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1 Introduction cal consequence for most types of integrity constraintsl use

in databases [27, 5]. Many papers have used the chase since
Let Xy, ¥ be two schemas, which may overl@bbe a set of  then? . It seemed surprising that there would still exist funda-
constraints on the joint schema U X, andg; be a¥;-query.  mental properties of the chase left undiscovered. Noneskel
An (equivalent) reformulation of ¢; in the presence of is  we thought that the C&B algorithm provided such a property.
a Yp-query, g2, such thaig, gives the same answers @son  This was formally verified in [13] where we proved that with
any¥; UX,-database instance that satistiesn general, there  constraints to which the chase applies, whenever the chase t
may exist multiple such reformulations and choosing amongminated, C&B would find all minimal reformulations of con-
them may require, for example, a cost model. junctive (select-project-join) queries.

In 1999 we published an algorithm, called Chase and Back-  This completeness property holds also for the complex val-
chase (C&B), for enumerating the reformulations of a queryues and OO model, using a generalization of the chase devel-
under constraints [11]. Our main motivation was query opti- oped in [30]. Moreover, the C&B algorithm was used also
mization, in whichX;’s role is played by thdogical schema  for the reformulation of XML queries, via a compilation from
and,’s role by thephysical schemaWe found that the as- XML to relational queries and constraints [14, 12, 10]. Thes
sertions used for integrity constraints (a.k.a. depen@shdy  early successes encourage us to think that C&B could become a
relating the elements of the logical and physical schemas co versatile tool for query processing. This survey will atfgro
stitute a flexible tool for modeling ideas such as “semantic” provide an introduction to the why, when, and especially how
optimization [4], and the use of cached data or materializedbf C&B.
views [33, 3].

The 1999 paper did not limit itself to the standard relatlona .
model and instead, following [30] and more distantly [6,,23] 2 Whatis C&B?
covered complex values and OO classes with extents. A com-
prehensive approach to query optimization for this modtel, i From the beginning it was observed that the chase can also be
cluding join (usual and dependent) reordering, appearf8in used to decide containment (hence equivalence) of cornyenct
see also[29]. queries in the presence of constraints. Indeed, if the cbfase

Query reformulation is also essential for data publish8®y[ ¢ With C terminates producing a quegy theng; Cc go iff
12] whereX, is the public schema arig, the proprietary (stor-  ¢c < ¢2 and the latter can be checked by finding a containment
age) schema. It is equally essential in schema evolutiomavhe Mapping fromg, to ¢. [9, 2]. (Here,q1 Cc¢ g2 means that
¥, respectivelyE, is the old, respectively new schema. wheng; andqg: are applied to any instance that satistiethe

Since views can be modeled as a pair of inclusion con-2nswers ofj; are contained in those gf. Similarly for=c.)
straints, the C&B algorithm provided a new technique forriew In the reformulation problem, however, we are only given
ing with views [25] and hence was also applicable to informa-C andg¢; and we must decide whether there exisig asuch
tion integration. In fact, we had already shown in [11] that thatgi =c g2. Sincegs is among infinitely many queries of the
C&B will find all reformulations of conjunctive queries ugin ~ same type ag; deciding this isn’t obvious. Moreover, in prac-
conjunctive views, if such reformulations exists. Howewvee  tice we want to actually computega when it exists, in fact we
should emphasize that C&B findsguivalentreformulations ~ Probably want to enumerate thg's that provide solutions and
while in information integration, when equivalent refolmu ~ choose among them based on cost criteria. But it's easy to see
tions may not exist, one is also very much interested in refor that queries can be syntactically “padded” with redundaint
mulations that produce some (as many as possible) of the arwhile conserving equivalence, ad infinitum. We are theeefor
swer tuples [26, 1, 21, 7]. led to searching for solutions that satisfy some syntaltyida-

As its name suggest, C&B is using tbkase a technique terminedminimality condition. (See the definition of minimal-
developed 25+ years ago for the purposes of deciding logiity under constraints in section 4.) As a consequence, wé sha
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Figure 1: Chase and Backchase.

solve both the reformulation problem and a generalization o

the query minimization problem [9, 2].

