
Reasoning on Regular Path Queries

D. Calvanese, G. De Giacomo, M. Lenzerini
Dip. di Informatica e Sistemistica
Università di Roma “La Sapienza”

Via Salaria 113, I-00198 Roma, Italy
lastname@dis.uniroma1.it

M. Y. Vardi
Dept. of Computer Science

Rice University, P.O. Box 1892
Houston, TX 77251-1892, U.S.A.

vardi@cs.rice.edu

Abstract

Current information systems are required to deal with more
complex data with respect to traditional relational data. The
database community has already proposed abstractions for
these kinds of data, in particular in terms of semistructured
data models. A semistructured model conceives a database
essentially as a finite directed labeled graph whose nodes rep-
resent objects, and whose edges represent relationships be-
tween objects. In the same way as conjunctive queries form
the core of any query language for the relational model, regu-
lar path queries (RPQs) and their variants are considered the
basic querying mechanisms for semistructured data.

Besides the basic task of query answering, i.e., evaluating a
query over a database, databases should support other reason-
ing services related to querying. One of the most important
is query containment, i.e., verifying whether for all databases
the answer to a query is a subset of the answer to a second
query. Another important reasoning service that has received
considerable attention in the recent years is view-based query
processing, which amounts to processing queries based on a
set of materialized views, rather than on the raw data in the
database.

The goal of this paper is to describe basic results and tech-
niques concerning query containment and view based query
processing for the class of two-way regular-path queries
(which extend RPQs with the inverse operator). We will
demonstrate that the basic services for reasoning about two-
way regular path queries are decidable, thus showing that the
limited form of recursion expressible by these queries does
not endanger the decidability of reasoning. Besides the spe-
cific results, our methods show the power of two-way au-
tomata in reasoning on complex queries.

Database Principles Column. Column editor: Leonid Libkin, De-
partment of Computer Science, University of Toronto, Toronto, Ontario
M5S 3H5, Canada. E-mail: libkin@cs.toronto.edu.

1 Introduction

Nowadays, information systems are required to deal with
more complex data with respect to traditional relational data.
For example, data on the web, or biological data are better de-
scribed by resorting to more flexible structuring mechanisms
than those provided by relational systems. The database com-
munity has already proposed abstractions for these kinds of
data, in particular in terms of semistructured data models. A
semistructured model conceives a database essentially as a
finite directed labeled graph whose nodes represent objects,
and whose edges represent relationships between objects [1].

In the same way as conjunctive queries [18] (CQs) form the
core of any query language for the relational model, regular
path queries (RPQs) are considered the basic querying mech-
anisms for semistructured data [7, 3, 1]. Query languages for
this data model must indeed be equipped with flexible mech-
anisms for navigating the graph representing the database.
This includes the ability to follow a sequence of edges of the
graph whose length is not specified a priori, something which
is directly provided by RPQs via a limited form of recursion
in the form of reflexive-transitive closure. Plain RPQs allow
for navigating the edges of a semistructured databases only
in the forward direction. However, it is obviously of inter-
est to be able to navigate edges in both forward and back-
ward directions, as, e.g., supported by the predecessor axis
of XPath [20, 6]. RPQs extended with the ability of navigat-
ing database edges backward are called two-way regular-path
queries (2RPQs) [11].

Besides the basic task of query answering, i.e., evaluat-
ing a query over a database, databases should support other
reasoning services related to querying. One of the most
important is query containment (which generalizes query
equivalence), i.e., verifying whether for all databases the
answer to a query is a subset of (resp., equal to) the an-
swer to a second query. Checking containment of queries
is crucial in several contexts, such as query optimization,
query reformulation, knowledge-base verification, informa-
tion integration, integrity checking, and cooperative answer-
ing [27, 35, 19, 4, 38, 34, 8, 23]. In [18] it is shown that CQ
containment is equivalent to CQ evaluation (NP-complete).

(For some extensions, see [5, 39, 31, 43].) On the other hand,
it is shown in [41] that containment of Datalog queries is un-
decidable. Note that Datalog may be seen as the language ob-
tained by adding recursion (and union) to conjunctive queries.

View-based query processing is another form of reason-
ing that has recently drawn a great deal of attention in the
database community [28, 29]. In several contexts, such as
data integration, query optimization, query answering with
incomplete information, and data warehousing, the problem
arises of processing queries posed over the schema of a vir-
tual database, based on a set of materialized views, rather
than on the raw data in the database [42, 2, 32]. For exam-
ple, an information integration system exports a global virtual
schema over which user queries are posed, and such queries
are answered based on the data stored in a collection of data
sources, whose content in turn is described in terms of views
over the global schema. In such a setting, each data source
corresponds to a materialized view, and the global schema
exported to the user corresponds to the schema of the virtual
database. Notice that typically, in data integration, the data
in the sources are correct (i.e., sound) but incomplete with
respect to their specification in terms of the global schema.
This is due the fact that typically the global schema is not
designed taking the sources into account, but rather the in-
formation needs of users. Hence it may not be possible to
precisely describe the information content of the sources. In
this paper we will concentrate on this case (sound views)1.

There are two approaches to view-based query processing,
called view-based query rewriting and view-based query an-
swering, respectively. In the former approach, we are given a
query and a set of view definitions, and the goal is to refor-
mulate the query into an expression of a fixed language that
refers only to the views and provides the answer to the query.
The crucial point is that the language in which we want the
rewriting is fixed, and in general coincides with the language
used for expressing the original query. In view-based query
answering, besides the query and the view definitions, we are
also given the extensions of the views. The goal is to com-
pute the set of tuples that are answers to the query in all the
databases that are consistent with the views.

While query containment and view-based query process-
ing have been extensively studied in the relational model in
the last decades, results on these problems in the context of
semistructured data are more recent and less known. The goal
of this paper is to describe basic results and techniques con-
cerning query containment and view based query processing
for the class of two-way regular-path queries. We will demon-
strate that the basic services for reasoning about two-way reg-
ular path queries are decidable, thus showing that the limited
form of recursion expressible by these queries does not en-
danger the decidability of reasoning.

The paper is organized as follows. Section 2 provides the

1This corresponds to adopting the so-called “open world assumption” for
the views.

formal definitions of all the notions used in the paper. Sec-
tion 3 illustrates the results on query containment. Sections 4
and 5 present the results for view-based query answering,
and view-based query rewriting, respectively. Section 6 con-
cludes the paper.

2 Framework

Following the usual approach in semistructured data [1], we
define a semistructured database as a finite directed graph
whose edges are labeled by elements from a given finite al-
phabet Σ. Each node represents an objects and an edge from
object x to object y labeled by r, denoted r(x, y), represents
the fact that relation r holds between x and y. Observe that
a semistructured database can be seen as a (finite) relational
structure over the set Σ of binary relational symbols. A re-
lational structure (or simply structure) B over Σ is a pair
(∆B, ·B), where ∆B is a finite domain and ·B is a function
that assigns to each relation symbol in r ∈ Σ a binary rela-
tion rB over ∆B, also denoted by r(B).

