
Query Reformulation with Constraints∗

Alin Deutsch
University of California at San Diego

deutsch@cs.ucsd.edu

Lucian Popa
IBM Almaden Research Center

lucian@almaden.ibm.com

Val Tannen
University of Pennsylvania

val@cis.upenn.edu

1 Introduction

Let Σ1,Σ2 be two schemas, which may overlap,C be a set of
constraints on the joint schemaΣ1 ∪Σ2, andq1 be aΣ1-query.
An (equivalent) reformulation of q1 in the presence ofC is
a Σ2-query,q2, such thatq2 gives the same answers asq1 on
anyΣ1∪Σ2-database instance that satisfiesC. In general, there
may exist multiple such reformulations and choosing among
them may require, for example, a cost model.

In 1999 we published an algorithm, called Chase and Back-
chase (C&B), for enumerating the reformulations of a query
under constraints [11]. Our main motivation was query opti-
mization, in whichΣ1’s role is played by thelogical schema
andΣ2’s role by thephysical schema. We found that the as-
sertions used for integrity constraints (a.k.a. dependencies), by
relating the elements of the logical and physical schemas con-
stitute a flexible tool for modeling ideas such as “semantic”
optimization [4], and the use of cached data or materialized
views [33, 3].

The 1999 paper did not limit itself to the standard relational
model and instead, following [30] and more distantly [6, 23],
covered complex values and OO classes with extents. A com-
prehensive approach to query optimization for this model, in-
cluding join (usual and dependent) reordering, appeared in[28],
see also[29].

Query reformulation is also essential for data publishing [32,
12] whereΣ1 is the public schema andΣ2 the proprietary (stor-
age) schema. It is equally essential in schema evolution where
Σ1 respectivelyΣ2 is the old, respectively new schema.

Since views can be modeled as a pair of inclusion con-
straints, the C&B algorithm provided a new technique for rewrit-
ing with views [25] and hence was also applicable to informa-
tion integration. In fact, we had already shown in [11] that
C&B will find all reformulations of conjunctive queries using
conjunctive views, if such reformulations exists. However, we
should emphasize that C&B findsequivalentreformulations
while in information integration, when equivalent reformula-
tions may not exist, one is also very much interested in refor-
mulations that produce some (as many as possible) of the an-
swer tuples [26, 1, 21, 7].

As its name suggest, C&B is using thechase, a technique
developed 25+ years ago for the purposes of deciding logi-

∗Database Principles Column. Column editor: Leonid Libkin, Depart-
ment of Computer Science, University of Toronto, Toronto, Ontario M5S 3H5,
Canada. E-mail: libkin@cs.toronto.edu.

cal consequence for most types of integrity constraints used
in databases [27, 5]. Many papers have used the chase since
then1 . It seemed surprising that there would still exist funda-
mental properties of the chase left undiscovered. Nonetheless,
we thought that the C&B algorithm provided such a property.
This was formally verified in [13] where we proved that with
constraints to which the chase applies, whenever the chase ter-
minated, C&B would find all minimal reformulations of con-
junctive (select-project-join) queries.

This completeness property holds also for the complex val-
ues and OO model, using a generalization of the chase devel-
oped in [30]. Moreover, the C&B algorithm was used also
for the reformulation of XML queries, via a compilation from
XML to relational queries and constraints [14, 12, 10]. These
early successes encourage us to think that C&B could become a
versatile tool for query processing. This survey will attempt to
provide an introduction to the why, when, and especially how,
of C&B.

2 What is C&B?

From the beginning it was observed that the chase can also be
used to decide containment (hence equivalence) of conjunctive
queries in the presence of constraints. Indeed, if the chaseof
q1 with C terminates producing a queryqc thenq1 ⊆C q2 iff
qc ⊆ q2 and the latter can be checked by finding a containment
mapping fromq2 to qc [9, 2]. (Here,q1 ⊆C q2 means that
whenq1 andq2 are applied to any instance that satisfiesC the
answers ofq1 are contained in those ofq2. Similarly for≡C .)