The C&B algorithm applies to the case whenis acon-
junctive queryand when the constraints dhare either d@uple-
generating dependency (tgof)the form

Vx(4(x) — Iyv(x,y))
or anequality-generating dependency (egfithe form
Vx(p(x) = (21 = 22))

(see [5]). Herep(x) andw(x,y) are conjunctions of atomic
formulas oveZ; U 5, all of the variables ik must appear in
¢(x), andz;, z2 must be among the variablessin

subqueries of/. This is done in thebackchase phasgeso
called because we check for equivalence withby chasing
subqueries oV with C. These chase sequences go “back-
wards”, toward thed/ we already have. For each such candi-
date reformulation we can stop (equivalence holds) whaneve
we have a containment mapping frobh into an intermedi-
ate chase result or (no equivalence) when the chase tegsinat
without such a containment mapping. In fact, as we shall see
(Section 4), itis enough to check the existence of a contaimm
mapping from the original query into any intermediate result
of chasing the candidate subquerylaf

We see that in both the chase and the backchase phase the
algorithm (and Theorem 1) needs the chase sequences te termi
nate. In [5] it was shown that this is always the case if thestgd
aretotal or full [2] (they cannot havée) while the egds can be
arbitrary. While full tgds cannot in general model the plgsi
structures or the integration/exchange mappings we have be
come interested in, Deutsch and Popa have recently disabver
a significantly larger and remarkably useful class of tgdsd th
can. Chase sequences with such sets of dependencies, called
weakly acyclidn [17, 18] andstratified-witnessn [13, 14] are
guaranteed to terminate. The set of constraints from Exaghpl
in Section 3 is weakly acyclic.

Finally, note that the subqueriesi@fare in generall; UXs-
queries. Some of them may in fact by-queries §; itself
is onel) and some may bE,-queries. The theorem above

These two classes (tgds and egds) together comprise th§uarantees that if},-reformulations exist, then we shall find
(embedded) implicational dependencies [16], which seem tq|| minimal ones among the subqueried bf

include essentially all of the naturally-occurring coastts on
relational databases. Furthermore, tgds, which wererailyi

meant as a generalization of integrity constraints suclias j 3 Schemas and Constraints, Queries and

and inclusion dependencies turn out to be ideally suitedéer

scribing schema mappings in data exchange [18] and data inte

gration [24], as well as for capturing physical structungs-t
cally used in query optimization (views, indexes, join iR€s,

Rewritings

In this article we focus our presentation on a scenario where
query reformulation is applied to a distributed heterogerse

gmaps, etc.) [11]. As a whole, the class of embedded implicagpyironment, with multiple schemas that are interconritloge

tional dependencies is remarkably well-suited for représg

complex relationships. The problem is that of finding aléern

most intra- and inter-schema relationships that are of mMpo e (and equivalent) reformulations of a query that isiadiig

tance in practice.
C&B proceeds in two phases. In tbhase phasét usesC

to chasey; until (and if) no more chase steps are possible. We

call the resulting query/, auniversal plan, see Figure 1
Now it's time to recall thaty is 3;-query, that we are look-

ing for a Xo-query as reformulation, and that the constraints

in C are on the joint schemd; U X5. The universal plan(/,
resulting from the chase aof; with C will (in general) be a

31 U Xa-query. We can think of the universal plan as incorpo-

ratingall possible alternative ways to answgetin the presence
of the constraint€. This intuition is fully justified by the fol-
lowing [13]:

Theorem 1 If ¢,,, is @ minimal conjunctiv&; U¥»-query equiv-
alenttog; underC, i.e.,q1 =¢ qm, theng,, is (isomorphic to)
a subquenyof the universal plai/.

It is now possible to effectively enumerate all minimal re-

formulated in terms of one of the schemas. Our running ex-
ample will show the challenges (and opportunities) for guer
reformulation in such an environment. The example will depi
constraints that fall into one of four categories:

1. (Traditional) single-database constraintge.g., key and
foreign key constraints.)

2. Relationships (mappings) between schemas. These
constraints are a consequence of how these repositories
have been created and subsequently maintained.

3. Domain knowledge constraints. These constraints are
assertions that are true about a specific situation, for ex-
ample, the fact that a customer id has a unique nation
code across repositories.

