given query. For all commercial DBMSs, such a
way is always based on quantitative methods: they examine a num-
ber of alternative plans for answering a query and then choose the
best one, according to some cost model. These planners exploit in-
formation on the data, e.g., sizes of relations, indices, and so on.
In fact, all of them compute just approximations of optimal query
plans, as the optimization problem is NP-hard, in general. See [39]
for a short survey of quantitative methods and for further refer-
ences.

A completely different approach to query answering is based on
structural properties of queries, rather than on quantitative informa-
tion about data values. Exploiting such properties is possible to an-
swer large classes of queries efficiently, that is, with a polynomial-
time upper bound. The structure of a query Q is best represented
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by its query hypergraph H(Q) = (V, H), whose set V of vertices
consists of all variables occurring in Q, and where the set H of
hyperedges contains, for each query atom A, the set var(A) of all
variables occurring in A. As an example, consider the following
query
Q0: ans ← s1(A,B, D) ∧ s2(B, C, D) ∧ s3(B, E) ∧
s4(D, G) ∧ s5(E, F, G) ∧ s6(E, H) ∧ s7(F, I) ∧ s8(G, J).
Figure 1 shows its associated hypergraph H(Q0).

One of the most important and deeply studied class of tractable
queries is the class of acyclic queries [5, 7, 9, 14, 28, 33, 37,
48, 49]. It was shown that acyclic queries coincide with the tree
queries [4], see also [1, 30, 43]. The latter are queries whose
query hypergraph has a join tree (or join forest) (see Section 3 for
a formal definition). By well-known results of Yannakakis [48],
acyclic conjunctive queries are efficiently solvable. More precisely,
all answers of an acyclic conjunctive query can be computed in
time polynomial in the combined size of the input and the output.
This is the best possible result, because in general the answer of a
query may contain an exponential number of tuples. Recall that, for
cyclic queries, even computing small outputs, e.g. just one tuple,
or checking whether the answer of a query is non-empty (Boolean
queries) requires exponential time (unless P = NP) [6].

Therefore, many attempts have been made in the literature for ex-
tending the good results about acyclic conjunctive queries to rel-
evant classes of nearly acyclic queries. We call these techniques
structural query decomposition methods,1 because they are based
on the acyclicization of cyclic (hyper)graphs. More precisely,
each method specifies how appropriately transforming a conjunc-
tive query into an equivalent tree query (i.e., acyclic query given
in form of a join tree), by organizing its atoms into a polynomial
number of clusters, and suitably arranging the clusters as a tree
(see Figure 1). Each cluster contains a number of atoms. After per-
forming the join of the relations corresponding to the atoms jointly
contained in each cluster, we obtain a join tree of an acyclic query
which is equivalent to the original query. The resulting query can
be answered in output-polynomial time by Yannakakis’s algorithm.
Thus, in case of a Boolean query, it can be answered in polynomial
time. The tree of atom-clusters produced by a structural query de-
composition method on a given query Q is referred to as the decom-
position of Q. Figure 1 also shows two possible decompositions of
our example query Q0. A decomposition of Q can be seen as a
query plan for Q, requiring to first evaluate the join of each cluster,
and then to process the resulting join tree in a bottom-up fashion
(following Yannakakis’s algorithm).

1In the field of constraint satisfaction, the same notion is known as
structural CSP decomposition method, cf. [15].
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Figure 1: Hypergraph H(Q0) (left), two hypertree decompositions of width 2 ofH(Q0) (right and bottom).

Thus, the efficiency of a structural decomposition method essen-
tially depends on the maximum size of the produced clusters, mea-
sured (according to the chosen decomposition method) either in
terms of the number of variables or in terms of the number of
atoms. For a given decomposition, this size is referred-to as the
width of the decomposition. For example, if we adopt the number
of atoms, then the width of both decompositions shown in Figure 1
is 2. Intuitively, the complexity of transforming a given decompo-
sition into an equivalent tree query is exponential in its width w. In
fact, the evaluation cost of each of the (polynomially many) clus-
ters is bounded by the cost of performing the (at most) w joins of its
relations, which is in turn bounded by O(|rmax|w−1 log |rmax|),
where |rmax| denotes the size of the largest relation rmax in the
database. The overall cost (transformation+evaluation of the re-
sulting acyclic query) is thus O(v|rmax|w−1 log |rmax|), where
v is the number of vertices of the decomposition tree. It is
worthwhile noting that, for queries involving many atoms, exploit-
ing such a structural information may lead to a quite remarkable
computational saving. For instance, the above upper bound is
O(7|rmax| log |rmax|) for the query in Figure 1, whereas typi-
cal query answering algorithms would take O(|rmax|7 log |rmax|)
time, in the worst case.

In general, a rough upper bound for the cost of answering a
given query Q according to any structural method D is given by
O(nw+1 log n), where w is the D-width of Q and n is the total
size of the input problem, that is, the size of the query and of the
database encoding [15]. Therefore, once we fix a bound k for such
a width, the structural method D identifies a class of queries that
can be answered in polynomial time, namely, the class of all queries
having k-bounded D-width (i.e., D-width at most k).2 The main
structural decomposition methods are based on the notions of Bi-
connected Components [11], Tree Decompositions [35, 7, 28, 8,
25, 10], Hinge Decompositions [26], and Hypertree Decomposi-
tions [18, 19, 21, 40].