In the reformulation problem, however, we are only given
C andq1 and we must decide whether there exists aq2 such
thatq1 ≡C q2. Sinceq2 is among infinitely many queries of the
same type asq1 deciding this isn’t obvious. Moreover, in prac-
tice we want to actually compute aq2 when it exists, in fact we
probably want to enumerate theq2’s that provide solutions and
choose among them based on cost criteria. But it’s easy to see
that queries can be syntactically “padded” with redundant joins
while conserving equivalence, ad infinitum. We are therefore
led to searching for solutions that satisfy some syntactically de-
terminedminimalitycondition. (See the definition of minimal-
ity under constraints in section 4.) As a consequence, we shall

1In this survey we assume familiarity with conjunctive queries, homomor-
phisms and the chase procedure which are all covered extensively in [2]. To
keep the paper self-contained we review these definitions inthe appendix.



��ΣΣΣΣ1�

��ΣΣΣΣ
�
∪∪∪∪ΣΣΣΣ

�
�

��
�
��

�
	

�
��

���������	
�
	�
 �������
������������
����ΣΣΣΣ2

���
��
�������� �������

��
�����
��
��

����
��������������

���������

Figure 1: Chase and Backchase.

solve both the reformulation problem and a generalization of
the query minimization problem [9, 2].

The C&B algorithm applies to the case whenq1 is a con-
junctive queryand when the constraints inC are either atuple-
generating dependency (tgd)of the form

∀x(φ(x) → ∃yψ(x,y))

or anequality-generating dependency (egd)of the form

∀x(φ(x) → (x1 = x2))

(see [5]). Here,φ(x) andψ(x,y) are conjunctions of atomic
formulas overΣ1 ∪ Σ2, all of the variables inx must appear in
φ(x), andx1, x2 must be among the variables inx.

These two classes (tgds and egds) together comprise the
(embedded) implicational dependencies [16], which seem to
include essentially all of the naturally-occurring constraints on
relational databases. Furthermore, tgds, which were originally
meant as a generalization of integrity constraints such as join
and inclusion dependencies turn out to be ideally suited forde-
scribing schema mappings in data exchange [18] and data inte-
gration [24], as well as for capturing physical structures typi-
cally used in query optimization (views, indexes, join indexes,
gmaps, etc.) [11]. As a whole, the class of embedded implica-
tional dependencies is remarkably well-suited for representing
most intra- and inter-schema relationships that are of impor-
tance in practice.

C&B proceeds in two phases. In thechase phaseit usesC
to chaseq1 until (and if) no more chase steps are possible. We
call the resulting queryU , auniversal plan, see Figure 1

Now it’s time to recall thatq1 is Σ1-query, that we are look-
ing for a Σ2-query as reformulation, and that the constraints
in C are on the joint schemaΣ1 ∪ Σ2. The universal plan,U ,
resulting from the chase ofq1 with C will (in general) be a
Σ1 ∪ Σ2-query. We can think of the universal plan as incorpo-
ratingall possible alternative ways to answerq1 in the presence
of the constraintsC. This intuition is fully justified by the fol-
lowing [13]:

Theorem 1 If qm is a minimal conjunctiveΣ1∪Σ2-query equiv-
alent toq1 underC, i.e.,q1 ≡C qm, thenqm is (isomorphic to)
a subqueryof the universal planU .

It is now possible to effectively enumerate all minimal re-
formulations. Indeed, we need only search the finite space of

subqueries ofU . This is done in thebackchase phase, so
called because we check for equivalence withq1 by chasing
subqueries ofU with C. These chase sequences go “back-
wards”, toward theU we already have. For each such candi-
date reformulation we can stop (equivalence holds) whenever
we have a containment mapping fromU into an intermedi-
ate chase result or (no equivalence) when the chase terminates
without such a containment mapping. In fact, as we shall see
(Section 4), it is enough to check the existence of a containment
mapping from the original queryq1 into any intermediate result
of chasing the candidate subquery ofU .