4. Constraints capturing materialized views. These con-
straints express the fact that data is redundantly stored in
both base tables and materialized views.

formulations. Indeed, we need only search the finite space of



RSC database with parts RSC master data repository contain The following tgdS describe formally the foreign key con-

ordered on-line RSC suppliers and RSC customers . N i
el their relationship (based on orders) straintsfi, fo, andf3 shown in Figure 2.
Ite
ARYY ebOrder Site 3 '/ fi: WebOrder(p,s,o,c,q) — Jen Cust(c, cn)
part () s : for Supp2Cust(s,o,c) — IsadsnIh MasterSupp(s, sa, sn, h)
supp_id --kd---du___ i astersupp | fa:  Supp2Cust(s,o,c) — JenIca MasterCust(c, cn, ca)
: orderkey. | i ¢ % i TSuPP_id¥~ 1
3 bcust_id TN iy i psaddr 1 . . . .
| aty A gfpatlon | 2. Relationships (mappings) between schemaghe mapping
") cust I N LU R m, from Sites 1 and 2 to Site 3 reflects the fact that the master
| 'custt__id N E " Supp2Cust § data repository will be refreshed with data from Site 1 arnid Si
77777777 e Yo s suppidT 2, forinstance due to a periodic process that takes custanaer
S k ‘C’L‘ite_rﬁey\ supplier info from Site 1, joins with Site 2 to get extra stippl
. AT Mastercust  (6) | information (e.g.saddr andsnation ) and updates appropriate
Site2 (// S Kcust id | tables of Site 3. Such a mapping can be specified using schema
| SuppCatalog /}/ ! ‘Egzgfn § mapping tools (e.g., Clio [31]). In Figure 2, the mapping is
—{'supp_id /" == ! shown informally via the dotted arrows grouped unaegr The
saddr /| link betweensupp_id in Site 1 andsupp_id in Site 2 reflects the
| Z?rit('ft’gr;, | ~_An external on-ine join. Formally, the meaning of mapping; is expressed by the
bee-ssimeom-ed catalog of suppliers following tgd (universal quantifiers are again dropped):
Figure 2: Retail Store Chain Example my: WebOrder(p, s,o,c,q) A Cust(c, cn)

A SuppCatalog(s, sa, sn, d)

Example 1 (Running) Consider a large retail store chain (call — Jh3dca (MasterSupp(s, sa, sn, h)

it RSC) maintaining and accessing several repositorieR wit A Supp2Cust(s,o,c) A MasterCust(c,cn, ca))
data about its suppliers, customers and parts.

One of the repositories (located at Site 2) is an external Another example of a mapping between schemas (not shown
read-only, on-line directory of suppliers. The other reoges in Figure 2 to avoid cluttering) is the following tgd, expses
are internal but distributed across Sites 1 and 3, with diffe that SuppCatalog is an “authority” for supplier information,
ent structure, and with different although possibly ovepiag  and every supplier il asterSupp at Site 3 can be found in
data. The repository at Site 1 is a database containing partSuppCatalog at Site 2. (The converse may not be true.)
ordered on-line and some of the associated customer and sup-
plier information. Additional repositories like this mayist
(not shown here for simplicity). The repository at Site 3 is a
central repository intended to contain all the informatidout
RSC suppliers, customers and the orders that relate them. Fi
ure 2 illustrates the schemas of these repositories; itkpits
some of the intra- and inter-schema constraints that hold.

ma : MasterSupp(s, sa, sn,h) — 3d SuppCatalog(s, sa, sn,d)

3. Domain knowledge constraintsThe fact that a customerid
has a unique nation code (across all repositories) is expdes
by adding the following egd to the earlier key constraints:

Example 2 (Constraints) We illustrate next some of the con- e : Cust(c, cn) A MasterCust(c,en’, ca) — cn = cn/

straints associated with the schemas in the running example

These constraints fall under the first three categoriesioreed ~ Note thate is more general than a functional dependency, as it
earlier. We shallillustrate constraints in the fourth gatey, de- ~ states a property about tuples in different tables.

scribing views, later in Section 5.

1. (Traditional) single-database constraints.The following
egds can be used to express thatt_id plays the role of a
key in the each of the tabl€sust and M asterCust and sim- q(p,c,sa,sn) :— WebOrder(p,s,o,c,q),
ilarly, supp_id is a key inM asterSupp. (As a notational con- SuppCatalog (s, sa, sn, d)
venience, we will drop the the universal quantifiers in froht

a dependency, and implicitly assume such quantification.) ~ The queryy retrieves all parts that were ordered at Site 1, with
the addresses and nations of suppliers and with the customer

ids. The query needs to access Site 1 and Site 2, to be executed
in its current form.

