
Containment of Aggregate Queries∗

Sara Cohen
Faculty of Industrial Engineering and Management

Technion—Israel Institute of Technology
Haifa 32000, Israel

sarac@ie.technion.ac.il

1 Introduction

It is now common for databases to contain many gi-
gabytes, or even many terabytes, of data. Scientific
experiments in areas such as high energy physics pro-
duce data sets of enormous size, while in the business
sector the emergence of decision-support systems and
data warehouses has led organizations to build up
gigantic collections of data. Aggregate queries al-
low one to retrieve concise information from such a
database, since they can cover many data items while
returning a small result. OLAP queries, used exten-
sively in data warehousing, are based almost entirely
on aggregation [4, 16]. Aggregate queries have also
been studied in a variety of settings beyond relational
databases, such as mobile computing [1], global infor-
mation systems [21], stream data analysis [12], sensor
networks [22] and constraint databases [2].

The execution of aggregate queries tends to be time
consuming. Computing one aggregate value often re-
quires scanning many data items. Since aggregate
queries are a popular means to query many types
of database systems, it is essential to develop algo-
rithms for two major problems. One is optimizing
aggregate queries. The other is using materialized
views in the evaluation of those queries. It is widely
accepted that the ability to determine containment
or equivalence between queries is a key to solving
both problems. Thus, containment of nonaggregate
queries over relational databases has been studied ex-
tensively, e.g., [3, 19, 27, 20].

Considerable work has been done on the problem
of efficiently computing aggregate queries, e.g. [5,
15, 25]. However, without a coherent understand-
ing of the underlying principles, it is not possible to

∗Database Principles Column. Column editor: Leonid
Libkin, Department of Computer Science, University of
Toronto, Toronto, Ontario M5S 3H5, Canada. E-mail:
libkin@cs.toronto.edu.

present algorithms and techniques that are complete.
Hence, most of the algorithms were based on suffi-
cient conditions for equivalence, and complete algo-
rithms were presented in these papers only for very re-
stricted cases. A better understanding of these prob-
lems requires a complete characterization of equiva-
lences among aggregate queries.

The ability to characterize equivalences among
aggregate queries is also of primary importance
when optimizing nonaggregate queries that are eval-
uated under bag-set semantics. These semantics are
the default for evaluating SQL queries (e.g., SQL
queries without the keyword DISTINCT). Determin-
ing equivalence of nonaggregate queries under bag-
set semantics can be reduced to determining equiva-
lence of queries with the aggregation function count.
Hence, the study of aggregate-query equivalences and
optimization are also of immediate benefit when at-
tempting to optimize nonaggregate SQL queries.

There are quite a few papers that deal with the
aggregate-query containment and equivalence prob-
lems. This survey contains in detail only a small
sampling of previous results. The emphasis in this
paper is on results that have a short proof sketch. In
addition, we demonstrate with these results the dif-
ferent strategies that have been employed for solving
the equivalence and containment problems. Some im-
portant results have been mentioned only briefly due
to space limitations. For these results, the reader is
referred to the appropriate papers.

This survey is organized as follows. In Section 2
we discuss how determining equivalence of aggregate
queries differs from determining equivalence of nonag-
gregate queries. In Section 3 we present the formal
syntax and semantics of aggregate queries. Section 4
contains some necessary definitions. We present sev-
eral interesting results on aggregate-query equiva-
lence and containment in Sections 5 and 6. Finally,

1

we conclude in Section 7 with a discussion of com-
plexity results and related work.

2 Motivation

We discuss how determining equivalence among ag-
gregate queries differs from determining equivalence
among nonaggregate queries. Thus, this section
motivates the study of aggregate-query equivalence
by showing that previous results for nonaggregate
queries do not carry over easily to this case. The
discussion will be somewhat informal and the main
ideas will be conveyed through a series of examples.

The examples in this section will be based on
queries of the form

q(s̄, α(t̄))← A ,

where A is a conjunction of non-negated relational
atoms and comparisons, and α(t̄) is an aggregate
term. Such queries are positive (i.e., contain no
negated atoms). We sometimes write the body of
q as R∧C when we want to indicate that R is a con-
junction of relational atoms and C is a conjunction of
comparisons. A formal definition of a query (which
may also contain negation) and its semantics will be
presented in Section 3.

We give an informal account of the semantics of a
positive aggregate query here, by showing how such a
query is translated into SQL. The process of translat-
ing such queries into SQL is almost identical to that of
translating a conjunctive nonaggregate Datalog query
into SQL. In particular, (1) the relational atoms in A
define the relations appearing in the FROM clause,
(2) both comparisons and repeated occurrences of
variables in A define the conditions appearing in the
WHERE clause and (3) the head of the query s̄, α(t̄)
defines the SELECT clause. In addition, the vari-
ables in s̄ also appear in the GROUP BY clause of
the query. Thus, the variables in s̄ are both output
variables and grouping variables.