Among them, the Hypertree Decomposition Method (HYPER-
TREE) seems to be the most powerful method, as a large class of
cyclic queries has a low hypertree-width, and in fact it strongly
generalizes all other structural methods [15]. More precisely,

2Intuitively, the D-width of a query Q is the minimum width of the
decompositions of Q obtainable by method D.

this means that every class of queries that is recognized as
tractable according to any structural method D (has k-bounded D-
width), is also tractable according to HYPERTREE (has k-bounded
HYPERTREE-width), and that there are classes of queries that are
tractable according to HYPERTREE, but not tractable w.r.t. D
(have unbounded D-width). Moreover, for any fixed k > 0, de-
ciding whether a hypergraph has hypertree width at most k is feasi-
ble in polynomial time, and is actually highly parallelizable, as this
problem belongs to LOGCFL [19] (See [36, 17], for properties and
characterizations of this complexity class). In fact, it has been con-
jectured that a class of queries is tractable if and only the cores of
their structures have bounded hypertree width (under some widely
believed complexity-theoretic assumptions) [24]. The first part of
this paper is devoted to the presentation of the main results about
hypertree decompositions.

Despite their very nice computational properties, all the above
structural decomposition methods, including Hypertree Decompo-
sition, are often unsuited for some real-world applications. For
instance, in a practical context, one may prefer query plans (i.e.,
minimum-width decompositions) which minimize the number of
clusters having the largest cardinality. Even more importantly, de-
composition methods focus “only” on structural features, while
they completely disregard “quantitative” aspects of the query, that
may dramatically affect the query-evaluation time. For instance,
while answering a query, the computation of an arbitrary hypertree
decomposition (having minimum width) could not be satisfactory,
since it does not take into account important quantitative factors,
such as relation sizes, attribute selectivity, and so on. These fac-
tors are flattened in the query hypergraph (which considers only the
query structure), while their suitable exploitation can significantly
reduce the cost of query evaluation.

On the other hand, query optimizers of commercial DBMSs are
based solely on quantitative methods and do not care of structural
properties at all. Indeed, all the commercial DBMSs restrict the
search space of query plans to very simple structures (e.g., left-
deep trees), and then try to find the best plans among them, by es-
timating their evaluation costs, exploiting quantitative information
on the input database. It follows that, on some low-width queries
with a guaranteed polynomial-time evaluation upper-bound, they
may also take time O(n�), which is exponential in the length � of



the query, rather than on its width. On some relevant applications
with many atoms involved, this may lead to unacceptable costs. For
instance, consider the problem of the population and refreshing of
cubes in data warehouse initialization and management. Period-
ically, a number of batch queries are executed on the reconciled
operational database. Note that these queries are typically very
different from OLAP queries. Indeed, while the latter queries are
executed on star schemes (or similar simple schemes), these popu-
lating queries usually span several tables in the reconciled scheme
in order to update both dimension and fact tables. Thus, they are
very often long queries involving many join operations, plus selec-
tions, projections and, possibly, grouping and aggregate operators.
In this context, the choice of a good query-execution strategy is
therefore particularly relevant, because the differences among exe-
cution times can be several orders of magnitude large. In fact, very
often such queries are not very intricate and have low hypertree
width, though they are not necessarily acyclic.

To overcome the above mentioned drawbacks of both approaches,
we proposed an extension of hypertree decompositions, in order
to combine this structural decomposition method with quantita-
tive approaches [41]. In the second part of this paper, we re-
view the main results on this generalized notion of HYPERTREE,
where hypertree decompositions are equipped with polynomial-
time weight functions that may encode quantitative aspects of the
query database, or other additional requirements. In general, com-
puting a minimal weighted-decomposition is harder than comput-
ing a standard decomposition. However, we present a class of func-
tions, called tree aggregation functions (TAFs), which is useful for
query optimization and easy to deal with.

We describe how the notion of weighted hypertree decomposition
can be used for generating effective query plans for the evaluation
of conjunctive queries, by combining structural and quantitative in-
formation. We also briefly report some results of an ongoing ex-
perimental activity, showing that this hybrid approach may in fact
lead to significant computational savings.

2. QUERIES AND ACYCLIC HYPER-
GRAPHS

We will adopt the standard convention [1, 43] of identifying a rela-
tional database instance with a logical theory consisting of ground
facts. Thus, a tuple 〈a1, . . . ak〉, belonging to relation r, will be
identified with the ground atom r(a1, . . . , ak). The fact that a tu-
ple 〈a1, . . . , ak〉 belongs to relation r of a database instance DB is
thus simply denoted by r(a1, . . . , ak) ∈ DB.

A (rule-based) conjunctive query Q on a database schema DS =
{R1, . . . , Rm} consists of a rule of the form

Q : ans(u)← r1(u1) ∧ · · · ∧ rn(un),

where n ≥ 0; r1, . . . rn are relation names (not necessarily dis-
tinct) of DS; ans is a relation name not in DS; and u,u1, . . . ,un

are lists of terms (i.e., variables or constants) of appropriate length.
The set of variables occurring in Q is denoted by var(Q). The set
of atoms contained in the body of Q is referred to as atoms(Q).