We see that in both the chase and the backchase phase the
algorithm (and Theorem 1) needs the chase sequences to termi-
nate. In [5] it was shown that this is always the case if the tgds
aretotal or full [2] (they cannot have∃) while the egds can be
arbitrary. While full tgds cannot in general model the physical
structures or the integration/exchange mappings we have be-
come interested in, Deutsch and Popa have recently discovered
a significantly larger and remarkably useful class of tgds that
can. Chase sequences with such sets of dependencies, called
weakly acyclicin [17, 18] andstratified-witnessin [13, 14] are
guaranteed to terminate. The set of constraints from Example 2
in Section 3 is weakly acyclic.

Finally, note that the subqueries ofU are in generalΣ1∪Σ2-
queries. Some of them may in fact beΣ1-queries (q1 itself
is one!) and some may beΣ2-queries. The theorem above
guarantees that ifΣ2-reformulations exist, then we shall find
all minimal ones among the subqueries ofU.

3 Schemas and Constraints, Queries and
Rewritings

In this article we focus our presentation on a scenario where
query reformulation is applied to a distributed heterogeneous
environment, with multiple schemas that are interconnected by
complex relationships. The problem is that of finding alterna-
tive (and equivalent) reformulations of a query that is initially
formulated in terms of one of the schemas. Our running ex-
ample will show the challenges (and opportunities) for query
reformulation in such an environment. The example will depict
constraints that fall into one of four categories:

1. (Traditional) single-database constraints(e.g., key and
foreign key constraints.)

2. Relationships (mappings) between schemas.These
constraints are a consequence of how these repositories
have been created and subsequently maintained.

3. Domain knowledge constraints.These constraints are
assertions that are true about a specific situation, for ex-
ample, the fact that a customer id has a unique nation
code across repositories.

4. Constraints capturing materialized views.These con-
straints express the fact that data is redundantly stored in
both base tables and materialized views.



supp_id
saddr
snation
history

MasterSupp
Site 3

cust_id
cnation
caddr

MasterCust

part
supp_id
orderkey
cust_id
qty

WebOrder
Site1

supp_id
saddr
snation
directory

SuppCatalog

Site2

cust_id
cnation

Cust

supp_id
orderkey
cust_id

Supp2Cust
(f�)

(f�)

(f�)

(m�)

RSC database with parts 
ordered on-line

RSC master data repository containing 
RSC suppliers and RSC customers and 
their relationship (based on orders)

An external on-line 
catalog of suppliers

Figure 2: Retail Store Chain Example

Example 1 (Running) Consider a large retail store chain (call
it RSC) maintaining and accessing several repositories with
data about its suppliers, customers and parts.

One of the repositories (located at Site 2) is an external,
read-only, on-line directory of suppliers. The other repositories
are internal but distributed across Sites 1 and 3, with differ-
ent structure, and with different although possibly overlapping
data. The repository at Site 1 is a database containing parts
ordered on-line and some of the associated customer and sup-
plier information. Additional repositories like this may exist
(not shown here for simplicity). The repository at Site 3 is a
central repository intended to contain all the informationabout
RSC suppliers, customers and the orders that relate them. Fig-
ure 2 illustrates the schemas of these repositories; it alsodepicts
some of the intra- and inter-schema constraints that hold.

Example 2 (Constraints) We illustrate next some of the con-
straints associated with the schemas in the running example.
These constraints fall under the first three categories mentioned
earlier. We shall illustrate constraints in the fourth category, de-
scribing views, later in Section 5.
1. (Traditional) single-database constraints.The following
egds can be used to express thatcust id plays the role of a
key in the each of the tablesCust andMasterCust and sim-
ilarly, supp id is a key inMasterSupp. (As a notational con-
venience, we will drop the the universal quantifiers in frontof
a dependency, and implicitly assume such quantification.)