A regular-path query (RPQ) over Σ is expressed as a regu-
lar expression or a finite-state automaton over Σ. The answer
Q(B) to an RPQ Q over a database B is the set of pairs of ob-
jects connected in B by a directed path traversing a sequence
of edges forming a word in the regular language L(Q) defined
by Q.

RPQs allow for navigating the edges of a semistructured
databases only in the forward direction. RPQs extended with
the ability of navigating database edges backward are called
two-way regular-path queries (2RPQs) [11].

Formally, we consider an alphabet Σ± = Σ∪{r− | r ∈ Σ}
which includes a new symbol r− for each relation symbol r

in Σ. The symbol r− denotes the inverse of the binary rela-
tion r. If p ∈ Σ±, then we use p− to mean the inverse of p,
i.e., if p is r, then p− is r−, and if p is r−, then p− is r. A
2RPQ over Σ is expressed as a regular expression or a finite-
state automaton over Σ±. The answer Q(B) to a 2RPQ Q

over a database B is the set of pairs of objects connected
in B by a semipath that conforms to the regular language
L(Q). A semipath in B from x to y (labeled with p1 · · · pn) is
a sequence of the form (y0, p1, y1, . . . , yn−1, pn, yn), where
n ≥ 0, y0 = x, yn = y, and for each yi−1, pi, yi, we have
that pi ∈ Σ±, and, if pi = r then (yi−1, yi) ∈ r(B), and
if pi = r− then (yi, yi−1) ∈ r(B). Intuitively, a semi-
path (y0, p1, y1, . . . , yn−1, pn, yn) corresponds to a naviga-
tion of the database from y0 to yn, following edges forward or
backward, according to the sequence of edge labels p1 · · · pn.
Note that the objects in a semipath are not necessarily dis-
tinct. A semipath is said to be simple if no object in it appears
more than once. We say that a semipath (y0, p1, . . . , pn, yn)
conforms to a 2RPQ Q if p1 · · · pn ∈ L(Q). Summing up, a
pair (x, y) of objects is in the answer Q(B) if and only if, by
starting from x, it is possible to reach y by navigating on B

according to one of the words in L(Q).
Besides the basic task of query answering, i.e., evaluat-

ing a query over a database, databases should support other
reasoning services related to querying. One of the most im-
portant is query containment, i.e., verifying whether for all
databases the answer to a query is a subset of (resp., equal
to) the answer to a second query. Formally, given two queries
Q1 and Q2 over Σ, we say that Q1 is contained in Q2, de-
noted Q1 v Q2, if for every database B over Σ, we have that
Q1(B) ⊆ Q2(B).

Consider now a semistructured database that is acces-
sible only through a collection of views expressed as
RPQs/2RPQs, and suppose we need to answer a RPQ/2RPQ
over the database only on the basis of our knowledge on the
views. Specifically, the collection of views is represented by
a finite set V of view symbols, each denoting a binary rela-
tion. Each view symbol V ∈ V has an associated view def-
inition V Σ, which is an RPQ/2RPQ over Σ. A V-extension
E is a relational structure over V . We consider views to be
sound [2, 25], i.e., we model a situation where the extension
of the views provides a subset of the results of applying the
view definitions to the database. Given a set V of views and a
database B, we use VΣ(B) to denote the V-extension E such
that V (E) = V Σ(B), for each V ∈ V . We say that a V-
extension E is sound wrt a database B if E ⊆ VΣ(B). In
other words, for a view V ∈ V , all the tuples in V (E) must
appear in V Σ(B), but V Σ(B) may contain tuples not in V (E).

Given a set V of views, a V-extension E , and a query Q

over Σ, the set of certain answers (under sound views) to Q

with respect to V and E is the set of pairs (x, y) of objects
such that (x, y) ∈ Q(B) for every database B wrt which E is
sound, i.e., E ⊆ VΣ(B). View-based query answering (under
sound views) consists in deciding whether a given pair of ob-
jects is a certain answer to Q with respect to V and E . Given
a set V of views and a query Q, we denote by certQ,V the
query that, for every V-extension E , returns the set of certain
answers under sound views to Q with respect to V and E .

View-based query answering has also been tackled using
an indirect approach, based on view-based query rewriting.
According to such an approach, a query Q over the database
alphabet is processed by first reformulating Q into an ex-
pression of a fixed query language over the view alphabet
V (called rewriting), and then evaluating such an expression
over the view extensions. The relationship between view-
based query answering and view-based query rewriting is in-
vestigated in [29, 12, 13, 32].

Note that, in our setting, views are sound, and this property
must be taken into account in the reformulation step of the
rewriting process. However, most papers on rewriting queries
using views are based, either implicitly or explicitly, on the
exact view assumption, which states that the extension of a
view provides exactly the result of applying the view defini-
tion to the database. It follows that we need to provide an
adequate definition of rewriting in a setting where views are

sound: let Q be a query over the database alphabet, and let
Qr be a query over the view alphabet V . We say that Qr is
a rewriting of Q under sound views V , if for every database
B and for every V-extension E with E ⊆ V(B), we have that
Qr(E) ⊆ Q(B).

Obviously, in view-based query rewriting, we are not inter-
ested in arbitrary rewritings, but we aim at computing rewrit-
ings that capture the original query at best. The problem of
view-based query rewriting can in general be defined as fol-
lows: given a query Q and a set of views V , find the set of
rewritings of Q under sound views V that are maximal in a
given class C of queries. A query Qr in C is a rewriting of Q

under sound views V that is maximal in C if:

1. Qr is a rewriting of Q under sound views V , and

2. there is no query Q′
r in C that is a rewriting of Q under

sound views V and such that, for every database B and
for every V-extension E with E ⊆ V(B), we have that
Qr(E) ⊆ Q′

r(E).

Since in this paper we are focusing on 2RPQs, we restrict
our attention to the case where also rewritings are 2RPQs over
the view alphabet V , i.e., rewritings are expressed in the same
language as queries over the database. For 2RPQs, we have
that if Q′

r and Q′′
r are rewritings of Q under sound views V

that are maximal in the class of 2RPQs, then Q′
r + Q′′

r is
still a maximal rewriting in the class of 2RPQs. It follows
that Q′

r and Q′′
r are equivalent, i.e., for every database B, and

for every V-extension E such that E ⊆ V(B), both Q′
r(E) ⊆

Q′′
r (E), and Q′′

r (E) ⊆ Q′
r(E). Hence, all 2RPQ maximal

rewritings for a 2RPQ Q coincide modulo equivalence, and
we can refine the definition of maximal rewriting as follows.
A 2RPQ Qr over the alphabet V is a maximal rewriting of Q

under sound views V if:

1. Qr is a rewriting of Q under sound views V , and

2. for every 2RPQ Q′
r that is a rewriting of Q under sound

views V , we have that, for every database B, and for
every V-extension E with E ⊆ V(B), we have that
Q′

r(E) ⊆ Qr(E).