The answer of Q on a database instance DB with associated uni-
verse U , consists of a relation ans, whose arity is equal to the
length of u, defined as follows. Relation ans contains all tuples
uθ such that θ : var(Q) −→ U is a substitution replacing each
variable in var(Q) by a value of U and such that for 1 ≤ i ≤ n,
ri(ui)θ ∈ DB. (For an atom A, Aθ denotes the atom obtained from

A by uniformly substituting θ(X) for each variable X occurring in
A.)

If Q is a conjunctive query, we define the hypergraph H(Q) =
(V, E) associated to Q as follows. The set of vertices V , denoted
by var(H(Q)), consists of all variables occurring in Q. The set
E, denoted by edges(H(Q)), contains for each atom ri(ui) in
the body of Q a hyperedge consisting of all variables occurring in
ui. Note that the cardinality of edges(H(Q)) can be smaller than
the cardinality of atoms(Q), because two query atoms having ex-
actly the same set of variables in their arguments give rise to only
one edge in edges(H(Q)). For example, the three query atoms
r(X, Y ), r(Y, X), and s(X, X, Y ) all correspond to a unique hy-
peredge {X, Y }.

A query Q is acyclic if and only if its hypergraph H(Q) is acyclic
or, equivalently, if it has has a join forest. A join forest for the
hypergraph H(Q) is a forest G whose set of vertices VG is the set
edges(H(Q)) and such that, for each pair of hyperedges h1 and h2

in VG having variables in common (i.e., such that h1 ∩ h2 
= ∅),
the following conditions hold:

1. h1 and h2 belong to the same connected component of G,
and

2. all variables common to h1 and h2 occur in every vertex on
the (unique) path in G from h1 to h2.

If G is a tree, then it is called a join tree for H(Q).

Intuitively, the efficient behavior of acyclic instances is due to the
fact that they can be evaluated by processing any of their join trees
bottom-up by performing upward semijoins, thus keeping the size
of the intermediate relations small (while it could become exponen-
tial, if regular join were performed).

Let us recall the highly desirable computational properties of
acyclic queries:

1. Acyclic instances can be efficiently solved. Yannakakis pro-
vided a (sequential) polynomial time algorithm for Boolean
acyclic queries3. Moreover, he showed that the answer of a
non-Boolean acyclic conjunctive query can be computed in
time polynomial in the combined size of the input instance
and of the output relation [48].

2. We have shown that answering queries is highly paralleliz-
able on acyclic queries, as this problem (actually, the deci-
sion problem of answering Boolean queries) is complete for
the low complexity class LOGCFL [18]. Efficient parallel
algorithms for Boolean and non-Boolean queries have been
proposed in [18] and [16]. They run on parallel database ma-
chines that exploit the inter-operation parallelism [44], i.e.,
machines that execute different relational operations in par-
allel. These algorithms can be also employed for solving
acyclic queries efficiently in a distributed environment.

3. Acyclicity is efficiently recognizable: deciding whether a hy-
pergraph is acyclic is feasible in linear time [42] and belongs
to the class L (deterministic logspace). The latter result is

3Note that, since both the database DB and the query Q are part of
an input-instance, what we are considering is the combined com-
plexity of the query [46].



new: it follows from the fact that hypergraph acyclicity be-
longs to SL [17], and from the very recent proof that SL is in
fact equal to L [34].

3. HYPERTREE DECOMPOSITIONS
We recall the formal definition and the most important results about
hypertree width and hypertree decompositions.

A hypertree for a hypergraph H is a triple 〈T, χ, λ〉, where T =
(N, E) is a rooted tree, and χ and λ are labeling functions which
associate to each vertex p ∈ N two sets χ(p) ⊆ var(H) and
λ(p) ⊆ edges(H). The width of a hypertree is the cardinality of
its largest λ label, i.e., maxp∈N |λ(p)|.

We denote the set of vertices of any rooted tree T by vertices(T ),
and its root by root(T ). Moreover, for any p ∈ vertices(T ), Tp

denotes the subtree of T rooted at p. If T ′ is a subtree of T , we
define χ(T ′) =

⋃
v∈vertices(T ′) χ(v).

Definition 3.1 [21]A generalized hypertree decomposition of a
hypergraphH is a hypertree HD = 〈T, χ, λ〉 forH which satisfies
the following conditions:

1. For each edge h ∈ edges(H), all of its variables occur to-
gether in some vertex of the decomposition tree, that is, there
exists p ∈ vertices(T ) such that h ⊆ χ(p) (we say that p
covers h).

2. Connectedness Condition: for each variable Y ∈ var(H),
the set {p ∈ vertices(T ) | Y ∈ χ(p)} induces a (con-
nected) subtree of T .

3. For each vertex p ∈ vertices(T ), variables in the χ labeling
should belong to edges in the λ labeling, that is, χ(p) ⊆
var(λ(p)).

A hypertree decomposition is a generalized hypertree decomposi-
tion that satisfies the following additional condition:

4. Special Descendant Condition: for each p ∈ vertices(T ),
var(λ(p)) ∩ χ(Tp) ⊆ χ(p).

The HYPERTREE width hw(H) (resp., generalized hypertree
width ghw(H)) of H is the minimum width over all its hypertree
decompositions (resp., generalized hypertree decompositions).