To demonstrate this process, consider the relations
P (A, B) and R(C, D) and the query

q1(x, sum(y))← p(x, y) ∧ r(z, y) ∧ x < z .

In SQL, q1 is written in the following manner:

SELECT P.A, SUM(P.B)
FROM P,R
WHERE P.B=R.D and P.A<R.C
GROUP BY P.A;

We consider the problem of characterizing equiva-
lence of aggregate queries, by comparing this problem
to the corresponding one for nonaggregate queries.

Homomorphisms Are Not Sufficient. For posi-
tive nonaggregate queries, equivalence has been char-
acterized in terms of homomorphisms [3, 19]. A ho-
momorphism from q(s̄)← R ∧C to q′(s̄′)← R′ ∧C′

is a substitution θ of the variables of q with the terms
of q′ such that (1) θ(s̄) = s̄′, (2) θ(R) ⊆ R′ and (3)
C′ |= θ(C).

If the nonaggregate queries q and q′ do not contain
comparisons, then q′ is contained in q if and only if
there is a homomorphism from q to q′. In addition, q
is equivalent to q′ if and only if such homomorphisms
exist in both directions. (Determining containment
and equivalence requires checking for the existence
of several homomorphisms if the queries may contain
comparisons.)

Intuitively, a characterization in terms of homo-
morphisms is possible since, for nonaggregate queries,
a tuple is in the result if there is at least one satisfying
assignment of the body that derives it. The number
of satisfying assignments does not affect the result.
Consider, for example, the following queries:

q2(x)← p(x, w)
q3(x)← p(x, w) ∧ p(x, z) .

It is not difficult to show that there is a homomor-
phism from q2 to q3 and a homomorphism from q3 to
q2. Indeed, it is clear that these queries are equiva-
lent, since both return x values such that there is at
least one y for which p(x, y).

On the other hand, consider the following count-
queries, derived by adding the count function to each
of q2 and q3:

q4(x, count)← p(x, w)
q5(x, count)← p(x, w) ∧ p(x, z) .

Now, each query returns both the satisfying x values,
along with the number of satisfying assignments for
each value of x. The queries q4 and q5 are not equiv-
alent. This can be demonstrated by the database
{p(10, 20), p(10, 30)}, for which q4 will retrieve (10, 2)
and q5 will retrieve (10, 4).

From this simple example, it is apparent that any
characterization will have to take into account the
number of assignments and not only the existence of
an assignment. Thus, the existence of a homomor-
phism will not usually be a sufficient condition for
equivalence of aggregate queries.

2

Isomorphisms Are Not Necessary. Since we
must account for the number of satisfying assign-
ments, it is natural to try to characterize equivalence
of aggregate queries in terms of isomorphisms, in-
stead of homomorphisms. Formally, queries q and q′

are isomorphic of there is a homomorphism θ from
q to q′ that is bijective and its inverse is also a ho-
momorphism. Characterizing equivalence in terms of
isomorphisms is appealing since the existence of an
isomorphism is a obviously a sufficient condition for
equivalence among aggregate queries. For positive
count-queries that have no comparisons this is in fact
a complete characterization [6, 23]. In other words,
two positive count-queries that have no comparisons
are equivalent if and only if they are isomorphic.

It turns out that the existence of an isomorphism
is not always a necessary condition for aggregate-
query equivalence. Consider, for example, the fol-
lowing count-queries:

q6(count)← p(x) ∧ p(y) ∧ p(z) ∧ x < y ∧ x < z

q7(count)← p(x) ∧ p(y) ∧ p(z) ∧ x < z ∧ y < z .

These queries are not isomorphic, yet it is not difficult
to show that they are equivalent.

One can also find aggregate queries without com-
parisons for which isomorphism is not a necessary
condition for equivalence. Too see this consider the
following queries, which are a variation on q4, q5:

q8(x, avg(w))← p(x, w)
q9(x, avg(w))← p(x, w) ∧ p(x, z) .

Queries q8 and q9 are equivalent even though they
are not isomorphic (and have a different number of
satisfying assignments for each value of x).1

To conclude this part of the discussion, isomor-
phism is always a sufficient condition for equivalence,
but is not always a necessary condition for equiva-
lence.

Size of a Counter-Example. We now consider a
tangential problem that arises when trying to show
that some given characterization for equivalence or
for containment is correct (i.e., complete). In order to
show that a characterization for containment (resp.
equivalence) is correct, it is often useful to demon-
strate that if the characterization does not hold for

1Note that it is incorrect to conclude from this that equiv-
alence of avg-queries can be characterized in the same way
as equivalence of nonaggregate queries. It is easy to find a
counter-example for such a characterization.

queries q and q′, then a counter-example can be built
that shows that q is not contained in (resp. equiv-
alent to) q′. For positive nonaggregate queries one
can always create a “small” counter-example, i.e., a
counter-example the size of the given queries. (In
fact, such counter-examples are often built by taking
the body of one of the queries as a database.) This
is not surprising, since each value in the output is
created by a single assignment.