3 Query Containment

To illustrate our approach to query containment, we first con-
sider RPQs, where we do not allow inverse symbols. We char-
acterize query containment via a fundamental lemma.

Lemma 1 (Language-Theoretic Lemma 1): Let Q1, Q2 be
RPQs. Then Q1 v Q2 iff L(Q1) ⊆ L(Q2).

Proof. Suppose first that Q1 v Q2. Let w = w1 · · ·wk ∈
L(Q1). Consider a database B of the form:

x· w1 · · · wk ·y.

That is, B consists of a path from x to y labeled with w.
Clearly (x, y) ∈ Q1(B), so (x, y) ∈ Q2(B). It follows that
w ∈ L(Q2)).

Conversely, suppose that L(Q1) ⊆ L(Q2). Let (x, y) ∈
L(Q1). Then there is a path (y0, p1, y1, . . . , yn−1, pn, yn) in
B, where y0 = x, yn = y, and p1 · · · pn ∈ L(Q1). But then
also p1 · · · pn ∈ L(Q2), and (x, y) ∈ Q2(B).

Since containment of regular expressions is known to be
PSPACE-complete [36], it follows from Language-Theoretic
Lemma 1 that containment of RPQs is PSPACE-complete.
Before we try to extend this result to 2RPQs, it is instructive
to recall the proof of the upper bound. The key is the obser-
vation that L(E1) ⊆ L(E2) iff L(E1) − L(E2) = ∅. The
algorithm for checking whether L(E1) ⊆ L(E2) proceeds
as follows, using classical automata-theoretic constructions
[30]:

1. Construct nondeterministic finite-state automata
(1NFAs) A1, A2 such that L(Ai) = L(Ei). This step
involves a linear blow-up.

2. Construct a 1NFA A2 such that L(A2) = Σ∗ − L(A2).
This step involves an exponential blow-up, as comple-
mentation requires an application of the subset construc-
tion.

3. Construct a 1NFA A = A1 × A2 such that L(A) =
L(E1)− L(E2). This requires taking the product of A1

and A2, involving a quadratic blow-up.

4. Check if there is a path from start state to final state in
A. This requires nondeterministic logarithmic space in
the size of A.

A naive application of steps (3–4) would requires
exponential-space. Instead, we construct A on the fly,
constructing states only as we search for a path from a
start state to a final state in A. This can be done in poly-
nomial space, establishing the upper bound (formally, we
need to appeal to Savitch’s Theorem [40] to eliminate the
nondeterminism in step (4).)

Extending this result to 2RPQs encounters two difficul-
ties. The first difficulty is that an automata-theoretic approach
would most likely involve two-way automata, due to the pres-
ence of inverse letters, but extending the result of [36] to two-
way automata is not straightforward. While it is known that
two-way automata can be reduced to one-way automata, that
reduction has an exponential cost [30], making a naive ap-
proach to containment exponentially harder. An even more
fundamental difficulty is that Language-Theoretic Lemma 1
fails for 2RPQs.

Consider the 2RPQs Q1 = p, and Q2 = pp−p. It is easy
to see that Q1 v Q2, as every semipath (x, p, y), which es-
tablishes that (x, y) ∈ Q1(B), corresponds to the semipath
(x, p, y, p−, x, p, y), establishing that (x, y) ∈ Q2(B). At the

same time, we clearly do not have L(Q1) ⊆ L(Q2), since
p 6∈ L(Q2). Our first step in studying query containment
for 2RPQs is revising the language-theoretic characterization,
which requires the notion of folding. Let u, v ∈ Σ±. We say
that v folds onto u, v ; u, if v can be “folded” on u, e.g.,
abb−bc ; abc. Formally, we say that v = v1 · · · vm folds
onto u = u1 · · ·un if there is a sequence i0, . . . , im of posi-
tive integers between 0 and |u| such that

• i0 = 0 and im = n, and

• for 0 ≤ j < m, either ij+1 = ij + 1 and vj+1 = uij+1,
or ij+1 = ij − 1 and vj+1 = u−

ij+1
.

(In particular, v0 = u0 and vm = un.) For example, the
sequence demonstrating that abb−bc ; abc is 0, 1, 2, 1, 2, 3.

Pictorially,
a
→ ·

b
→ ·

b
← ·

b
→ ·

c
→;

a
→ ·

b
→ ·

c
→. Let L be

a language Σ±. We define fold(L) = {u : v ; u, v ∈ L}.
We can now offer a language-theoretic characterization for
containment of 2RPQs.

Lemma 2 (Language-Theoretic Lemma 2) Let Q1 and Q2

be 2RPQs. Then Q1 v Q2 iff L(Q1) ⊆ fold(L(Q2)).

Proof. Suppose first that Q1 v Q2 . Let u = u1 · · ·un ∈
L(Q1). Consider a database B of the form:

x· u1 · · · un ·y.

That is, B consists of a path from x to y labeled with
u. Clearly (x, y) ∈ Q1(B), so (x, y) ∈ Q2(B). It
follows that that there is a semipath in B of the form
(y0, v1, y1, . . . , ym−1, vm, ym), where y0 = x, ym = y, and
v = v1 · · · vm ∈ L(Q2). It can be shown that v folds onto u.
Thus, u ∈ fold(L(Q2)).

Conversely, suppose that L(Q1) ⊆ fold(L(Q2)). If
(x, y) ∈ Q1(B), then there is a semipath in B of the form
(y0, u1, y1, . . . , ym−1, um, ym), where y0 = x, ym = y, and
u = u1 · · ·um ∈ L(Q1). It follows that there is a word
v ∈ L(Q2)) such that v ; u. But it can be then shown that
(x, y) ∈ Q2(B).

Observe that, in the proof of the above lemma we exploit
the fact that, if we consider a database Bw constituted by a
single semipath

x· w ·y

then (x, y) ∈ Q(Bw) if and only if w ∈ fold(Q). We are
going to exploit this property also later.

We now show that if A is a 1NFA, then fold(L(A)) can
be represented by a “small” two-way nondeterministic finite-
state automaton (2NFA). Recall that a 1NFA is a tuple A =
(Σ, S, S0, ρ, F), where Σ is a finite alphabet, S is a finite state
set, S0 ⊆ S is an initial-state set, F ⊆ S is a final-state set,
and ρ : S × Σ → 2S is a transition function, providing for
each state and letter a set of possible successor states. A is a
2NFA if it has a transition function ρ : S×Σ→ 2S×{−1,0,1},

providing for each state and letter a set of possible successor
states and directions. An accepting run of A on a word w =
w1 · · ·wn is a sequence (s1, i1), . . . , (sm, in), where sj ∈ S

and 1 ≤ ij ≤ n for 1 ≤ j < m, s1 ∈ S0, i1 = 1, sm ∈ F ,
and im = n + 1, and the following holds for 1 ≤ j < m:
there is a pair (sj+1, c) ∈ ρ(sj , aij

) such that ij+1 = ij + c.