k1 : Cust(c, cn) ∧ Cust(c, cn′) → cn = cn′

k2 : MasterCust(c, cn, ca) ∧ MasterCust(c, cn′, ca′)
→ (cn = cn′) ∧ (ca = ca′)

k3 : MasterSupp(s, sa, sn, h) ∧ MasterSupp(s, sa′, sn′, h′)
→ (sa = sa′) ∧ (sn = sn′) ∧ (h = h′)

The following tgds describe formally the foreign key con-
straintsf1, f2, andf3 shown in Figure 2.

f1 : WebOrder(p, s, o, c, q) → ∃cn Cust(c, cn)
f2 : Supp2Cust(s, o, c) → ∃sa∃sn∃h MasterSupp(s, sa, sn, h)
f3 : Supp2Cust(s, o, c) → ∃cn∃ca MasterCust(c, cn, ca)

2. Relationships (mappings) between schemas.The mapping
m1 from Sites 1 and 2 to Site 3 reflects the fact that the master
data repository will be refreshed with data from Site 1 and Site
2, for instance due to a periodic process that takes customerand
supplier info from Site 1, joins with Site 2 to get extra supplier
information (e.g.,saddr andsnation ) and updates appropriate
tables of Site 3. Such a mapping can be specified using schema
mapping tools (e.g., Clio [31]). In Figure 2, the mapping is
shown informally via the dotted arrows grouped underm1. The
link betweensupp id in Site 1 andsupp id in Site 2 reflects the
join. Formally, the meaning of mappingm1 is expressed by the
following tgd (universal quantifiers are again dropped):

m1 : WebOrder(p, s, o, c, q) ∧ Cust(c, cn)

∧ SuppCatalog(s, sa, sn, d)

→ ∃h∃ca (MasterSupp(s, sa, sn, h)

∧ Supp2Cust(s, o, c) ∧ MasterCust(c, cn, ca))

Another example of a mapping between schemas (not shown
in Figure 2 to avoid cluttering) is the following tgd, expressing
thatSuppCatalog is an “authority” for supplier information,
and every supplier inMasterSupp at Site 3 can be found in
SuppCatalog at Site 2. (The converse may not be true.)

m2 : MasterSupp(s, sa, sn, h) → ∃d SuppCatalog(s, sa, sn, d)

3. Domain knowledge constraints.The fact that a customer id
has a unique nation code (across all repositories) is expressed
by adding the following egd to the earlier key constraints:

e : Cust(c, cn) ∧ MasterCust(c, cn′

, ca) → cn = cn
′

Note thate is more general than a functional dependency, as it
states a property about tuples in different tables.

Example 3 (Reformulations) Consider the following query (ex-
pressed in conjunctive query notation [2]):

q(p, c, sa, sn) : − WebOrder(p, s, o, c, q),

SuppCatalog(s, sa, sn, d)

The queryq retrieves all parts that were ordered at Site 1, with
the addresses and nations of suppliers and with the customer
ids. The query needs to access Site 1 and Site 2, to be executed
in its current form.

Given the overall configuration,q is equivalent to the fol-
lowing (non-obvious) rewriting:

q
′(p, c, sa, sn) : − WebOrder (p, s, o, c, q),

MasterSupp(s, sa, sn, h)



The queryq′ accesses Site 1 and Site 3 (all within RSC) and
avoids the external catalog (which could be slower, less avail-
able, may require subscription, etc). Thus,q′ is potentially
more efficient with respect to execution time or cost.

If for Example 1 we have thatΣ1 contains the union of the
schemas at all sites andΣ1 = Σ2, then Example 3 shows that
we need to consider at least two candidates for evaluation:q′

andq itself. As the configuration of the system grows larger
(e.g., additional databases, cached queries, materialized views,
etc.), the number of equivalent rewritings increases as well (as
we shall also see in a later example). This increases the poten-
tial for improvement in performance but at the same time poses
the challenge of finding such reformulations in a systematicand
complete way.