Given the overall configuration, is equivalent to the fol-
lowing (non-obvious) rewriting:

Example 3 (Reformulations) Consider the following query (ex-
pressed in conjunctive query notation [2]):

ki : Cust(c,en) A Cust(c,en’) — en = cn’
ka: MasterCust(c, cn,ca) A MasterCust(c,cn’, ca’)
— (ecn=cn') A (ca = ca’)
ks : MasterSupp(s,sa, sn,h) A MasterSupp(s, sa’,sn’,h’)
— !/ _ ’ N
— (sa = sa’) A(sn=sn) A (h=H) q (p,c,sa,sn) :— WebOrder(p,s,o,c,q),

MasterSupp(s, sa, sn, h)



The queryq’ accesses Site 1 and Site 3 (all within RSC) andqueriess; ands, above. Intuitively, replacingn’ with cn pre-
avoids the external catalog (which could be slower, lesg-ava serves{e}-equivalence ofs; t0 g,.,, Sincecn = cn' is im-
able, may require subscription, etc). Thys,is potentially  plied by e (the duplicate atonCust(c,cn)is removed). It is
more efficient with respect to execution time or cost. easy to check that the removal of the secakterCusttom

preserves equivalence ¢ even in the absence of constraints.
If for Example 1 we have that; contains the union of the

schemas at all sites andj = >, then Example 3 shows that
we need to consider at least two candidates for evaluation:
andgq itself. As the configuration of the system grows larger
(e.g., additional databases, cached queries, matedaliewss,
etc.), the number of equivalent rewritings increases a(agl
we shall also see in a later example). This increases thapote
tial for improvement in performance but at the same time pose
the challenge of finding such reformulations in a systenzatit
complete way. Example 5 (Chase)Recall the query from Example 3:
Section 4 describes how the C&B algorithm can be used
for systematic enumeration of available reformulationisT
enumeration is based on constraints such as the ones @skcrib SuppCatalog(s, sa, sn, d)
above. In Section 5 we modify the running example by addinga chase step of with f; yields
materialized views (one in the example). We then descrilae ho

As illustrated in Figure 1, the C&B algorithm proceeds in
two phases. In thehase phasgthe original query; is chased
with the constraints i€, yielding the quenyU called auni-
versal plan Thebackchase phasenumerates all-minimal
subqueriesq of U which are formulated against, and areC-
equivalenttay (sq =¢ q). (A subquerys obtained by dropping
one or more atoms in the original query with the conditiort tha
the head variables continue to appear in the new query body.)

q(p,c,sa,sn) :— WebOrder(p,s,o,c,q),

the same C&B algorithm is able to find extra, view-based refor 1P ¢:sa,5n) = — WebOrder(p,s, 0, ¢,q), Cust(c, cn),
mulations, by using additional constraints describingvilees. SuppCatalog(s, sa, sn, d)

which chases withn; to
4 The C&B Algorithm U(p,c,sa,sn) :— WebOrder(p,s,o,c,q),Cust(c,cn),

SuppCatalog(s, sa, sn,d),
Given a conjunctive queryand a sef of constraints, the C&B

algorithm finds reformulationg’ of ¢ underC (i.e. ¢’ =¢ q)
which areminimal underC (in shortC-minimal). The notion
of minimality of a conjunctive query in the absence of con- MasterCust(c, en, ca)

straints is well-known [9, 2]g is minimal if dropping any of  which is the universal plan since no further chase step eppli
its atoms compromises equivalenceytd-or minimality under
constraints, we require a subtle modification:

Master Supp(s, sa, sn, h),
Supp2Cust(s,o,c),

For each subqueryy of U, to checksq =¢ ¢ it suffices to
checksg C¢ ¢. Indeed, by constructiofi is contained insq,
Definition 1 (Minimality under constraints) A conjunctivequ- U C sq, andU =¢ ¢ because the chase preserves equivalence
ery g is C-minimal if there are no queries;, s wheres; is under constraints [2]. Checkingy C. ¢ reduces according
obtained fromy by replacing zero or more variables with other to classical results to finding a containment mapping frpm
variables ofq, and s, by dropping at least one atom from into the result of chasingg with C [2]. Finding a containment
such thats; ands; remain equivalenttq: ¢ =¢ s1 =¢ so. mapping into anntermediateresult of chasing also suffices to
show containment.