One may ask whether “small” counter-examples
always exist for aggregate queries. Recall that ag-
gregate values are computed by aggregating together
many different values. Hence, it would seem possible
for a query q to always be contained in a query q′

when “small” databases are considered, but for this
relationship to no longer hold over larger ones. This
is in fact the case. Consider the following queries:

q10(x, count)← p(x, w)
q11(x, count)← p(x, w) ∧ r(x, z) .

Over any database that is the size of q10 or q11

(i.e., that contains at most two atoms), q11 is
contained in q10. However, over databases with
three atoms this no longer holds, e.g., the database
{p(1, 1), r(1, 1), r(1, 2)}. Thus, one of the difficulties
when proving correctness of a given characterization
is that larger databases must often be considered.
(Rather surprisingly, the are many cases for which
it is sufficient to consider databases that are at most
the size of the queries.)

Differences Between Aggregation Functions.
We consider a final problem of note. There are in-
finitely many different aggregation functions that can
appear in an aggregate query. Even if the discussion
is narrowed down to common aggregation functions,
there are still many, e.g., count, sum, max, avg, cntd
(count distinct), prod, to name only a few. Each ag-
gregation function has its own quirks. For example,

• count counts values and is sensitive to the num-
ber of values;

• max ignores repeated values;

• sum ignores the value 0;

• prod ignores the value 1, and returns the value
0, when there computed over a bag containing
the value 0.

The different oddities of aggregation functions
make finding a “one-size-fits-all” solution for the

3

equivalence and containment problems very difficult.
In particular, it is not difficult to find equivalent
queries q and q′ such that switching the aggregation
function in the heads of q and q′ to a different func-
tion yields queries that are no longer equivalent. For
example the following queries are equivalent:

q12(sum(y))← p(y) ∧ y > 0 ∧ p(z) ∧ z > 0
q13(sum(y))← p(y) ∧ y ≥ 0 ∧ p(z) ∧ z > 0 .

However, an attempt to replace sum with prod yields
queries that are not equivalent. (Interestingly, re-
placing sum with max does yield equivalent queries
for this special case.)

Since every aggregation function has its own odd-
ity, characterizations for equivalence of aggregate
queries often are custom-made, i.e., defined sepa-
rately for each aggregation function. In Section 5 we
discuss customized characterizations for the aggrega-
tion functions count and max, and refer the reader to
additional work on the topic.

It is sometimes possible to define classes of aggrega-
tion functions and then present general characteriza-
tions for equivalence of queries with any aggregation
function within a class of functions. Such charac-
terizations are often more complex than customized
characterizations. We call this approach the one-size-
fits-all approach (or the one-size approach, for short)
and it is considered in Section 6.

3 Syntax and Semantics

We present the formal syntax and semantics for ag-
gregate queries using an extended Datalog notation.

Predicate symbols are denoted as p, q or r. A term,
denoted as s or t, is either a variable or a constant.
A relational atom has the form p(s1, . . . , sk), where
p is a predicate of arity k. We also use the notation
p(s̄), where s̄ stands for a tuple of terms (s1, . . . , sk).
Similarly, x̄ stands for a tuple of variables. An order-
ing atom or comparison has the form s1 ρ s2, where
ρ is one of the ordering predicates <, ≤, >, ≥ or =.
A relational atom can be negated. A relational atom
that is not negated is positive. A literal is a positive
relational atom, a negated relational atom, or a com-
parison. A condition, denoted as A, is a conjunction
of literals. A condition A is safe [26] if every variable
appearing in A either appears in a positive relational
atom or is equated with such a variable. Throughout
this paper we will assume that all conditions are safe.

An aggregate term is an expression built up using
variables and an aggregation function. For example

count and sum(y) are aggregate terms. We use α(t̄)
as an abstract notation for an aggregate term. Note
that t̄ can be the empty tuple as in the case of the
functions count or parity.

To simplify the exposition, we will only consider
aggregate queries which have a single aggregation
term. In many cases, it is possible to reduce the
query equivalence problem for queries with several
aggregate terms to one of equivalence with a single
aggregate term, e.g., [23]. We will also only consider
queries with conjunctive bodies (i.e., without disjunc-
tions). Many of the results surveyed here have been
extended to queries with disjunctions.

An aggregate query is a non-recursive expression of
the form

q(s̄, α(t̄))← A, (1)

where A contains all the variables in s̄ and in t̄. We
call t̄ the grouping terms of the query, and we call s̄
the aggregation terms of the query. If the aggregate
term in the head of a query has the form α(t̄), we call
the query an α-query (e.g., a max-query).

We distinguish several special types of aggregate
queries. A query is relational if it contains no com-
parisons. A query is positive if it does not contain
any negated relational atoms. A query is linear if it
is positive and contains no relational predicate more
than once (i.e., has no self-joins). Finally, a query is
quasilinear if no predicate that occurs in a positive
literal, occurs more than once.