Section 4 describes how the C&B algorithm can be used
for systematic enumeration of available reformulations. This
enumeration is based on constraints such as the ones described
above. In Section 5 we modify the running example by adding
materialized views (one in the example). We then describe how
the same C&B algorithm is able to find extra, view-based refor-
mulations, by using additional constraints describing theviews.

4 The C&B Algorithm

Given a conjunctive queryq and a setC of constraints, the C&B
algorithm finds reformulationsq′ of q underC (i.e. q′ ≡C q)
which areminimal underC (in shortC-minimal). The notion
of minimality of a conjunctive query in the absence of con-
straints is well-known [9, 2]:q is minimal if dropping any of
its atoms compromises equivalence toq. For minimality under
constraints, we require a subtle modification:

Definition 1 (Minimality under constraints) A conjunctive qu-
ery q is C-minimal if there are no queriess1, s2 wheres1 is
obtained fromq by replacing zero or more variables with other
variables ofq, ands2 by dropping at least one atom froms1
such thats2 ands1 remain equivalent toq: q ≡C s1 ≡C s2.

Intuitively, the variable replacement reflects the equalities be-
tween replaced and replacing variables as implied by the equality-
generating dependencies (egds) inC.

Example 4

qnm(cn, cn
′) : − Cust(c, cn), MasterCust(c, cn, ca),

Cust(c, cn′), MasterCust(c, cn′

, ca
′)

s1(cn, cn) : − Cust(c, cn), MasterCust(c, cn, ca),

M asterCust(c, cn, ca
′)

s2(cn, cn) : − Cust(c, cn), MasterCust(c, cn, ca)

The queryqnm above yields pairs of nations of customers listed
with the same customer id. The query is minimal in the ab-
sence of constraints: we cannot drop any atom, as proven by
the absence of containment mappings. However, for constraint
e from Example 2,qnm is not {e}-minimal, as witnessed by

queriess1 ands2 above. Intuitively, replacingcn′ with cn pre-
serves{e}-equivalence ofs1 to qnm, sincecn = cn′ is im-
plied by e (the duplicate atomCust(c,cn)is removed). It is
easy to check that the removal of the secondMasterCustatom
preserves equivalence tos1 even in the absence of constraints.

As illustrated in Figure 1, the C&B algorithm proceeds in
two phases. In thechase phase, the original queryq is chased
with the constraints inC, yielding the queryU called auni-
versal plan. Thebackchase phaseenumerates allC-minimal
subqueriessq of U which are formulated againstΣ2 and areC-
equivalent toq (sq ≡C q). (A subqueryis obtained by dropping
one or more atoms in the original query with the condition that
the head variables continue to appear in the new query body.)

Example 5 (Chase)Recall the queryq from Example 3:

q(p, c, sa, sn) : − WebOrder(p, s, o, c, q),

SuppCatalog(s, sa, sn, d)

A chase step ofq with f1 yields

q1(p, c, sa, sn) : − WebOrder(p, s, o, c, q), Cust(c, cn),

SuppCatalog(s, sa, sn, d)

which chases withm1 to

U(p, c, sa, sn) : − WebOrder(p, s, o, c, q), Cust(c, cn),

SuppCatalog(s, sa, sn, d),

MasterSupp(s, sa, sn, h),

Supp2Cust(s, o, c),

MasterCust(c, cn, ca)

which is the universal plan since no further chase step applies.

For each subquerysq of U , to checksq ≡C q it suffices to
checksq ⊆C q. Indeed, by constructionU is contained insq,
U ⊆ sq, andU ≡C q because the chase preserves equivalence
under constraints [2]. Checkingsq ⊆C q reduces according
to classical results to finding a containment mapping fromq
into the result of chasingsq with C [2]. Finding a containment
mapping into anintermediateresult of chasing also suffices to
show containment.
Pruning Property. An immediate yet naive backchase imple-
mentation would exhaustively enumerate all subqueries. We
can however avoid this by using the following key observation
(called thepruning property) which follows from the defini-
tion of C-minimality: given a subquerysq of U with sq ≡C q,
every subquerysq′ of U corresponding to a superset ofsq’s
atoms (we say thatsq′ is a superqueryof sq) cannot be both
C-equivalent toq andC-minimal.