Pruning Property. An immediate yet naive backchase imple-
mentation would exhaustively enumerate all subqueries. We
can however avoid this by using the following key obsenatio

Intuitively, the variable replacement reflects the eqisaibe-
tween replaced and replacing variables as implied by thaliégu
generating dependencies (egdsyin

Example 4 (called thepruning property which follows from the defini-
tion of C-minimality: given a subqueryq of U with sq =¢ g,
gnm(cn,en’) 1= Cust(c,cn), MasterCust(c, cn, ca), every subqueryq’ of U corresponding to a superset af's
Cust(c,cn’), MasterCust(c,cn’, ca’) atoms (we say thatq’ is a superqueryof sq) cannot be both
si(en,en) :—  Cust(c,en), MasterCust(c,cn, ca), C-equivalent tay andC-minimal.

The pruning property enables an efficient backchase imple-
mentation which enumerates subquerie&’dfottom-up start-
ing with all subqueries generated by one atorfyotontinuing

The queny,.,. above yields pairs of nations of customers listed With those generated by all pairs of atoms, then all triplestsi
with the same customer id. The query is minimal in the ab-SO ON- AS S00n as a subquenyiequivalent tay, it is output

sence of constraints: we cannot drop any atom, as proven b nd all its superqueries are pruned from subsequent coaside

the absence of containment mappings. However, for constrai 1°N- This enumeration discipline avoids even generatiog-n
¢ from Example 2,g,.m is not {e}-minimal, as witnessed by minimal reformulations. We will discuss alternate baclggha
“nm 1

implementations shortly.

MasterCust(c,cn, ca’)

sa(en,en) = Cust(c, en), MasterCust(c, cn, ca)



Example 6 (Backchase)The rewritingg’ of g from Example3  Note that there may be two edges in the same direction between
corresponds to the subquery©@fgenerated by thevebOrder  two nodes, if exactly one of the two edges is special. Then
andMasterSupmtoms. Since’ has no smaller subquery, it is is weakly acyclidgf the dependency graph has no cycle going
one of the starting points in the bottom-up backchase. Tolche through a special edge. We say that a set of tgds and egds is
qd Cc q, we chase’ with C. A first chase step with constraint weakly acyclic if the set of all its tgds is weakly acyclic.

mo yields
Theorem 3 ([17, 13]) If C is a weakly acyclic set of tgds and
¢ (p,c;sa,sn) :— WebOrder(p,s,o,c,q), egds, then the chase withof any conjunctive query termi-
MasterSupp(s, sa, sn, h), nates.
SuppCatalog(s, sa, sn,d) ) ]
By Theorems 3 and 2, the C&B algorithm is sound and
Although we could continue to chase with and thenm;, complete for weakly acyclic sets of constraints:
it is not necessary. We can already find a containment map- _ )
ping fromg to ¢/ (the identity mapping), thus proving thgtis Corollary 1 pr’ is a weakly acyphc set of _tg.ds and egds, then
equivalentundef tog. It can be checked that is C-minimal. the C&B algorithm outputs precisely tideminimal reformula-

In fact, itis a property of the C&B algorithm that it outputsly ~ t1ONS Of its input query.

C-minimal reformulations. The complexity of the chase. For fixed schemas and sét

_ The backchase will enumerate additional subqueries andt ¢onsiraints, it is weakly acyclic then any chase sequence
will possibly output other minimal reformulations. Foriasce,  iarminates in polynomial time in the size of the query being

the subquery ob/ generated by it8VebOrdemndSuppCatalog  chased (as shown in [17, 13]). The fixed size assumption about
atoms isy itself. schemas and constraints is often justified in practice, &her

. . one is usually interested in repeatedly reformulating imeo

In the _example, th_e retrieval of rewriting as a_subqu.ery of ing queries for the same setting with schemas and congtraint
the universal plan is not merely a happy coincidence: by The-

orem 1, we have that whenever the chase is guaranteed to tel}l_onetheless, the degree of the polynomial depends on the siz

. L . . of the dependencies and care is needed to implement the chase
minate, all minimal reformulations of a query will be foung b efficiently. Successive implementations have shown tharin-
the C&B algorithm: y- p hartal

tical situations the chase is eminently usable [29, 28, 2D, 1

Theorem 2 (Sound and complete C&B [11, 13])Let ¢ be a  The complexity of reformulation. Assume that the chase of
conjunctive query an@ a set of tgds and egds such that the any query wittC terminates in polynomialtime. Then checking
chase of any query wiifi terminates. Then the C&B algorithm Whether a conjunctive query admits a reformulation is NP-

outputs precisely alf-minimal reformulations of (up to iso- ~ complete in the size of. Checking whether a given query
morphism). is aC-minimal reformulation ofy is NP-complete in the sizes

of ¢ andr. Note that for arbitrary sets of dependencies (for
The C&B algorithm relies on the termination of the chase. which the chase may not even terminate), the above problems