It is convenient to consider queries in a particular
normal form. Let q be a query with comparisons
C. We say that q is reduced if (1) there are no two
distinct variables x, y in C such that C |= x = y and
(2) there is no variable x in C such that C |= x = d,
for some constant d. For every query, it is possible
to compute in polynomial time an equivalent reduced
query.

Example 3.1 Consider the relations teach(prof,
course) and study(course, student, grade), and
the queries:

q14(c, max(g))← study(c, s, g) ∧ teach(Lau, c)
q15(c, avg(g))← study(c, s, g) ∧ teach(Lau, c)∧

¬teach(Levy, c) ∧ g > 55

The query q14 computes the maximum grade in each
course taught by Prof. Lau. The query q15 computes
the average passing grade (i.e., over 55) of students
in each of Prof. Lau’s courses that are not also taught
by Prof. Levy.

4

The query q14 is positive and linear. Note that q15

is not quasilinear since the predicate teach occurs in
a positive literal and occurs more than once in q15.
The queries q14 and q15 are both reduced.

Databases are sets of ground relational atoms, de-
noted D. Consider a query q as in Equation 1. We
define how, for a database D, the query yields a new
relation qD. We proceed in two steps.

Let Γ(q,D) denote the set of assignments γ over D
that satisfy A. Recall that s̄ are the grouping terms
of q and t̄ are the aggregation terms. For a tuple
of constants d̄, let Γd̄(q,D) be the subset of Γ(q,D)
consisting of assignments γ with γ(s̄) = d̄. In the
sets Γd̄(q,D), we group those satisfying assignments
that agree on s̄. We use Γt̄

d̄
(q,D) to denote the bag of

values that Γd̄(q,D) associates with the tuple t̄, i.e.,
Γt̄

d̄
(q,D) := {{γ(t̄)|γ ∈ Γd̄(q,D)}}.
Now we define the result of evaluating q(s̄, α(t̄))

over D, denoted qD, by
{(

d̄, α(Γt̄
d̄(q,D)))

∣∣∣ d̄ = γ(s̄) for some γ ∈ Γ(q,D)
}

.

We say that queries q and q′ are equivalent, written
q ≡ q′, if, over every database, they return identical
sets of results, that is, if qD = q′D for all databases
D. Similarly, q is contained in q′, denoted q ⊆ q′, if
qD ⊆ q′D for all databases D.

4 Linear Expansions

In this section we present some definitions needed for
characterizing equivalence of queries. Generally, the
comparisons in the body of a query induce a partial
order among the variables of the query. In order to
deal with containment and equivalence of arbitrary
queries, which may have comparisons, this partial or-
der should be extended to a linear order.

Let q(s̄, α(t̄)) ← R ∧ C be a query. Let W be
the set of variables appearing in q and let D be a
set of constants that contains the constants of q. A
query q′(s̄, α(t̄))← R∧C′ is a linearization of q with
respect to D if (1) C′ |= C and (2) for every two
terms s, t ∈ W ∪ D, exactly one of s < t, s = t, or
s > t is implied by C′.

A linear expansion of q with respect to the con-
stants D is a set of linearizations Q of q with respect
to D such that (1) no two queries in Q have equiv-
alent comparisons (i.e., comparisons that imply the
same linear ordering over the variables of q) and (2)
for every linearization q′ of q there is a query q′′ ∈ Q

such that the comparisons of q′ and q′′ are equivalent.
A reduced linear expansion of q with respect to D is
derived by first computing a linear expansion Q of q
and then replacing each query q′ in Q with a reduced
version of q′.

Example 4.1 Consider query q6, repeated here:

q6(count)← a(x) ∧ a(y) ∧ a(z) ∧ x < y ∧ x < z .

The set of queries {qa
6 , qb

6, q
c
6}, defined below, is a lin-

ear expansion of q6:

qa
6 (count)← a(x) ∧ a(y) ∧ a(z) ∧ x < y ∧ y < z ,

qb
6(count)← a(x) ∧ a(y) ∧ a(z) ∧ x < z ∧ z < y ,

qc
6(count)← a(x) ∧ a(y) ∧ a(z) ∧ x < y ∧ y = z .

Note that qa
6 and qb

6 are isomorphic, even though their
sets of comparisons are not equivalent. Note also that
{qa

6 , qb
6, q

c
6} is not a reduced linear expansion of q6,

since qc
6 is not reduced.

Let Q and Q′ be sets of queries. We say that Q and
Q′ are isomorphic if there is a bijection µ : Q → Q′

that maps queries in Q to isomorphic queries in Q′.
For a given query q and constants D, there is no
unique reduced linear expansion. However, it is easy
to see that any two such reduced linear expansions
are isomorphic. Hence, we use ED(q) to denote an
arbitrary reduced linear expansion of q w.r.t. D.