Lemma 3 Let A be an n-state 1NFA over Σ±. Then there is
a 2NFA for fold(L(A)) with n · (|Σ±|+ 1) states.

Proof. Let A = (Σ±, S, S0, ρ, F) be a 1NFA. We describe
a 2NFA A′ = (Σ±, S ∪ (S × Σ), S0, ρ

′, F) for fold(L(A)).
Note that A′’s state set contains for each state s ∈ S ad-
ditional copies of s, tagged with all the letters in Σ. The
initial-state set and final-state set are unchanged. The tran-
sition function ρ′ is defined as follows:

• ρ′((s, a), b) =

{

{(s, 0)} if a = b

∅ otherwise

Intuitively, when a state is tagged with a letter a, we just
check that the next letter it reads is indeed a.

• ρ′(s, a) = ρ(s, a)× {1} ∪
{((s′, b),−1) : s′ ∈ ρ(s, b−), b ∈ Σ±}.

Intuitively, A′ can emulate A forward or backwards.
When it emulates it backwards, it guesses a letter and
uses it to tag the state in order to check it later. It can be
shown that L(A′) = fold(L(A)).

According to Language-Theoretic Lemma 2, to check that
Q1 v Q2, we need to check L(Q1) ⊆ fold(L(Q2)). This
requires the ability to complement 2NFAs. If we use the
standard approach, we’d first convert the 2NFA to a 1NFA
with an exponential blow-up and then complement the latter
with another exponential blow-up [30], resulting in a doubly-
exponential blow-up. Instead, we accomplish both tasks on a
singly-exponential blow-up.

Lemma 4 [45] Let A be a 2NFA over Σ. There is a 1NFA Ac

such that

• L(Ac) = Σ∗ − L(A)

• ||Ac|| ∈ 2O(||A||)

Proof. Let A = (Σ, S, S0, ρ, F). The construction is based
on the following observation: u1 · · ·un 6∈ L(A) iff there is a
sequence T0, T1, . . . , Tn of subsets of S such that

1. S0 ⊆ T0 and Tn ∩ F = ∅.

2. If s ∈ Ti and (t, 1) ∈ ρ(s, ui+1), then t ∈ Ti+1, for
0 ≤ i < n.

3. If s ∈ Ti and (t, 0) ∈ ρ(s, ui+1), then t ∈ Ti, for 0 ≤
i < n.

4. If s ∈ Ti and (t,−1) ∈ ρ(s, ui+1), then t ∈ Ti−1, for
0 < i < n.

We call this sequence a counterexample sequence. The 1NFA
Ac simply guesses a counterexample witness.

Ac is the automaton (Σ, Q,Q0, δ, G). The state set Q is
2S ∪ (2S)

2
, i.e., sets of states and pairs of sets of states. The

start-state set Q0 is {T : S0 ⊆ T ⊆ S}, i.e., the collection
of state sets that contain S0. The final-state set G is {T :
T ∩ F = ∅} ∪ {(T,U) : U ∩ F = ∅}, i.e., the collection of
sets that do not intersect F and pair of sets where the second
component does not intersect F .

It remains to define the transition function δ. We have
(T,U) ∈ δ(T, a) if the following holds:

1. If s ∈ T and (t, 0) ∈ ρ(s, a), then t ∈ T , and

2. if s ∈ T and (t, 1) ∈ ρ(s, a), then t ∈ U .

We have (U, V) ∈ δ((T,U), a) if the following holds:

1. If s ∈ U and (t,−1) ∈ ρ(s, a), then t ∈ T ,

2. If s ∈ U and (t, 0) ∈ ρ(s, a), then t ∈ U , and

3. if s ∈ U and (t, 1) ∈ ρ(s, a), then t ∈ V .

It is easy to verify that Ac accepts a word u = u1 · · ·un if and
only if there exists a counterexample sequence, which means
that u is not accepted by A.

We now have the “technology” to establish complexity
bounds for 2RPQ containment.

Theorem 5 Containment of 2RPQs is PSPACE-complete.

Proof. Containment of RPQs is a special case, which implies
PSPACE-hardness. To establish the PSPACE upper bound,
we use the following steps in order to test Q1 v Q2:

1. Construct 1NFAs A1, A2 such that L(Ai) = L(Qi).
This step involves a linear blow-up [30].

2. Construct a 2NFA A′
2 such that L(A′

2) = fold(L(A2)).
The step involves a polynomial blow-up (Lemma 3).

3. Construct a 1NFA Ac
2 such that L(Ac

2) = (Σ±)∗ −
L(A′

2). This step involves an exponential blow-up
(Lemma 4).

4. Construct a 1NFA A = A1 × Ac
2 such that L(A) =

L(Q1)− fold(L(Q2)). This requires taking the product
of A1 and Ac

2, involving a quadratic blow-up [30].

5. Check if there is a path from start state to final state in
A. This requires nondeterministic logarithmic space in
the size of A.

Again, we construct A on the fly, constructing states only as
we search for a path from a start state to a final state in A.
This can be done in polynomial space, establishing the upper
bound.

4 View-based Query Answering

In this section we address the problem of view-based query
answering by making use of a strong connection between
view-based query answering and the constraint-satisfaction
problem.

A constraint-satisfaction problem (CSP) is traditionally
defined in terms of a set of variables, a set of values, and a
set of constraints, and asks whether there is an assignment of
the variables with the values that satisfies the constraints. A
characterization of CSP can be given in terms of homomor-
phisms between relational structures [22]. Here we consider
relational structures whose relations are of arbitrary arity.

A homomorphism h : A → B between two relational
structures A and B over the same alphabet is a mapping
h : ∆A → ∆B such that, if (c1, . . . , cn) ∈ r(A), then
(h(c1), . . . , h(cn)) ∈ r(B), for every relation symbol r in
the alphabet. Let A and B be two classes of structures. The
(uniform) constraint-satisfaction problem CSP(A,B) is the
following decision problem: given a structure A ∈ A and a
structure B ∈ B over the same alphabet, is there a homomor-
phism h : A → B? When B consists of a single structure
B and A is the set of all structures over the alphabet of B,
we get the so-called non-uniform constraint-satisfaction prob-
lem, denoted by CSP(B), where B is fixed and the input is
just a structure A ∈ A. As usual, we use CSP(B) also to
denote the set of structures A such that there is a homomor-
phism from A to B.