An edge h ∈ edges(H) is strongly covered in HD if there exists
p ∈ vertices(T ) such that var(h) ⊆ χ(p) and h ∈ λ(p). In this
case, we say that p strongly covers h. A decomposition HD of hy-
pergraphH is a complete decomposition ofH if every edge ofH is
strongly covered in HD. From any (generalized) hypertree decom-
position HD ofH, we can easily compute a complete (generalized)
hypertree decomposition ofH having the same width.

Note that the notions of hypertree width and generalized hypertree
width are true generalizations of acyclicity, as the acyclic hyper-
graphs are precisely those hypergraphs having hypertree width and
generalized hypertree width one. In particular, as we will see in
the next section, the classes of conjunctive queries having bounded
(generalized) hypertree width have the same desirable computa-
tional properties as acyclic queries [19].

At first glance, a generalized hypertree decomposition of a hyper-
graph may simply be viewed as a clustering of the hyperedges (i.e.,
query atoms) where the classical connectedness condition of join
trees holds. However, a generalized hypertree decomposition may
deviate in two ways from this principle: (1) A hyperedge already
used in some cluster may be reused in some other cluster; (2) Some
variables occurring in reused hyperedges are not required to fulfill
any condition.

For a better understanding of this notion, let us focus on the two
labels associated with each vertex p: the set of hyperedges λ(p),
and the set of effective variables χ(p), which are subject to the con-
nectedness condition (2). Note that all variables that appear in the
hyperedges of λ(p) but that are not included in χ(p) are “ineffec-
tive” for v and do not count w.r.t. the connectedness condition.
Thus, the χ labeling plays the crucial role of providing a join-tree
like re-arranging of all connections among variables. Besides the
connectedness condition, this re-arranging should fulfill the fun-
damental Condition 1: every hyperedge (i.e., query atom, in our
context) has to be properly considered in the decomposition, as for
graph edges in tree-decompositions and for hyperedges in join trees
(where this condition is actually even stronger, as hyperedges are
in a one-to-one correspondence with vertices of the tree). Since the
only relevant variables are those contained in the χ labels of ver-
tices in the decomposition tree, the λ labels are “just” in charge of
covering such relevant variables (Condition 3) with as few hyper-
edges as possible. Indeed, the width of the decomposition is deter-
mined by the largest λ label in the tree. This is the most important
novelty of this approach, and comes from the specific properties
of hypergraph-based problems, where hyperedges often play a pre-
dominant role. For instance, think of our database framework: the
cost of evaluating a natural join operation with k atoms (read: k hy-
peredges) is O(nk−1 log n), no matter of the number of variables
occurring in the query.

Example 3.2 Consider the following conjunctive query Q1:

ans ← a(S,X, X ′, C, F ) ∧ b(S, Y, Y ′, C′, F ′)
∧ c(C, C′, Z) ∧ d(X, Z) ∧
e(Y,Z) ∧ f(F, F ′, Z′) ∧ g(X ′, Z′) ∧
h(Y ′, Z′) ∧ j(J, X, Y, X ′, Y ′).

Let H1 be the hypergraph associated to Q1. Since H1 is cyclic,
hw(H1) > 1 holds. Figure 2 shows a (complete) hypertree de-
composition HD1 ofH1 having width 2, hence hw(H1) = 2.

In order to help the intuition, Figure 3 shows an alternative repre-
sentation of this decomposition, called atom (or hyperedge) repre-
sentation [19]: each node p in the tree is labeled by a set of atoms
representing λ(p); χ(p) is the set of all variables, distinct from ‘ ’,
appearing in these hyperedges. Thus, in this representation, pos-
sible occurrences of the anonymous variable ‘ ’ take the place of
variables in var(λ(p)) − χ(p).

Another example is depicted in Figure 1, which shows two hyper-
tree decompositions of query Q0 in Section 1. Both decomposi-
tions have width two and are complete decompositions of Q0. �

Let k be a fixed positive integer. We say that a CQ instance I has
k-bounded (generalized) hypertree width if (g)hw(H(I)) ≤ k. A
class of queries has bounded (generalized) hypertree width if there
is some k ≥ 1 such that all instances in the class have k-bounded
(generalized) hypertree width.



{X′, Y ′, F, F ′, Z′} {j, f}{X, Y, C, C′, Z} {j, c}

{X′, Z′} {g} {Y ′, Z′} {h}{X, Z} {d}

{X, X′, Y, Y ′, S, C, C′, F, F ′} {a,b}

{J, X, Y, X′, Y ′} {j}

{Y, Z} {e}

Figure 2: A 2-width hypertree decomposition of hypergraph
H1 in Example 3.2

a(S, X, X′, C, F ), b(S, Y, Y ′, C′, F ′)

j(J, X, Y, X′, Y ′)

e(Y, Z)

j( , X, Y, , ), c(C, C′, Z) j( , , , X′, Y ′), f(F, F ′, Z′)

d(X, Z) g(X′, Z′) h(Y ′, Z′)

Figure 3: Atom representation of the hypertree decomposition
in Figure 2

Clearly enough, choosing a tree and a clever combination of χ and
λ labeling for its vertices in order to get a decomposition below
a fixed threshold width k is not that easy, and is definitely more
difficult than computing a simple tree decomposition, where only
variables are associated with each vertex. In fact, the tractability
of generalized hypertree width is an interesting open problem, as
no polynomial time algorithm is known for deciding whether a hy-
pergraph has generalized hypertree width at most k, for any fixed
k ≥ 2.