5 Customized Characterization

A customized equivalence characterization is one that
is defined for a specific aggregation function. Several
papers have presented customized characterizations
for various aggregation functions. In [23], charac-
terizations for equivalence of positive count-queries,
sum-queries and max-queries were presented. Char-
acterizations of equivalence for restricted cntd-queries
were also presented. The results of [23] were extended
in [10] to queries with disjunctive bodies. Equivalence
of positive avg-queries and of positive percent-queries
were characterized in [13].

This section contains a sampling of customized
characterizations for equivalence. Subsections 5.1
and 5.2 consider equivalence of positive count-queries
and max-queries, respectively. These results ap-
peared in [23].

5

5.1 Equivalence of count-Queries

In this section we present a complete characteriza-
tion of equivalence of positive count-queries. This
characterization can easily be extended to deal with
queries that have disjunctions [10]. The characteriza-
tion is of perhaps of particular interest since its proof
of correctness is of a similar style to correctness proofs
for characterizations of equivalence for nonaggregate
queries (since the proof involves creating a counter-
example out of the body of a query).

Equivalence of count-queries can be characterized
in terms of isomorphism of their linear expansions.

Theorem 5.1 Let q1(s̄, count) and q2(t̄, count) be
positive count-queries. Let D be the set of constants
appearing in q1 or in q1. Then q1 ≡ q2 if and only if
ED(q1) and ED(q2) are isomorphic.

Proof. It is not difficult to see that isomorphism of
ED(q1) and ED(q2) is a sufficient condition for equiva-
lence of q1 and q2. We give a sketch of the proof that
this is a necessary condition for equivalence. Sup-
pose that ED(q1) and ED(q2) are not isomorphic. We
will show that we can create a database out of the
body of one of the queries in ED(q1) ∪ ED(q2) that is
a counter-example for equivalence of q1 and q2.

Let q be a query. We use |ED(q1)|q and |ED(q2)|q to
denote the number of queries in ED(q1) and ED(q2),
respectively, that are isomorphic to q. We use |q|r
and |q|v to denote the number of relational atoms
and variables, respectively, in q.

Since ED(q1) is not isomorphic to ED(q2) there
is at least one query q ∈ ED(q1) ∪ ED(q2) such
that |ED(q1)|q 6= |ED(q2)|q. Let q∗ be a query in
ED(q1)∪ED(q2) such that (1) |ED(q1)|q∗ 6= |ED(q2)|q∗ ,
(2) |q∗|r is minimal among all queries with Property 1
and (3) |q∗|v is minimal among all queries with Prop-
erties 1 and 2. It is possible to show that by creating
a database out of the body of q∗, we derive a counter-
example to the equivalence of q1 and q2.

5.2 Equivalence of max-Queries

Some aggregation functions, such as max, are not sen-
sitive to multiplicities. For such functions it may be
possible to reduce equivalence of aggregate queries to
equivalence of nonaggregate queries. This holds for
positive relational max-queries.

Let q(s̄, max(t)) ← A be a max-query. The core
of q, denoted q̆, is the query derived by stripping off
the function max from the head of q, i.e., the query
q̆(s̄, t)← A.

Proposition 5.2 Let q and q′ be positive relational
max-queries. Then, q is equivalent to q′ if and only
if q̆ is equivalent to q̆′.

This characterization no longer holds if the queries
may contain comparisons.

Example 5.3 Consider the queries

q16(max(y))← p(y) ∧ p(z1) ∧ p(z2) ∧ z1 < z2

q17(max(y))← p(y) ∧ p(z) ∧ z < y.

Both queries return answers if there are at least two
elements in p. If this is the case, then q16 returns
the greatest element among all elements of p, while
q17 returns the greatest elements among all elements
of p, other than the least. Thus, the two queries are
equivalent. However, q̆16 is not equivalent to q̆17 since
q̆16 contains q̆17, but q̆17 does not contain q̆16.

Let q(s̄, max(t)) ← R ∧ C and q′(s̄′, max(t′)) ←
R′ ∧ C′ be two queries. We say that q is dominated
by q′ if, for every database, whenever q returns a tuple
(d̄, d), then q′ returns a tuple (d̄, d′) with d′ ≥ d. The
following proposition states that dominance can be
used to determine equivalence.

Proposition 5.4 Queries q and q′ are equivalent if
and only if q dominates q′ and q′ dominates q.

Dominance mappings, a variation on homomor-
phisms, are used to determine whether one query
dominates another. A dominance mapping from
q(s̄, max(t)) to q′(s̄, max(t′)) is a substitution θ of the
variables of q with terms of q′, such that (1) θs̄ = s̄′,
(2) θ(R) ⊆ R′, (3) C′ |= θ(C) and (4) C′ |= t′ ≤ θt.
Note that a dominance mapping differs from a homo-
morphism only in Property 4.