The pruning property enables an efficient backchase imple-
mentation which enumerates subqueries ofU bottom-up, start-
ing with all subqueries generated by one atom ofU , continuing
with those generated by all pairs of atoms, then all triplets, and
so on. As soon as a subquery isC-equivalent toq, it is output
and all its superqueries are pruned from subsequent considera-
tion. This enumeration discipline avoids even generating non-
minimal reformulations. We will discuss alternate backchase
implementations shortly.



Example 6 (Backchase)The rewritingq′ of q from Example 3
corresponds to the subquery ofU generated by theWebOrder
andMasterSuppatoms. Sinceq′ has no smaller subquery, it is
one of the starting points in the bottom-up backchase. To check
q′ ⊆C q, we chaseq′ with C. A first chase step with constraint
m2 yields

q
′

1(p, c, sa, sn) : − WebOrder(p, s, o, c, q),

MasterSupp(s, sa, sn, h),

SuppCatalog(s, sa, sn, d)

Although we could continue to chase withf1 and thenm1,
it is not necessary. We can already find a containment map-
ping fromq to q′

1
(the identity mapping), thus proving thatq′ is

equivalent underC to q. It can be checked thatq′ isC-minimal.
In fact, it is a property of the C&B algorithm that it outputs only
C-minimal reformulations.

The backchase will enumerate additional subqueries and
will possibly output other minimal reformulations. For instance,
the subquery ofU generated by itsWebOrderandSuppCatalog
atoms isq itself.

In the example, the retrieval of rewritingq′ as a subquery of
the universal plan is not merely a happy coincidence: by The-
orem 1, we have that whenever the chase is guaranteed to ter-
minate, all minimal reformulations of a query will be found by
the C&B algorithm:

Theorem 2 (Sound and complete C&B [11, 13])Let q be a
conjunctive query andC a set of tgds and egds such that the
chase of any query withC terminates. Then the C&B algorithm
outputs precisely allC-minimal reformulations ofq (up to iso-
morphism).

The C&B algorithm relies on the termination of the chase.
This property is in general undecidable for conjunctive queries
and constraints given by tgds and egds. However, the notion of
weak acyclicityof a set of constraints, is sufficient to guarantee
that any chase sequence terminates. This is the least restrictive
sufficient termination condition we are aware of, holding inall
scenarios we encountered in practice (including our example).

Definition 2 (Weakly acyclic set of constraints)LetC be a set
of tgds over a fixed schema. Construct a directed graph, called
thedependency graph, as follows: (1) there is a node for every
pair (R,A) with R a relation symbol of the schema andA an
attribute ofR; call such pair(R,A) a position; (2) add edges
as follows: for every tgdφ(x) → ∃yψ(x,y) in C and for every
x in x thatoccurs in ψ:

• For every occurrence ofx in φ in position(R,Ai):

(a) for every occurrence ofx in ψ in position(S,Bj), add
an edge(R,Ai) → (S,Bj).

(b) in addition, for every existentially quantified variable
y and for every occurrence ofy in ψ in position(T,Ck),
add aspecial edge(R,Ai)

∗
→ (T,Ck).

Note that there may be two edges in the same direction between
two nodes, if exactly one of the two edges is special. ThenC
is weakly acyclicif the dependency graph has no cycle going
through a special edge. We say that a set of tgds and egds is
weakly acyclic if the set of all its tgds is weakly acyclic.

Theorem 3 ([17, 13]) If C is a weakly acyclic set of tgds and
egds, then the chase withC of any conjunctive queryq termi-
nates.

By Theorems 3 and 2, the C&B algorithm is sound and
complete for weakly acyclic sets of constraints:

Corollary 1 If C is a weakly acyclic set of tgds and egds, then
the C&B algorithm outputs precisely theC-minimal reformula-
tions of its input query.