From the very definition of CSP it follows directly that ev-
ery CSP(A,B) problem is in NP. In particular, a non-uniform
constraint-satisfaction problem CSP(B), where B is a fixed
structure, is still in NP, i.e., checking whether A ∈ CSP(B)
is in NP in the size of A. In general, the actual complexity of
CSP(B) depends on B, and there are structures B for which
CSP(B) is PTIME and structures B for which CSP(B) is
NP-complete. For example, CSP(K2), is the problem of 2-
colorability, which is in PTIME, while CSP(K3) is the prob-
lem of 3-colorability, which is NP-complete (Kn is the com-
plete graph with n nodes).

A tight relationship between non-uniform CSP and view-
based query answering for RPQs and 2RPQs has been devel-
oped in [12, 17]. Such a relationship is based on the notions
of constraint template, associated to the query and view def-
initions, and constraints instance, associated to the view ex-
tension. We illustrate such a relationship for 2RPQs.

Given a 2RPQ Q and a set V of 2RPQ views, the constraint
template CTQ,V of Q wrt V is the relational structure C de-
fined as follows.

• The alphabet of C is V ∪ {Ui, Uf}.

• Let AQ = (Σ, S, S0, ρ, F) be a 1NFA for Q. The struc-
ture C = (∆C , ·C) is given by:

– ∆C = 2S ;

– σ ∈ Ui(C) iff S0 ⊆ σ;

– σ ∈ Uf (C) iff σ ∩ F = ∅;

– for a view V ∈ V , we have that (σ1, σ2) ∈ V C

iff there exists a word q1 · · · qk ∈ L(V Σ) and a
sequence T0, . . . , Tk of subsets of S such that the
following hold:

1. T0 = σ1 and Tk = σ2,
2. if s ∈ Ti and t ∈ ρ(s, qi+1) then t ∈ Ti+1, for

0 ≤ i < k, and
3. if s ∈ Ti and t ∈ ρ(s, q−i) then t ∈ Ti−1, for

0 < i ≤ k.

Intuitively, the constraint template represents for each view
V how the states of AQ (i.e., of the 1NFA for Q) change
when we follow database edges according to what specified
by words in L(V Σ). Specifically, the last condition above
corresponds to saying that a pair of sets of states (σ1, σ2) is
in V (C) if and only if there is some word w in L(V Σ) such
that the following holds: if we start from a state in σ1 on the
left edge of w and move back and forth on w according to
the transitions in AQ, then, if we end up at the left edge of w

we can be only in states in σ1, and if we end up at the right
edge of w we can be only in states in σ2; similarly, if we
start from a state in σ2 on the right edge of w. Moreover, the
sets of states in Ui(C) contain all initial states of AQ, while
the sets of states in Uf (C) do not contain any final state of
AQ. This takes into account that we aim at characterizing
counterexamples to view-based containment, and hence we
are interested in not getting to a final state of AQ, regardless
of the initial state from which we start and how we follow
transitions.

Observe that, to check the existence of a word q1 · · · qk ∈
L(V Σ) and of a sequence T0, . . . , Tk of subsets of S such
that conditions 1–3 above are satisfied, we can resort to a
construction analogous to the one in the proof of Lemma 4.
Hence such a check can be done in polynomial space in the
size of Q, and in fact in nondeterministic logarithmic space
in the size of V Σ.

Given a V-extension E and a pair of objects c and d, the
constraint instance Ec,d for CTQ,V is the structure I =
(∆I , ·I) over the alphabet V ∪ {Ui, Uf} defined as follows:

• ∆I = ∆E ∪ {c, d};

• V (I) = V (E), for each V ∈ V;

• Ui(I) = {c}, and Uf (I) = {d}.

The following theorem provides the characterization of
view-based query answering in terms of CSP.

Theorem 6 Let Q be a 2RPQ, V a set of 2RPQ views, E
a V-extension, and c, d a pair of objects. Then, (c, d) 6∈
certQ,V(E) if and only if Ec,d ∈ CSP(CTQ,V) (i.e., there
is a homomorphism from Ec,d to CTQ,V).

Proof. “⇐” Given a homomorphism h from Ec,d to CTQ,V ,
we construct a database B which is a counterexample to
(c, d) being a certain answer. In other words, B is such that
E ⊆ V(B) but (c, d) 6∈ Q(B). To construct B we proceed
as follows. For every view V and every pair (a, b) ∈ V (E)
we choose a word w ∈ L(V Σ), satisfying the conditions for
(h(a), h(b)) ∈ V (CTQ,V) (cf. last item of the construction
of the constraint template), and we introduce in B a simple
semipath

a· w ·b

where the intermediate objects are all new and pairwise dis-
tinct. By contradiction, suppose that (c, d) ∈ Q(B), i.e., there
is a (not necessarily simple) semipath

a0· `1 ·a1 · · · am−1· `m ·am

from c = a0 to d = am in B with `1 · · · `m ∈ L(Q),
and where a0, . . . , am are the only objects in the view ex-
tension on such a path. By construction of B, each sim-
ple semithpath `i corresponds to a navigation over one of
the words w used in the construction of B. The semipath
`i may navigate from the left side of w to its right side or
vice versa, or it may start and end at the same side, when
ai−1 = ai. Now, consider a sequence δ = (s0, . . . , sm) of
states of AQ such that s0 ∈ S0, si+1 ∈ ρ(si, `i+1)

2 for
0 ≤ i < m, and sm ∈ F . If si ∈ h(ai) and ai+1 6= ai,
since we have reached si+1 by navigating on a word w sat-
isfying the conditions for (h(ai), h(ai+1)) ∈ V (CTQ,V) (or
(h(ai+1), h(ai)) ∈ V (CTQ,V), if w is traversed from right
to left) for some view V , we must have that si+1 ∈ h(ai+1).
Similarly when ai+1 = ai. Now we have that s0 ∈ h(c),
and hence, by induction on m, we have that sm ∈ h(d). But
since h(d) ∈ Uf , we have that sm 6∈ F . This leads to a
contradiction.

“⇒” Given a database B such that E ⊆ V(B) and two
objects c, d such that (c, d) 6∈ Q(B), we build a homomor-
phism from Ec,d to CTQ,V . To do so, we first build a map-
ping h′ : ∆B → 2S as follows: initially h′ assigns the empty
set to each element of Ec,d, except for h′(c) = S0; then we
repeat the following until h′ does not change any more: if
(x, y) ∈ r(B) and s ∈ h′(x) then add ρ(s, r) to h′(y), and
if (x, y) ∈ r(B) and s ∈ h′(y) then add ρ(s, r−) to h′(x).
Note that, since (c, d) 6∈ Q(B), we have that h′(d) ∩ F = ∅.
Projecting h′ on ∆E we obtain the homomorphism we were
looking for.