It is thus very nice and somehow surprising that dealing with the
hypertree width is a very easy task. More precisely, for any fixed
k ≥ 1, deciding whether a given hypergraph has hypertree width
at most k is in LOGCFL, and thus it is a tractable and highly paral-
lelizable problem. Correspondingly, the search problem of comput-
ing a k-bounded hypertree decomposition belongs to the functional
version of LOGCFL, which is LLOGCFL [19]. See the Hypertree
Decomposition Homepage [40], for available implementations of
algorithms for computing hypertree decompositions, and further
links to heuristics and other papers on this subject.

Let us briefly discuss the only difference of hypertree decomposi-
tion with respect to generalized hypertree decomposition, that is,
the descendant condition (Condition 4 in Definition 3.1). Consider
a vertex p of a hypertree decomposition and a hyperedge h ∈ λ(p)
such that some variables X̄ ⊆ h occur in the χ labeling of some
vertices in the subtree Tp rooted at p. Then, according to this con-

dition, these variables must occur in χ(p), too. This means, intu-
itively, that we have to deal with variables in X̄ at this point of the
decomposition tree, if we want to put h in λ(p). For instance, as a
consequence of this condition, for the root r of any hypertree de-
composition we always have χ(r) = var(λ(r)). However, once
a hyperedge has been covered by some vertex of the decomposi-
tion tree, any subset of its variables can be used freely in order to
decompose the remaining cycles in the hypergraph.

To shed more light on this restriction, consider what happens in the
related hypergraph-based notions: in query decompositions [7], all
variables are relevant; at the opposite side, in generalized hypertree
decompositions, we can choose as relevant variables any subset of
variables occurring in λ, without any limitation; in hypertree de-
compositions, we can choose any subset of relevant variables as
long as the above descendant condition is satisfied. Therefore, the
notion of hypertree width is clearly more powerful than the (in-
tractable) notion of query width, but less general than the (proba-
bly intractable) notion of generalized hypertree width, which is the
most liberal notion.

For instance, look at Figure 3: the variables in the hyperedge cor-
responding to atom j inH1 are jointly included only in the root of
the decomposition, while we exploit two different subsets of this
hyperedge in the rest of the decomposition tree. Note that the de-
scendant condition is satisfied. Take the vertex at level 2, on the
left: the variables j, X′ and Y ′ are not in the χ label of this vertex
(they are replaced by the anonymous variable ‘ ’), but they do not
occur anymore in the subtree rooted at this vertex. On the other
hand, if we were forced to take all the variables occurring in every
atom in the decomposition tree, it would not be possible to find a
decomposition of width 2. Indeed, j is the only atom containing
both pairs X, Y and X′, Y ′, and it cannot be used again entirely,
for its variable J cannot occur below the vertex labeled by a and b,
otherwise it would violate the connectedness condition (i.e., Con-
dition 2 of Definition 3.1). In fact, every query decomposition of
this hypergraph has width 3, while the hypertree width is 2. In this
case the generalized hypertree width is 2, as well, but in general
it may be less than the hypertree width. However, after a recent
interesting result by Adler et al. [3], the difference of these two
notions of width is within a constant factor: for any hypergraphH,
ghw(H) ≤ hw(H) ≤ 3ghw(H) + 1. It follows that a class of
hypergraphs has bounded generalized hypertree width if and only
if it has bounded hypertree width, and thus the two notions identify
the same set of tractable classes.

Though the formal definition of hypertree width is rather involved,
it is worthwhile noting that this notion has very natural characteri-
zations in terms of games and logics [21]:

• The robber and marshals game (R&Ms game). It is
played by one robber and a number of marshals on a hyper-
graph. The robber moves on variables, while marshals move
on hyperedges. At each step, any marshal controls an entire
hyperedge. During a move of the marshals from the set of
hyperedges E to to the set of hyperedges E′, the robber can-
not pass through the vertices in B = (∪E) ∩ (∪E′), where,
for a set of hyperedges F , ∪F denotes the union of all hy-
peredges in F . Intuitively, the vertices in B are those not
released by the marshals during the move. As in the mono-
tonic robber and cops game defined for treewidth [38], it is
required that the marshals capture the robber by monotoni-
cally shrinking the moving space of the robber. The game is



won by the marshals if they corner the robber somewhere in
the hypergraph. A hypergraph H has k-bounded hypertree
width if and only if k marshals win the R&Ms game onH.

• Logical characterization of hypertree width. Let L de-
note the existential conjunctive fragment of positive first or-
der logic (FO). Then, the class of queries having k-bounded
hypertree width is equivalent to the k-guarded fragment of
L, denoted by GFk(L). Roughly, we say that a formula Φ
belongs to GFk(L) if, for any subformula φ of Φ, there is a
conjunction of up to k atoms jointly acting as a guard, that
is, covering the free variables of φ. Note that this notion
is related to the loosely guarded fragment as defined (in the
context of full FO) by Van Benthem [45], where an arbitrary
number of atoms may jointly act as guards (see also [23]).