This property is in general undecidable for conjunctivergee  are undecidable.
and constraints given by tgds and egds. However, the notion oalternative strategies for backchase.The complexity of the
weak acyclicityof a set of constraints, is sufficient to guarantee packchase is an even more delicate issue since even thagh th
that any chase sequence terminates. This is the leasttiestri  size of the universal plan is (with weakly acyclic dependen-
sufficient termination condition we are aware of, holdingih  cies) polynomial in that of the original query, in the worase
scenarios we encountered in practice (including our exejnpl  the backchase enumerates exponentially many minimal solu-

tions [29]. Above, we presented the backchase as a bottom-up

Definition 2 (W_eakly acyclic set of constraints) LetC be aset procedure that generates subqueries of the universalplan
of tgds over a fixed schema. Construct a directed graphdcallegating from the smallest subqueries and extending the wi

thedependency graplas follows: (1) there is a node for every gqqitional atoms fron. The algorithm stops extending a sub-
pair (i, A) with |2 a relation symbol of the schema ardan 61y as soon asq becomegquivalento the original query
attribute of /z; call such pair(R, A) a position (2) add edges , gyichsq is guaranteed to be@minimal reformulation of;.

as follows: for every tga(x) — 3yv(x,y) in C and for every Symmetrically, another way of implementing the backchase
x in x thatoceursin ¢ minimization is atop-down decremental, procedure that goes
e For every occurrence afin ¢ in position(R, A;): from the universal plan down to its subqueries by elimirgatin
(a) forevery occurrence afin ¢ in position(S, B;),add ~ onerelational atom at a time in a systematic way, startiyat
an edgd R, A;) — (S, B;). ery step a new branch per available atom. The algorithm stops

(b) in addition, for every existentially quantified variabl ~descending on a branch whenevera-equivalensubquery is
y and for every occurrence gfin ¢ in position(7’, C,), found. The last equivalent query on that branchdsminimal

add aspecial edgéR, A;) = (T, Cy,). reformulation. |
The top-down and the bottom-up algorithms are dual and

produce the exact same output. However, the bottom-up ap-



proach has a crucial advantage in that it can be mixedewilr ~ which state the inclusions between the result of the qudig-de
based pruningwhen cost information is available). The result- ing the view, and the materialized talite Set
ing procedure is as follows. When we find the first minimal re-
fo?n?ulation, we estimate its cost (for example, based adi-tra Cvi={dy |V e VIU{dy |V € V}.
tional methods that include join reordering). This costdrees We consider two flavors of rewriting using views: rewrit-
the best cosso far and it will be subsequently replaced by the ings using exclusively the views (also callestal rewritings
cost of every minimal reformulation that we may find later. in [25]), and rewritings using both the views and the base ta-
Once the best costis in place, for every explored subquegy, e bles inY; (calledpartial rewritings in [25]). Thus, given con-
before checking for equivalence, we compute its cost. If thejunctive X, -queryq and set of constraintd overy;, the prob-
cost is higher than the best cost so far, then we can prune them of finding all total conjunctive query rewritings qfre-
subquerytogether with all of its superqueriesithout check-  duces to finding all minimal reformulations @gainst schema
ing equivalence. This pruning still guarantees that thetiea ¥, := )V under constraint§ U Cy.. For partial rewritings, we
cost reformulation is found under the (typically tfy@ssump-  setS, := ¥; U V. According to Theorem 2, both flavors are
tion that queries become more expensive by adding extrasatomcompletely solved by the C&B algorithm.
(joins). The improvementin performance of the overall roeth . . .
is then substantial, sometimes over an order of magnitugle [2 EX@mple 7 Continuing our example, consider the following
Bottom-up backchase minimization with cost-based pruisng query launched at Site 1, which retrieves all parts provised