With respect to computational complexity, we provide
an analysis distinguishing the different sources of complex-
ity [44]. In particular, we consider separately data complex-
ity, i.e., the complexity wrt the data in the view extension,
expression complexity, i.e., the complexity wrt the query and
the view definitions, and combined complexity, i.e., the com-
plexity wrt view extensions, query, and view definitions.

2With a slight abuse of notation we denote with ρ(si, `i+1) the set of
states reached from si by following the word labeling the semipath `i+1.

We start by noting that the constraint instance Ec,d has
polynomial size in the view extension E and does not de-
pend on Q and on the view definitions VΣ. The constraint
template CTQ,V , instead, is in general exponential in the
size of Q, polynomial in the size of VΣ, and does not de-
pend on the view extension E . Now, consider that for two
structures A and B over the same alphabet, checking whether
A ∈ CSP(B), where B is fixed, is in NP in the size of A.
By taking as structure A the constraint instance E c,d and as
structure B the constraint template CT Q,V , by Theorem 6,
we get that the data complexity of view-based query answer-
ing is in coNP. For combined complexity, we can build the
constraint instance and guess a mapping h from the constraint
instance to the constraint template (without representing the
constraint template explicitly). Such a mapping h can be rep-
resented using logarithmic space in the size of the constraint
template, and hence polynomial space in the size of Q and
logarithmic space in the size of the view definitions. Then
we can check whether h is a homomorphism, by checking
for each view V and for each (a, b) ∈ V (Ec,d), whether
(h(a), h(b)) ∈ V (CTQ,V). As discussed above, this check
can be done in nondeterministic logarithmic space in the size
of V and in polynomial space in the size of Q.

Theorem 7 View-based query answering for 2RPQs is in
coNP wrt data complexity and in PSPACE wrt combined (and
hence expression) complexity.

The upper bounds established above are tight.

Theorem 8 View-based query answering for RPQs is coNP-
hard wrt data complexity.

Proof. To show this hardness result we reduce the problem
of graph 3-colorability, known to be NP-complete [24], to the
problem of checking whether a pair of objects (c, d) is not a
certain answer to a fixed query Q with respect to a set of views
V whose definition is fixed. The alphabet is given by Σ =
{Rxy | x, y ∈ {r, g, b}, x 6= y}∪{Sr, Sg, Sb}∪{Fr, Fg, Fb}.
Intuitively, Rxy denotes a directed edge connecting two nodes
of the graph colored respectively x and y, Sx denotes the con-
nection from a fixed starting object c not part of the original
graph to a node of the graph colored by x, and Fx denotes the
connection from a node colored by x to a fixed final object d

not part of the original graph. We introduce three views Vs,
Vf , and VG with definitions:

V Σ
s = Sr + Sg + Sb

V Σ
f = Fr + Fg + Fb

V Σ
G = Rrg + Rgr + Rrb + Rbr + Rgb + Rbg

Now consider a graph G = (N,E) to be checked for 3-
colorability. From G we define a view extension E as follows
(where c and d are the fixed objects not in N):

Vs(E) = {(c, a) | a ∈ N}
Vf (E) = {(a, d) | a ∈ N}
VG(E) = {(a, b), (b, a) | (a, b) ∈ E}

Intuitively, VG represents G given as a symmetric directed
graph, while Vs and Vf are used to connect c and d to all
nodes of the graph. The query is

Q =
∑

x,y∈{r,g,b}
x6=y

Sx·Fy +
∑

x,y,w,z∈{r,g,b}
x6=y∨w 6=z

Sx·Ry,w·Fz

Intuitively, Q describes the existence of an error in assigning
colors to the nodes of the graph. Indeed, if the graph G is
3-colorable, then we can construct a database B containing
as objects the nodes of the graph plus c and d. By taking as
extension of Sx (respectively Fx) all pairs (c, a) (respectively
(a, d)) such that the color assigned to a is x, and taking as
extension of Rxy the pairs (a, b) such that the color assigned
to a is x and the color assigned to b is y, we have that E is
sound wrt B and (c, d) 6∈ Q(B). Conversely, from a database
B such that (c, d) 6∈ Q(B), we can directly obtain a 3-coloring
of the graph, by assigning to a node a the color x determined
by the (necessarily unique) relation Sx (or, equivalently Fx)
with (c, a) ∈ Sx(B) (respectively, (a, d) ∈ Fx(B)).

In the above proof we made use of union and chaining
(i.e., join) in the query and in the views, but did not ex-
ploit reflexive-transitive closure. Thus, the coNP lower bound
for view-based query answering holds also when queries and
views are unions of conjunctive queries [2].

In fact, the above reduction can straightforwardly be gen-
eralized to reduce any instance of CSP over directed graphs
to view-based query answering [12].

Theorem 9 View-based query answering for RPQs is
PSPACE-hard wrt expression (and hence combined) com-
plexity.

Proof. By reduction from regular expression universality,
known to be PSPACE-complete [24]. We reduce universality
of a regular expressions A to answering query Q = A using a
single view V with definition V Σ = Σ∗ and extension E such
that V (E) = {(c, d)}. It is easy to verify that L(Σ∗) ⊆ L(A)
if and only if (c, d) ∈ certQ,V (E).

5 View-Based Query Rewriting

In this section, we address the problem of view-based query
rewriting for 2RPQs, i.e., finding the maximal rewriting of a
2RPQ Q under sound 2RPQ views V . We denote the alphabet
V ∪ {V − | V ∈ V} including a new symbol V − for each V

in V by V±. In the following, we make use of the notion of
expansion of a word over V± wrt the definition of the views
in V . Given a word v = v1 · · · vn over V±, we denote by
expandΣ(v) the set of all the words w1 · · ·wn over Σ± such
that, for 1 ≤ i ≤ n, we have that wi ∈ L(vi

Σ). In other
words, every word in expandΣ(v) is obtained from v by sub-
stituting every symbol vi appearing in v with one word wi

belonging to the language of the view definition L(vi
Σ).

Our technique for computing the maximal rewriting of Q

under sound views V is based on characterizing the words
over the alphabet V± that do not belong to any rewriting of
Q under sound views V . These are the words v over V± such
that there is at least one word in expandΣ(v) that is not in
fold(Q) (cf. Section 3), i.e., considering the word as a linear
database, the endpoints are not in the answer to Q. In the
following we show how to construct a 2NFA that accepts ex-
actly such words. The complement RV,Q of such a 2NFA has
the property that it accepts exactly all words that belong to at
least one rewriting of Q under sound views V . It follows that
RV,Q is the maximal rewriting of Q under sound views V .

The construction of RV,Q is based on the idea of represent-
ing in a single word both a word over V± and its expansion.
Specifically, we consider words over Σ± ∪V± ∪ {$, :} of the
form

$Vi1 :wi1$ · · · $Vim
:wim

$

with Vij
∈ V±, and wij

∈ (Σ±)∗. Using suitable projec-
tions of such words, respectively on Σ± and on V±, we can
check conditions related to Q, view definitions, and possible
rewritings.