3.1 Query Decompositions and Query Plans
In this section we describe the basic idea to exploit (generalized)
hypertree decompositions for answering conjunctive queries.

Let k ≥ 1 be a fixed constant, Q a conjunctive query over a
database DB, and HD = 〈T, χ, λ〉 a generalized hypertree de-
composition of Q of width w ≤ k. Then, we can answer Q in two
steps:

1. For each vertex p ∈ vertices(T ), compute the join opera-
tions among relations occurring together in λ(p), and project
onto the variables in χ(p). At the end of this phase, the con-
junction of these intermediate results forms an acyclic con-
junctive query, say Q′, equivalent to Q. Moreover, the de-
composition tree T represents a join tree of Q′.

2. Answer Q′, and hence Q, by using any algorithm for acyclic
queries, e.g. Yannakakis’s algorithm.

For instance, Figure 4 shows the tree JT1 obtained after Step 1
above, from the query Q1 in Example 3.2 and the generalized hy-
pertree decomposition in Figure 3. E.g. observe how the vertex
labeled by atom p3 is built. It comes from the join of atoms j and
c (occurring in its corresponding vertex in Figure 3), and from the
subsequent projection onto the variables X, Y, C, C′, and Z (be-
longing to the χ label of that vertex). By construction, JT1 satisfies
the connectedness condition. Therefore, the conjunction of atoms
labeling this tree is an acyclic query, say Q′

1, such that JT1 is one
of its join trees. Moreover, it is easy to see that Q′

1 has the same
answer as Q1 [19].

Step 1 is feasible in O(m|rmax|w−1 log |rmax|) time, where m
is the number of vertices of T , and rmax is the relation of DB
having the largest size. In fact, for Boolean queries, Yannakakis’s
algorithm in Step 2 does not take more time than Step 1, and thus
its cost is an upper bound for the entire query evaluation process.
For non-Boolean queries, Yannakakis’s algorithm works in time
polynomial in the combined size of the input and of the output, and
thus we should add to the above cost a term that depends on the
answer of the given query (which may be exponential w.r.t. the
input size). For instance, if we consider query Q1, the above upper
bound is O(7|rmax| log |rmax|), whereas typical query answering
algorithms (which do not exploit structural properties) would take
O(|rmax|7 log |rmax|) time, in the worst case.

It has been observed that, according to Definition 3.1, a hyper-
graph may have some (usually) undesirable hypertree decompo-

p2(X, X′, Y, Y ′, S, C, C′, F, F ′)

p1(J, X, Y, X′, Y ′)

p6(Y, Z)

p3(X, Y, C, C′, Z) p4(X′, Y ′, F, F ′, Z′)

p5(X, Z) p7(X′, Z′) p8(Y ′, Z′)

Figure 4: Join tree JT1 computed for query Q′
1

sitions [19], possibly with a large number m of vertices in the de-
composition tree. For instance, a decomposition may contain two
vertices with exactly the same labels. Therefore, a normal form
for hypertree decompositions has been defined in [19], and then
strengthened in [41], in order to avoid such kind of redundancies.
Hypertree decompositions in normal form having width at most k
may be computed in time polynomial in the size of the given hy-
pergraph H (but exponential in the parameter k). The number m
of vertices cannot exceed the number of variables inH, and is typ-
ically much smaller. Moreover, H has a hypertree decomposition
of width w if and only if it has a normal-form hypertree decompo-
sition of the same width w.

It follows that, for any fixed k ≥ 1, the class of all queries hav-
ing k-bounded hypertree width may be answered in polynomial
time (actually, in input-output polynomial time, for non-Boolean
queries). Indeed, given a query Q, both computing a hypertree de-
composition HD of width at most k of H(Q), and then answering
Q exploiting HD are polynomial-time tasks.

As far as generalized hypertree decompositions are concerned, we
currently miss a polynomial-time algorithm for recognizing queries
having k-bounded generalized hypertree-width. However, there is a
great deal of interest in these decompositions, and some first results
are coming. For instance, some very good heuristics for computing
generalized hypertree decompositions are described in [29, 32].

4. WEIGHTED HYPERTREE DECOMPO-
SITIONS

As described in the previous section, given a query Q on a database
DB and a small-width decomposition HD for Q, we know that
there is a polynomial time upper bound for answering Q, while in
general this problem is NP-hard and all the available algorithms
requires exponential time, in the worst case. However, HD is
not just a theoretical indication of tractability for Q. Rather, the
above two steps for evaluating Q actually represent a query plan
for it, though not completely specified. For instance, no actual
join method (merge, nested-loop, etc.) is chosen, but this final
more physical phase can be easily implemented using well-known
database techniques. We remark that such optimizations are exe-
cuted just on relations belonging to the same vertex, and hence on
w relations at most, if w is the width of HD. Thus, also optimal
methods based on dynamic programming or sophisticated heuris-
tics can be employed, as the size of the problem is small.