. . ) . Japanese suppliers and ordered by US customers.
further extended in [28] to deal also with cases in which the
above assumption may be violated (for example, due to the j2us(p) :— WebOrder(p,s,o,c,q),Cust(c, “US"),
presence of indexes). Additional exploration strategiestib- SuppCatalog(s, sa, “Japan”, d)
gueries of the universal plan are investigated in [29]. €her )
was shown that in various practical situations, the C&B ragth N 9eneral, the query would need to access Sites 1 and 2. As-
can bestratified which means essentially, that the universal sume however that the previously answered queinpm Ex-

plan can be decomposed into independent fragments (Sma"&mple 3 is cached at Site 1, in cache entiyhe,. Thenj2us

universal plans). For each fragment the backchase min+'mizah"’lS a partial rewriting which reuses the pre-computed jbin o

tion is applied in the usual way. The minimal reformulations ' €007 der and SuppCatalog, performing only the remain-

that result for each fragment can then be put together, oy joi ing join between the cache entry and the customer table, both
ing, as minimal reformulations for the entire process. Tae n

located at Site 1:
effect is a significant reduction in the exponent of the dearc j2us’(p) : —cachey(p, ¢, sa, “Japan”), Cust(c, “US”)
space, and hence considerable improvementin the perfaaman

of the method. This is more efficient as it avoids network access to Site 2,
and saves the time to recompute the joinlBebOrder and
. . SuppCatalog.
5 Adding Views The C&B algorithm discovers this rewriting when called

with ¥, := ¥; UV andC U Cy, whereV contains the names
We show next that materialized views defined by conjunctiveof all active cache entrie;; is the union of the schemas at all
queries can be captured using tgds, and hence the C&B a|gos_ites, and’y, is constructed as describ_ed_ abov_e. For instance,
rithm serves in particular as a complete algorithm whichdind €Ny cache, can be seen as the materialized view
all minimal rewritings of a conjunctive query using conjtine cacheq(p,c, sa,sn) :— WebOrder(p,s,o,c,q),
qguery views under integrity constraints. All we need to do is
add the constraints (tgds) capturing the views, and refatau
the query against a schema containing the view names.

In detall, letV be a set of views defined by conjunctive diacheq : WebOrder(p, s, 0,c,q) A SuppCatalog(s, sa, sn, d)
gueries against;. The views define a relationship between
schema&:; and the schemHt, in which each view namg de-
notes the table with the materialized result of the homonysno
view. We express this relationship equivalently using tteo$

SuppCatalog(s, sa,sn,d)
andCy, includes the constraints:

— cacheq(p, ¢, sa, sn)
dgacheq : cacheq(p, ¢, sa, sn) — JsJoIq3d
WebOrder(p, s, o,c,q)

dependencigd, constructed as follows. For each vigive V, ASuppCatalog(s, sa, sn, d)
assume w.l.o.g. that it is defined by the query Now j2us chases withn, thendiacheq’ to
V(%) : — body(x,y) j2usi(p) :— WebOrder(p,s,o,c,q),Cust(c, “US"),

wherebodyis a conjunctive query body and y are its vari- SuppCatalog(s, sa, “Japan”, d),

ables. Letd},, d%, be the dependencies (over schea V): Master Supp(s, sa, “Japan”, h),
) ) Supp2Cust(s,o,c),
dy @ body(x,y) — V(x) di, : V(x) — Jy body(x,y) MasterCust(c, “US” , ca),

2And in fact, the very idea of minimization is based on suchuagstion. cacheq(p, ¢, sa, “Japan”)



This is the universal plan, and it contains the equivalentuniversal plans of significantly larger size than encoledén
(and minimal) rewritingj2us’ as the subquery given by the any real-life relational scenarios (as a typical data paini-
second and last atoms. In fact, the universal plan includes e  versal plans of 300 atoms were obtained by chasing queries of
more. The following two subqueries of the universal plan arepg atoms). Both the chase and the backchase implementation
alsoC-minimal reformulations o 2us: were engineered to scale, and the feasibility of the methamsl w
j2us"(p) :— WebOrder(p,s,o,c,q), Cust(c, “US"), proven in a battery of experiments [10, 12].
Relationship to data integration and non-equivalent rewri-