We construct a 2NFA A1 that accepts words of the form
above such that wi1 · · ·wim

∈ fold(Q) (cf. Lemma 3). Let
A2 be a 1NFA that complements A1 (cf. Lemma 4). Let A3

be a 1NFA that accepts a word of the form

$Vi1 :wi1$ · · · $Vim
:wim

$

if and only if for every ij , the word wij
is in L(V Σ

ij
), i.e., if

and only if the word wi1 · · ·wim
is in expandΣ(Vi1 · · ·Vim

).
Now consider the 1NFA A3 ∩A2. A word

$Vi1 :wi1$ · · · $Vim
:wim

$

is accepted by this 1NFA if and only if the word wi1 · · ·wim

is in expandΣ(Vi1 · · ·Vim
) and is not in fold(Q). Let A4

accept all words Vi1 · · ·Vim
that are projections on the Vij

’s
of the words

$Vi1 :wi1$ · · · $Vim
:wim

$

that are accepted by A3 ∩ A2. By construction, A4

accepts all words Vi1 · · ·Vim
such that there is a word

in expandΣ(Vi1 · · ·Vim
) that is not in fold(Q). Fi-

nally, let RV,Q be the complement of A4. Hence, RV,Q

accepts all words Vi1 · · ·Vim
such that every word in

expandΣ(Vi1 · · ·Vim
) is in fold(Q). It can be shown that

RV,Q is a maximal rewriting of Q under sound views V
(see [11, 17]).

With regard to the complexity of the above method, ob-
serve that the size of A1 is polynomial in the size of Q, the
size of A2 is exponential in the size of A1, and the size of
A3 is polynomial in the size of V . Finally, the size of A4

is polynomial in the size of A3 and A2. Therefore, the size
of RV,Q is exponential in the size of A4, which means dou-
ble exponential in the size of Q, and exponential in the size

of the view definitions. It follows that the problem of view-
based query rewriting for 2RPQs is in 2EXPTIME. In [16]
it is also shown that the problem of verifying the existence
of a nonempty rewriting of an RPQ Q under sound views
V is EXPSPACE-complete, and that there are cases where
the smallest maximal rewriting of an RPQ Q is doubly expo-
nential in the size of Q. This implies that the above method
for computing the maximal rewriting of a 2RPQ under sound
2RPQ views is essentially optimal.

Once we have computed the maximal rewriting, the prob-
lem arises of checking whether such a rewriting indeed pro-
vides all certain answers, when evaluated over a view exten-
sion. The coNP data complexity result of view-based query
answering (cf. Theorem 8) and the fact that a 2RPQ can be
evaluated in polynomial time data complexity tells us that in
general the maximal rewriting will not provide all certain an-
swers. A technique to check whether a specific rewriting
provides all certain answers is developed in [17], again ex-
ploiting the connection with CSP. Such a technique gives us a
NEXPTIME upper bound in the size of the rewriting, which
can also shown to be tight [17].

Related to the problem of computing rewritings, is the
problem of checking whether a given 2RPQ Qr over V is
a rewriting (wrt a set V of views) of a given 2RPQ Q over
Σ. For monotone query languages, and hence for RPQs and
2RPQs, Qr is a rewriting of Q under sound views V if and
only if the query QΣ

r , obtained from Qr by replacing each
view symbol with the corresponding view definition, is con-
tained in Q [17]3. Hence, to check whether Qr is a rewriting
of Q under sound views, we can resort to query containment.

Also of interest is checking whether a given rewriting Qr

(e.g., the maximally contained rewriting computed by the
above algorithm) is exact, i.e., equivalent modulo the views
to the original query [17]. By the above observation this
amounts to checking whether, after expanding view defini-
tions, Qr becomes equivalent to the original query. The exis-
tence of an exact rewriting can be shown to be 2EXPSPACE-
complete, both for RPQs and 2RPQs [16]. Note that exact-
ness of a rewriting is a sufficient (but not necessary) condition
for the rewriting to provide all certain answers.

6 Conclusions

In this paper we have presented basic results and techniques
concerning query containment and view based query process-
ing for the class of two-way regular-path queries. We be-
lieve that, besides the specific results, our methods have the
merit of showing the power of two-way automata in reason-
ing on complex queries. Indeed, the techniques described

3Notice that, because of this property, for monotone languages, the orig-
inal definition of rewriting based on expanding view definitions and then
checking containment (see, e.g., [33, 16]), actually corresponds to the notion
of rewriting under sound views.

in this paper can be adapted to reasoning about queries of
more general forms. First results in this direction are reported
in [10, 14] for the problem of checking containment of con-
junctive regular-path queries with inverse.

Although in this paper we concentrated our attention to ba-
sic techniques for query containment and view-based query
processing, we notice that the problem of reasoning on regu-
lar path queries and their variants is currently under investi-
gation in several research projects. For example, containment
and answering under constraints have been studied for RPQs
in [26] and for subclasses of XPath including restricted forms
of RPQs [21].

Also, containment and view-based query processing are
not the only reasoning services of interest on 2RPQs. For
example, additional inference tasks that have been already
considered include view-based containment [17, 37] and loss-
lessness [15].

Acknowledgments This work was supported in part by NSF
grants CCR-9988322, CCR-0124077, CCR-0311326, IIS-9908435,
IIS-9978135, EIA-0086264, by EU projects SEWASIE IST-2001-
34825 and INFOMIX IST-2001-33570, and by MIUR Strategic
Project “Societ à dell’informazione” - Subproject SP1.

References
[1] S. Abiteboul, P. Buneman, and D. Suciu. Data on the Web:

from Relations to Semistructured Data and XML. Morgan
Kaufmann, 2000.

[2] S. Abiteboul and O. Duschka. Complexity of answering
queries using materialized views. In Proc. of PODS’98, pages
254–265, 1998.

[3] S. Abiteboul and V. Vianu. Regular path queries with con-
straints. J. of Computer and System Sciences, 58(3):428–452,
1999.

[4] S. Adali, K. S. Candan, Y. Papakonstantinou, and V. S. Sub-
rahmanian. Query caching and optimization in distributed me-
diator systems. In Proc. of ACM SIGMOD, pages 137–148,
1996.

[5] A. V. Aho, Y. Sagiv, and J. D. Ullman. Equivalence among re-
lational expressions. SIAM J. on Computing, 8:218–246, 1979.

[6] S. Boag, D. Chamberlin, M. F. Fernandez, D. Florescu, J. Ro-
bie, and J. Simeon. XQuery 1.0: An XML query language –
w3c working draft. Technical report, World Wide Web Con-
sortium, Aug. 2003. Available at http://www.w3.org/
TR/xquery.

[7] P. Buneman. Semistructured data. In Proc. of PODS’97, pages
117–121, 1997.