The remaining interesting problem is before this evaluation phase,
where we have to compute a decomposition for H(Q). Indeed,
in general there is an exponential number of hypertree decompo-
sitions of a hypergraph. Every decomposition encodes a way of
aggregating groups of atoms and arranging them in a tree-like fash-
ion. As far as the polynomial-time upper bound is concerned, we
may be happy with any minimum-width decomposition. However,
in practical real-world applications we have to exploit all available
information. In particular, for database queries, we cannot get rid
of information on the database DB. Indeed, looking only at the
query structure is not the best we can do, if we may additionally
exploit the knowledge of relation sizes, attribute selectivity, and so
on.

4.1 Minimal Decompositions
In this section, we thus consider hypertree decompositions with an
associated weight, which encodes our preferences, and allows us to
take into account further requirements, besides the width. We will
see how to answer queries more efficiently, by looking for their best
decompositions.

Formally, given a hypergraph H, a hypertree weighting function
(short: HWF) ωH is any polynomial-time function that maps each
generalized hypertree decomposition HD = 〈T, χ, λ〉 of H to a
real number, called the weight of HD.

For instance, a very simple HWF is the function ωw
H(HD) =

maxp∈vertices(T ) |λ(p)|, that weights a decomposition HD just on
the basis of its worse vertex, that is the vertex with the largest λ la-
bel, which also determines the width of the decomposition.

In many applications, finding such a decomposition having the min-
imum width is not the best we can do. We can think of minimiz-
ing the number of vertices having the largest width w and, for de-
compositions having the same numbers of such vertices, minimiz-
ing the number of vertices having width w − 1, and continuing
so on, in a lexicographical way. To this end, we can define the
HWF ωlex

H (HD) =
∑w

i=1 |{p ∈ N such that |λ(p)| = i}| ×Bi−1,
where N = vertices(T ), B = |edges(H)| + 1, and w is the
width of HD. Note that any output of this function can be repre-
sented in a compact way as a radix B number of length w, which
is clearly bounded by the number of edges in H. Consider again
the query Q0 of the Introduction, and the hypertree decomposi-
tion, say HD′, of H(Q0) shown in Figure 1, on the right. It is
easy to see that HD′ is not the best decomposition w.r.t. ωlex

H
and the class of hypertree decompositions in normal form. In-
deed, ωlex

H (HD′) = 4 × 90 + 3 × 91, and thus the decomposi-
tion HD′′ shown on the bottom of Figure 1 is better than HD′, as
ωlex
H (HD′′) = 6× 90 + 1× 91.

Let k > 0 be a fixed integer and H a hypergraph. We define the
class kHDH (resp., kNFDH) as the set of all hypertree decompo-
sitions (resp., normal-form hypertree decompositions) ofH having
width at most k.

Definition 4.1 [41]Let H be a hypergraph, ωH a weighting func-
tion, and CH a class of generalized hypertree decompositions ofH.
Then, a decomposition HD ∈ CH is minimal w.r.t. ωH and CH, de-
noted by [ωH, CH]-minimal, if there is no HD′ ∈ CH such that
ωH(HD′) < ωH(HD). �

For instance, the [ωw
H, kHDH]-minimal decompositions are ex-

actly the k-bounded hypertree decompositions having the mini-
mum possible width, while the [ωlex

H , kHDH]-minimal hypertree
decompositions are a subset of them, corresponding to the lexico-
graphically minimal decompositions described above.

It is not difficult to show that, for general weighting functions, the
computation of minimal decompositions is a difficult problem even
if we consider just bounded hypertree decompositions [41]. We
thus restrict our attention to simpler HWFs.

Let 〈R+,⊕, min,⊥, +∞〉 be a semiring, that is, ⊕ is a commu-
tative, associative, and closed binary operator, ⊥ is the neuter ele-
ment for ⊕ (e.g., 0 for +, 1 for ×, etc.) and the absorbing element
for min, and min distributes over ⊕.4 Given a function g and a
set of elements S = {p1, ..., pn}, we denote by

⊕
pi∈S g(pi) the

value g(p1)⊕ . . .⊕ g(pn).

Definition 4.2 [41]Let H be a hypergraph. Then, a tree aggrega-
tion function (short: TAF) is any hypertree weighting function of
the form

F⊕,v,e
H (HD) =

⊕

p∈N

(
vH(p) ⊕

⊕

(p,p′)∈E

eH(p, p′)
)
,

associating an R
+ value to the hypertree decomposition HD =

〈(N, E), χ, λ〉, where vH : N �→ R
+ and eH : N × N �→ R

+

are two polynomial functions evaluating vertices and edges of hy-
pertrees, respectively. �

We next focus on a tree aggregation function that is useful for query
optimization. We refer the interested reader to [41] for further ex-
amples and applications.

Given a query Q over a database DB, let HD = 〈T, χ, λ〉 be a
hypertree decomposition in normal form for H(Q). For any ver-
tex p of T , let E(p) denote the relational expression E(p) =
�h∈λ(p)

∏
χ(p) rel(h), i.e., the join of all relations in DB cor-

responding to hyperedges in λ(p), suitably projected onto the vari-
ables in χ(p). Given also an incoming node p′ of p in the decom-
position HD, we define v∗

H(Q)(p) and e∗H(Q)(p, p′) as follows:

• v∗
H(Q)(p) is the estimate of the cost of evaluating the expres-

sion E(p), and

• e∗H(Q)(p, p′) is the estimate of the cost of evaluating the
semi-join E(p) � E(p′).