Theorem 5.5 Let q1 and q2 be positive max-queries.
Let D be the set of constants appearing in q1 or in q2.
Then q1 is dominated by q2 if and only if for every
linearization q ∈ ED(q1), there exists a dominance
mapping from q2 to q.

Proposition 5.4 and Theorem 5.5 immediately yield
a characterization for equivalence of max-queries.

6 One-Size Characterizations

Characterizations that determine containment or
equivalence of aggregate queries for a class of aggre-
gation functions (as opposed to considering a partic-
ular aggregation function) are called one-size char-
acterizations. Such characterizations are very useful

6

since, given an aggregation function α not previously
considered, it is generally easy to determine whether
they are applicable to α-queries. However, such char-
acterizations tend to be rather complex since they are
based on abstract properties of aggregation functions.

The one-size approach was taken in [8] which con-
sidered equivalence of aggregate queries with decom-
posable aggregation functions. A small portion of this
work is surveyed in Subsection 6.1. Containment of
aggregate queries was studied in [9] for queries with
expandable aggregation functions. Some of these re-
sults appear in Subsection 6.2. Note that through-
out this section, we consider queries that may have
negated relational atoms.

6.1 Equivalence

Recall that a query q is quasilinear if no predicate
that occurs in a positive literal of q, occurs more
than once. Thus, in a quasilinear query, no predi-
cate occurs in both a positive and a negated literal
and no predicate occurs more than once in a positive
literal. For every aggregation function α, we denote
by L(α) and QL(α) the class of linear α-queries and
quasilinear α-queries, respectively. We show that for
a wide range of quasilinear queries, equivalence is iso-
morphism. This result appeared in [8].

We say that a class of queries Q is proper if for
any two satisfiable reduced queries q, q′ ∈ Q it is
the case that q and q′ are only equivalent if they are
isomorphic. Theorem 6.1 relates L(α) and QL(α).

Theorem 6.1 Let α be an aggregation function.
Then L(α) is proper if and only if QL(α) is proper.

A singleton bag is a bag that contains only one
value. We say that an aggregation function α is a
singleton-determining aggregation function, if for all
singleton bags B and B′ we have that α(B) = α(B′)
if and only if B = B′. Clearly max, sum, prod and
avg are singleton-determining aggregation functions.
Note that count and parity are nullary aggregate
functions. Thus, they are defined over a domain that
contains only a single value, the empty tuple. Hence,
count and parity are also singleton-determining ag-
gregation functions.

Theorem 6.2 Let α be an aggregation function.
Then, α is singleton-determining if and only if QL(α)
is proper.

Proof. By Theorem 6.1 it is sufficient to show
that α is singleton-determining if and only if L(α)
is proper.

“⇒” Suppose that α is a singleton-determining ag-
gregation function. We show that L(α) is proper. To
this end, let q(s̄, α(t̄)) ← A and q′(s̄′, α(t̄′)) ← A′

be satisfiable reduced linear α-queries. Suppose that
q ≡ q′. We will show that q and q′ are isomorphic.

In [3] it has been shown that linear nonaggregate
queries without comparisons are set-equivalent if and
only if they are isomorphic. This still holds even if
the queries have comparisons. We associate with q a
nonaggregate query q̂, called the nonaggregate projec-
tion of q, which is derived from q by simply removing
the aggregate term from the head of q. Thus, q̂ has
the form q̂(s̄)← A.

Since q ≡ q′, they return values for the same group-
ing tuples. Thus, q̂ is set-equivalent to q̂′. Hence, q̂
is isomorphic to q̂′. Let θ be the isomorphism from
q̂′ to q̂. If α is a nullary aggregation function, then
θ is an isomorphism from q′ to q. Suppose that α is
not a nullary aggregation function.

Let γ be an instantiation of the terms in q that
satisfies the comparisons in q and maps each term to
a different value. We construct a database D out of
q by applying γ to the relational part of q.

Clearly, the only satisfying assignment of q to
the constants in D is exactly γ. Thus, q retrieves
(γ(s̄), α(γ(t̄))). The only satisfying assignment of q′

is γ ◦ θ. Therefore, q′ returns (γ ◦ θ(s̄′), α(γ ◦ θ(t̄′))).
Note that since θ is an isomorphism from q′ to q, it
holds that γ ◦ θ(s̄′) = γ(s̄).

Recall that α is a singleton-determining aggrega-
tion function. Therefore, we have α(γ ◦ θ(t̄′)) =
α(γ(t̄)) if and only if γ ◦ θ(t̄′) = γ(t̄). The instan-
tiation γ is an injection, thus γ ◦ θ(t̄′) = γ(t̄) if and
only if θ(t̄′) = t̄. This must hold since q ≡ q′. There-
fore, θ is an isomorphism from q′ to q.

“⇐” Suppose that α is not a singleton-determining
aggregation function. We show that L(α) is not
proper. To this end, we create linear α-queries q and
q′ such that q ≡ q′, but q and q′ are not isomorphic.