[8] D. Calvanese, G. De Giacomo, M. Lenzerini, D. Nardi, and
R. Rosati. Description logic framework for information inte-
gration. In Proc. of KR’98, pages 2–13, 1998.

[9] D. Calvanese, G. De Giacomo, M. Lenzerini, and M. Y. Vardi.
Rewriting of regular expressions and regular path queries. In
Proc. of PODS’99, pages 194–204, 1999.

[10] D. Calvanese, G. De Giacomo, M. Lenzerini, and M. Y. Vardi.
Containment of conjunctive regular path queries with inverse.
In Proc. of KR 2000, pages 176–185, 2000.

[11] D. Calvanese, G. De Giacomo, M. Lenzerini, and M. Y. Vardi.
Query processing using views for regular path queries with in-
verse. In Proc. of PODS 2000, pages 58–66, 2000.

[12] D. Calvanese, G. De Giacomo, M. Lenzerini, and M. Y. Vardi.
View-based query processing and constraint satisfaction. In
Proc. of LICS 2000, pages 361–371, 2000.

[13] D. Calvanese, G. De Giacomo, M. Lenzerini, and M. Y. Vardi.
What is query rewriting? In Proc. of KRDB 2000, pages
17–27. CEUR Electronic Workshop Proceedings, http://
ceur-ws.org/Vol-29/, 2000.

[14] D. Calvanese, G. De Giacomo, M. Lenzerini, and M. Y.
Vardi. View-based query answering and query containment
over semistructured data. In Proc. of DBPL 2001, 2001.

[15] D. Calvanese, G. De Giacomo, M. Lenzerini, and M. Y. Vardi.
Lossless regular views. In Proc. of PODS 2002, pages 58–66,
2002.

[16] D. Calvanese, G. De Giacomo, M. Lenzerini, and M. Y. Vardi.
Rewriting of regular expressions and regular path queries. J.
of Computer and System Sciences, 64(3):443–465, 2002. Ex-
tended and revised version of [9].

[17] D. Calvanese, G. De Giacomo, M. Lenzerini, and M. Y. Vardi.
View-based query containment. In Proc. of PODS 2003, pages
56–67, 2003.

[18] A. K. Chandra and P. M. Merlin. Optimal implementation
of conjunctive queries in relational data bases. In Proc. of
STOC’77, pages 77–90, 1977.

[19] S. Chaudhuri, S. Krishnamurthy, S. Potarnianos, and K. Shim.
Optimizing queries with materialized views. In Proc. of
ICDE’95, 1995.

[20] J. Clark and S. DeRose. XML Path Language (XPath) version
1.0 – W3C recommendation 16 november 1999. Technical re-
port, World Wide Web Consortium, 1999. Available at http:
//www.w3.org/TR/1999/REC-xpath-19991116.

[21] A. Deutsch and V. Tannen. Optimization properties for classes
of conjunctive regular path queries. In Proc. of DBPL 2001,
2001.

[22] T. Feder and M. Y. Vardi. The computational structure of
monotone monadic SNP and constraint satisfaction. SIAM J.
on Computing, 28:57–104, 1999.

[23] M. Friedman, A. Levy, and T. Millstein. Navigational plans
for data integration. In Proc. of AAAI’99, pages 67–73. AAAI
Press/The MIT Press, 1999.

[24] M. R. Garey and D. S. Johnson. Computers and Intractability
— A guide to NP-completeness. W. H. Freeman and Company,
San Francisco (CA, USA), 1979.

[25] G. Grahne and A. O. Mendelzon. Tableau techniques for
querying information sources through global schemas. In Proc.
of ICDT’99, volume 1540 of LNCS, pages 332–347. Springer,
1999.

[26] G. Grahne and A. Thomo. Query containment and rewriting
using views for regular path queries under constraints. In Proc.
of PODS 2003, pages 111–122, 2003.

[27] A. Gupta and J. D. Ullman. Generalizing conjunctive query
containment for view maintenance and integrity constraint ver-
ification (abstract). In Workshop on Deductive Databases (In
conjunction with JICSLP), page 195, Washington D.C. (USA),
1992.

[28] A. Y. Halevy. Theory of answering queries using views. SIG-
MOD Record, 29(4):40–47, 2000.

[29] A. Y. Halevy. Answering queries using views: A survey. VLDB
Journal, 10(4):270–294, 2001.

[30] J. E. Hopcroft and J. D. Ullman. Introduction to Automata
Theory, Languages, and Computation. Addison Wesley Publ.
Co., 1979.

[31] A. C. Klug. On conjunctive queries containing inequalities. J.
of the ACM, 35(1):146–160, 1988.

[32] M. Lenzerini. Data integration: A theoretical perspective. In
Proc. of PODS 2002, pages 233–246, 2002.

[33] A. Y. Levy, A. O. Mendelzon, Y. Sagiv, and D. Srivastava. An-
swering queries using views. In Proc. of PODS’95, pages 95–
104, 1995.

[34] A. Y. Levy and M.-C. Rousset. Verification of knowledge
bases: a unifying logical view. In Proc. of the 4th European
Symposium on the Validation and Verification of Knowledge
Based Systems, Leuven, Belgium, 1997.

[35] A. Y. Levy and Y. Sagiv. Semantic query optimization in Dat-
alog programs. In Proc. of PODS’95, pages 163–173, 1995.

[36] A. R. Meyer and L. J. Stockmeyer. The equivalence prob-
lem for regular expressions with squaring requires exponen-
tial time. In Proc. of the 13th IEEE Symp. on Switching and
Automata Theory, pages 125–129, 1972.

[37] T. D. Millstein, A. Y. Levy, and M. Friedman. Query contain-
ment for data integration systems. In Proc. of PODS 2000,
pages 67–75, 2000.

[38] A. Motro. Panorama: A database system that annotates its
answers to queries with their properties. J. of Intelligent Infor-
mation Systems, 7(1), 1996.

[39] Y. Sagiv and M. Yannakakis. Equivalences among relational
expressions with the union and difference operators. J. of the
ACM, 27(4):633–655, 1980.

[40] W. J. Savitch. Relationship between nondeterministic and de-
terministic tape complexities. J. of Computer and System Sci-
ences, 4:177–192, 1970.

[41] O. Shmueli. Equivalence of Datalog queries is undecidable. J.
of Logic Programming, 15(3):231–241, 1993.

[42] J. D. Ullman. Information integration using logical views.
In Proc. of ICDT’97, volume 1186 of LNCS, pages 19–40.
Springer, 1997.

[43] R. van der Meyden. The Complexity of Querying Indefinite
Information. PhD thesis, Rutgers University, 1992.

[44] M. Y. Vardi. The complexity of relational query languages. In
Proc. of STOC’82, pages 137–146, 1982.

[45] M. Y. Vardi. A temporal fixpoint calculus. In Proc. of
POPL’88, pages 250–259, San Diego (CA, USA), 1988.