Let costH(Q) be the TAF F+,v∗,e∗
H(Q) (HD), determined by the above

functions. Intuitively, costH(Q) weights the hypertree decomposi-
tions of the query hypergraph H(Q) in such a way that minimal
hypertree decompositions correspond to “optimal” query evalua-
tion plans for Q over DB. Note that any method for computing the
estimates for the evaluation of relational algebra operations from
the quantitative information on DB (relations sizes, attributes se-
lectivity, and so on) may be employed for v∗ and e∗. For instance,
in our experiments described in the next section, we employ the
standard techniques described in [12, 13].

4For the sake of presentation, we refer to min and hence to min-
imal hypertree decompositions. However, it is easy to see that all
the results presented in this paper can be generalized easily to any
semiring, possibly changing min, R

+, and +∞.



Clearly, all these powerful weighting functions would be of lim-
ited practical applicability, without a polynomial time algorithm for
the computation of minimal decompositions. Surprisingly, it turns
out that, unlike the traditional (non-weighted) framework, work-
ing with normal-form hypertree decompositions, rather than with
any kind of bounded-width hypertree decomposition, does mat-
ter. Indeed, computing such minimal hypertree decompositions
with respect to any tree aggregation function is a tractable prob-
lem, while it has been proved that the problem is still NP-hard
if the whole class of bounded-width hypertree decomposition is
considered. A polynomial time algorithm for this problem, called
minimal-k-decomp, is presented in [41].

4.2 Some Experiments
We implemented the algorithm cost-k-decomp, which com-
putes a minimal decomposition with respect to the weighting func-
tion costH(Q) and the class of k-bounded normal-form hypertree
decompositions. In this section, we report some results of an ongo-
ing experimental activity on the application of cost-k-decomp
to database query evaluation. A more detailed description and fur-
ther experiments can be found in the full version of [41], currently
available at the hypertree decomposition homepage [40]. Our aim
here is just to show that Algorithm cost-k-decomp may signif-
icantly speed-up the evaluation of database queries having struc-
tural properties to be exploited. All benchmark queries are exe-
cuted on the commercial DBMS Oracle 8.i by using either Ora-
cle standard query execution method, or the following technique,
based on minimal decompositions: the query plans are generated
by the algorithm cost-k-decomp (with k ranging over (2..5)),
by exploiting the information of the data available from Oracle;
the plan execution is then enforced in the DBMS by supplying a
suitable translation in terms of views and hints (NO MERGE, OR-
DERED) to Oracle 8.i, which eventually executes the query by its
engine, following the desired plan. In both methods, we do not
allow indices on database relations, in order to focus just on the
less-physical aspects of the optimization task.

We tested the methods with different kinds of queries by varying
the hypertree width, the number of query atoms, and the num-
ber of variables. Here, we report only the experiments on a set
of test queries: we consider again query Q1 described in Exam-
ple 3.2, as well as two modifications Q2 and Q3, such that Q2

consists of 8 atoms and 9 distinct variables, and query Q3 is made
of 9 atoms, 12 distinct variables, and 4 output variables. All these
queries have width 2. They are evaluated over synthetic data: For
each query atom p, we first fix the size rp of the corresponding re-
lation, and we then exploit a random generator that materializes rp

data tuples, by choosing attribute values uniformly at random from
a fixed set of possible values. All the experiments were performed
on 1600MHz/256MB Pentium IV machine running Windows XP
Professional. Time measurements for query evaluation in Oracle
8.i have been done by using the SQL Scratchpad utility. We con-
sidered different values for the parameter k. It is worthwhile noting
that a higher value of k permits to consider a larger number of hy-
pertree decompositions, and can therefore allow to generate a bet-
ter plan; but it obviously causes a computational overhead due to a
larger search space to be explored by cost-k-decomp. For the
experiments reported in this paper, we chose k = 3, which seems
empirically a good bound to be used in practice for queries with
less than 10 atoms. Figure 5 shows the absolute execution times
for Oracle and cost-k-decomp over a database of 1500 tuples.
It can be observed that, on all considered queries, the evaluation
of the query plans generated by our approach is significantly faster

than the evaluation which exploits the internal query optimization
module of Oracle 8.i.

Figure 5: Evaluation time for test queries Q1, Q2, and Q3.

5. CONCLUSION
We described the notion of hypertree width and some of its exten-
sions, and we showed how they can be exploited for identifying and
solving efficiently tractable classes of database queries.

Our ongoing work includes an integration of the optimization tech-
nique based on minimal decompositions with the query optimizer
of the open source DBMS PostgreSQL, as well as a thorough ex-
perimentation activity with real queries and databases, loaded with
non-random data.

Many interesting questions about structural decompositions are still
open and deserve further research. For instance, we do not know
if having bounded hypertree width is a necessary condition for a
class of queries to be tractable. Moreover, for many real world
applications with hundreds of hyperedges, we need good heuris-
tics for computing generalized hypertree decompositions. We refer
the interested reader to [22] for a recent graph-theoretic survey on
hypertree decompositions, with further results and details on these
related issues.
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