Since α is not a singleton-determining aggregation
function, there are singleton bags B = {{d}}, and
B′ = {{d′}} such that d 6= d′ and α(B) = α(B′).
The following queries are equivalent, but are not iso-
morphic:

q(α(d))← p(d) ∧ p(d′)
q′(α(d′))← p(d) ∧ p(d′) .

Corollary 6.3 (Equivalence and Isomorphism)
The classes of quasilinear max, top2, count, sum,
prod, parity and avg queries are proper.

7

Proof. This result follows from the fact that
all the aggregation functions above are singleton-
determining and from Theorem 6.2.

6.2 Containment

Characterizations for containment of nonaggregate
queries have been presented [3]. Equivalence of
nonaggregate queries is determined by checking for
containment in both directions. Interestingly, when
dealing with aggregate queries it seems that the con-
tainment problem is more elusive. In fact, most
known containment results are derived by reducing
containment to equivalence. Hence, in this section,
such a reduction is presented. This result appeared
in [9].

We present the class of expandable aggregation
functions. Intuitively, for such functions changing
the number of occurrences of values in bags B and
B′ does not affect the correctness of the formula
α(B) = α(B′), as long as the proportion of each value
in each bag remains the same.

Let B be a bag of constants and N be a positive
integer. We use B ⊗ N to denote the bag derived
from B by increasing the multiplicity of each term in
B by a factor of N . Aggregation functions can be
characterized by their behavior on expanded bags.

An aggregation function α is expandable if for all
bags B and B′ and for all positive integers N , α(B⊗
N) = α(B′ ⊗N) if and only if α(B) = α(B′). Many
common aggregation functions, such as max, cntd,
count, sum and avg, are expandable.

Given q(s̄, α(t̄))← A and q′(s̄′, α(t̄′))← A′, we say
that a query p is a join of q and q′ if p is defined as
p(s̄, α(t̄))← A ∧ θA′ ∧ s̄ = θs̄′, where θ is a substitu-
tion that maps the variables of A′

j to distinct unused
variables and s̄ = θs̄′ equates the terms in s̄ with
those in θs̄′. We use q ⊗ q′ to refer to an arbitrary
join of q and q′.

Theorem 6.4, reduces containment to equivalence
for queries with expandable aggregation functions.

Theorem 6.4 Let q and q′ be α-queries. Suppose
that α is an expandable function. Then q ⊆ q′ if and
only if (q ⊗ q) ≡ (q′ ⊗ q).

Proof (Sketch). Consider a database D and a tuple
d̄. Suppose that q computes the bag B of values for
d̄ and q′ computes the bag B′ of values for d̄. It
is not difficult to show that in this case, q ⊗ q will
compute the bag B⊗|B| for d̄ and q′⊗q will compute
the bag B′ ⊗ |B| for d̄. Since α is an expandable

(a) Positive relational queries

Agg. Function Complexity

max, percent, avg NP-complete
count, sum GI-complete2

(b) Positive queries

Agg. Function Complexity

max ΠP
2 -complete

count, sum, percent, avg3 in PSPACE

Table 1: Complexity of equivalence

aggregation function, α(B) = α(B′) if and only if
α(B ⊗ |B|) = α(B′ ⊗ |B|), for |B| > 0.

“⇐” Suppose that q ⊗ q ≡ q′ ⊗ q. If q returns
an aggregate value for d̄, then |B| > 0. Therefore,
α(B⊗|B|) = α(B′⊗|B|) implies that α(B) = α(B′),
i.e., q and q′ return the same aggregate value for d̄.

“⇒” Suppose that q ⊆ q′. If q does not return
an aggregate value for d̄, then both q ⊗ q and q′ ⊗ q
will not return an aggregate value for d̄. Otherwise,
q returns an aggregate value for d̄, and q′ returns
the same aggregate value. Therefore, from α(B) =
α(B′), we conclude that α(B ⊗ |B|) = α(B′ ⊗ |B|),
i.e., q ⊗ q and q′ ⊗ q return the same value for d̄.

7 Related Work

We briefly state known complexity results for
the equivalence problem. Table 1(a) summarizes
complexity results for positive relational aggregate
queries. Table 1(b) summarizes complexity results
for positive aggregate queries (that may have com-
parisons). The results from both tables appear
in [23, 13, 10]. For proper quasilinear queries, equiv-
alence can be determined in polynomial time [8]. For
arbitrary α-queries, the complexity of equivalence de-
pends on the complexity of determining validity of
ordered α-identities [8].

Containment and equivalence for positive rela-
tional nonaggregate queries evaluated under bag and
bag-set was studied in [6, 18]. In [17], the expres-
sivity of logics that extend first-order logic by ag-
gregation was studied. The problem of determin-
ing satisfiability of a conjunction of aggregation con-

2GI denotes the class of problems that are many-one re-
ducible to the graph isomorphism problem.

3This complexity result is only known for avg-queries that
do not have constants.