MasterSupp(s, sa, “Japan”, h) . . -, .
ings. The C&B algorithm looks for rewritings that are equiv-

j2us” (p) :— WebOrder(p,s,o,c,q), . o
) ) alent (retrieve the same answers as the original query)etJnd
MasterSupp(s, sa, “Japan”, h), this semantics, it is more general than previously known-alg
MasterCust(c, “US”, ca) rithms for rewriting using views, because it additionakikés

into account general constraints (tgds and egds). In maay in

While the first of the two rewritings above is similar to the . ; , . L
. T, .. gration scenarios however, there is no equivalent revgrgind
earlier rewritingg’ (Example 3), the second of the two rewrit- . . L Y
one is content to approximate the original quetyy finding a

ings is slightly different and less obvious. Its equivaleno . , - -
- : : maximally-contained rewriting Significant research has been
the original query (which can be proven by chasing) depends__ . . S "
- ) "~ tarried out on algorithms which find such rewritings for con-
essentially on the existence of several of the constraintise

o unctive queries. Contained rewritings are unions of cooju
system (specificallyyno, f1, and even the egd). The last two I q : 9 coo
X ! . tive queries expressed exclusively in terms of the views and
reformulations do not include the viewdche,) but they can . . . : -
: . contained ing [15, 21]. Maximally-contained rewritings are
be equally good candidates for execution.

. " contained rewritings which contain any other containeditew
This example shows the versatility of the C&B method as a. g y

rewriting tool that unifies several different concepts (ezgpws, ng O.f ¢, thus being the best under-qpprquaﬂon g0t sing
; ) ... theviews. The problem was generalized in [7] to replace siew
constraints, mappings) under one umbrella, that of rewgiti

under constraints with schema mapping constraints from the source schema to
' the target schema, also allowing constraints on the tachetsa.
[22] generalizes the setting even further, allowing scharap-

6 Other Considerations pings in both directions, and settling the problem by charitis
decidability boundaries and providing tight complexityinals.
Dictionaries. An interesting property of the query and de-  Although in its basic form the C&B algorithm returns only

pendency languages used in [30, 11] is the usdicfonary ~ equivalentrewritings, it turns out that a simplified version acts
structures. In conjunction with complex values, dictioesr @s a dual to the algorithms for finding maximally-contained
can be used (see [11]) to model OO classes with extents, priewritings [21], by providing an alternate approximatidhe
mary and secondary indexes on either relations or clasatexte Minimally-containing rewriting A containing rewriting ofg
and gmaps [33]. On one hand this allows one to express ant$ & conjunctive query against the views which containg\
optimize arbitrary OQL queries [8]. On the other hand, the ex minimally-containing rewriting is a containing rewritighich
plicit presence of indexes allows an optimizer that uses @B IS contained in any other containing rewriting @f It is thus
automatically discover non-trivial execution plans thatue  the best “over-approximation” of. The simplified algorithm
not be found by traditional optimizers (including the orfeatt  is the following:

perform rewriting using materialized views [21]).

More expressive queries and constraintsFor simplicity, we 2. Restrict the body of/ only to the vocabulary of views,
have presented the C&B only for conjunctive queries and con- obtaining a query/

straints given by tgds and eg‘?'s- However,.the soundness_and 3. If M is safe (i.e., its head variables appear in the body),
completeﬁes_s of thel Q&B carries over to unions of conjuectiv output M, otherwise output “no containing rewriting of
queries with inequalities, and tgds and egds extended vgth d ¢ exists”.

junction and inequalities (using an appropriate geneatibn

of the chase) [10, 13, 14]. This simplification of C&B skips the backchase minimization
XML query reformulation. We were able to apply the C&B stage. The following result states that the algorithm isnsou
method to XML query reformulation, by using a relational en- and complete for finding the minimally-containing rewrgin
coding of queries, views and constraints that are origjvalit- which is unique up to equivalence:

ten against a schema which models the XML tr_ee. Relation—.l.heorem 4 Assume that the chaseferminates. Then ad-
ships between XML elements (such as parent-child and asreest _ . - o L : -
descendant) are captured by relational tables satisfygrigio mits a m|n|mally-c0ntaln|ng rewriting if a’?‘?' only if the it
constraints (e.g. each child has at most one parent, themesc f|e_d.C&B algont_hm outpu_tfs Sth a rewriting. Mqreover, the
dant table is transitive, etc.). We could show that for a Sig_mlmmally—contalmng rewriting is unique up to equivalenc
nificant class of XML queries, the minimal reformulationsar Relationship to data exchangeThere are several interesting
found by running the C&B algorithm on the relational encod- parallels (and differences) between the C&B method and the
ing [10, 13, 14]. The encoding turned out to lead to queries an formalism for data exchange that was developed in [18, 19].

1. Chasey and obtain the universal pldn.
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