8

straints was considered in [24]. An interesting open
issue is combining results on aggregate-query equiv-
alence with that of [24] in the investigation of aggre-
gate queries with a HAVING clause. Other related
work includes [14, 10, 11] which study the view us-
ability problem for aggregate queries. The results
on view usability are based on characterizations for
equivalence of aggregate queries over a set of views.

Acknowledgments

Many of the results in this paper were derived during
the author’s doctoral research [7]. The author wishes
to thank Werner Nutt and Yehoshua Sagiv, who were
both her doctoral advisors and collaborators, for their
invaluable guidance during her research.

References

[1] D. Barbara and T. Imielinski. Sleepers and worka-
holics: Caching strategies in mobile environments.
In Proc. of SIGMOD, 1994.

[2] M. Benedikt and L. Libkin. Exact and approximate
aggregation in constraint query languages. In Proc.
of PODS, 1999.

[3] A. Chandra and P. Merlin. Optimal implementa-
tion of conjunctive queries in relational databases.
In Proc. of STOC, 1977.

[4] S. Chaudhuri and U. Dayal. An overview of
data warehousing and OLAP technology. SIGMOD
Record, 26(1), 1997.

[5] S. Chaudhuri, S. Krishnamurthy, S. Potarnianos,
and K. Shim. Optimizing queries with materialized
views. In Proc. of ICDE, 1995.

[6] S. Chaudhuri and M. Vardi. Optimization of real
conjunctive queries. In Proc. of PODS, 1993.

[7] S. Cohen. Equivalence, Containment and Rewriting
of Aggregate Queries. PhD thesis, Hebrew University
of Jerusalem, Israel, 2004.

[8] S. Cohen, W. Nutt, and Y. Sagiv. Equivalences
among aggregate queries with negation. ACM Trans-
actions on Computational Logic. To appear.

[9] S. Cohen, W. Nutt, and Y. Sagiv. Containment of
aggregate queries. In Proc. of ICDT, 2003.

[10] S. Cohen, W. Nutt, and A. Serebrenik. Rewriting
aggregate queries using views. In Proc. of PODS,
1999.

[11] S. Cohen, W. Nutt, and A. Serebrenik. Algorithms
for rewriting aggregate queries using views. In Proc.
of ADBIS-DASFAA, 2000.

[12] A. Dobra, M. N. Garofalakis, J. Gehrke, and R. Ras-
togi. Processing complex aggregate queries over data
streams. In Proc. of SIGMOD, 2002.

[13] S. Grumbach, M. Rafanelli, and L. Tininini. On the
equivalence and rewriting of aggregate queries. Acta
Informatica, 4(8), 2004.

[14] S. Grumbach and L. Tininini. On the content of
materialized aggregate views. Journal of Computer
and System Sciences, 66(1), 2003.

[15] A. Gupta, V. Harinarayan, and D. Quass. Aggregate
query processing in data warehouses. In Proc. of
VLDB, 1995.

[16] A. Gupta and I. S. Mumick, editors. Materialized
Views—Techniques, Implementations and Applica-
tions. MIT Press, 1999.

[17] L. Hella, L. Libkin, J. Nurmonen, and L. Wong. Log-
ics with aggregate operators. Journal of the ACM,
48(4), 2001.

[18] Y. Ioannidis and R. Ramakrishnan. Beyond relations
as sets. ACM Transactions on Database Systems,
20(3), 1995.

[19] D. Johnson and A. Klug. Optimizing conjunctive
queries that contain untyped variables. SIAM Jour-
nal on Computing, 12(4), 1983.

[20] A. Levy and Y. Sagiv. Semantic query optimization
in datalog programs. In Proc. of PODS, 1995.

[21] A. Levy, D. Srivastava, and T. Kirk. Data model
and query evaluation in global information systems.
Journal of Intelligent Information Systems, 5(2),
1995.

[22] S. Madden, R. Szewczyk, M. J. Franklin, and
D. Culler. Supporting aggregate queries over ad-
hoc wireless sensor networks. In Proc. 4th IEEE
Workshop on Mobile Computing Systems and Appli-
cations, 2002.

[23] W. Nutt, Y. Sagiv, and S. Shurin. Deciding equiva-
lences among aggregate queries. In Proc. of PODS,
1998.

[24] K. Ross, D. Srivastava, P. Stuckey, and S. Sudar-
shan. Foundations of aggregation constraints. In
Proc. 2nd Int. Workshop on Principles and Practice
of Constraint Programming, 1994.

[25] D. Srivastava, S. Dar, H. Jagadish, and A. Levy.
Answering queries with aggregation using views. In
Proc. of VLDB, 1996.

[26] J. D. Ullman. Principles of Database and Knowledge-
Base Systems, volume I. Computer Science Press,
1988.

[27] R. van der Meyden. The complexity of querying
indefinite data about linearly ordered domains. In
Proc. of PODS, 1992.

9