The complexity of the chase. For fixed schemas and setC
of constraints, ifC is weakly acyclic then any chase sequence
terminates in polynomial time in the size of the query being
chased (as shown in [17, 13]). The fixed size assumption about
schemas and constraints is often justified in practice, where
one is usually interested in repeatedly reformulating incom-
ing queries for the same setting with schemas and constraints.
Nonetheless, the degree of the polynomial depends on the size
of the dependencies and care is needed to implement the chase
efficiently. Successive implementations have shown that inprac-
tical situations the chase is eminently usable [29, 28, 10, 12].
The complexity of reformulation. Assume that the chase of
any query withC terminates in polynomial time. Then checking
whether a conjunctive queryq admits a reformulation is NP-
complete in the size ofq. Checking whether a given queryr
is aC-minimal reformulation ofq is NP-complete in the sizes
of q andr. Note that for arbitrary sets of dependencies (for
which the chase may not even terminate), the above problems
are undecidable.
Alternative strategies for backchase.The complexity of the
backchase is an even more delicate issue since even though the
size of the universal plan is (with weakly acyclic dependen-
cies) polynomial in that of the original query, in the worst case
the backchase enumerates exponentially many minimal solu-
tions [29]. Above, we presented the backchase as a bottom-up
procedure that generates subqueries of the universal planU by
starting from the smallest subqueries and extending them with
additional atoms fromU . The algorithm stops extending a sub-
querysq as soon assq becomesequivalentto the original query
q. Suchsq is guaranteed to be aC-minimal reformulation ofq.

Symmetrically, another way of implementing the backchase
minimization is atop-down, decremental, procedure that goes
from the universal plan down to its subqueries by eliminating
one relational atom at a time in a systematic way, starting atev-
ery step a new branch per available atom. The algorithm stops
descending on a branch whenever anon-equivalentsubquery is
found. The last equivalent query on that branch is aC-minimal
reformulation.

The top-down and the bottom-up algorithms are dual and
produce the exact same output. However, the bottom-up ap-



proach has a crucial advantage in that it can be mixed withcost-
based pruning(when cost information is available). The result-
ing procedure is as follows. When we find the first minimal re-
formulation, we estimate its cost (for example, based on tradi-
tional methods that include join reordering). This cost becomes
thebest costso far and it will be subsequently replaced by the
cost of every minimal reformulation that we may find later.
Once the best cost is in place, for every explored subquery, even
before checking for equivalence, we compute its cost. If the
cost is higher than the best cost so far, then we can prune the
subquerytogether with all of its superquerieswithout check-
ing equivalence. This pruning still guarantees that the least-
cost reformulation is found under the (typically true2) assump-
tion that queries become more expensive by adding extra atoms
(joins). The improvement in performance of the overall method
is then substantial, sometimes over an order of magnitude [28].
Bottom-up backchase minimization with cost-based pruningis
further extended in [28] to deal also with cases in which the
above assumption may be violated (for example, due to the
presence of indexes). Additional exploration strategies for sub-
queries of the universal plan are investigated in [29]. There it
was shown that in various practical situations, the C&B method
can bestratified, which means essentially, that the universal
plan can be decomposed into independent fragments (smaller
universal plans). For each fragment the backchase minimiza-
tion is applied in the usual way. The minimal reformulations
that result for each fragment can then be put together, by join-
ing, as minimal reformulations for the entire process. The net
effect is a significant reduction in the exponent of the search
space, and hence considerable improvement in the performance
of the method.

5 Adding Views

We show next that materialized views defined by conjunctive
queries can be captured using tgds, and hence the C&B algo-
rithm serves in particular as a complete algorithm which finds
all minimal rewritings of a conjunctive query using conjunctive
query views under integrity constraints. All we need to do is
add the constraints (tgds) capturing the views, and reformulate
the query against a schema containing the view names.

In detail, letV be a set of views defined by conjunctive
queries againstΣ1. The views define a relationship between
schemasΣ1 and the schemaV , in which each view nameV de-
notes the table with the materialized result of the homonymous
view. We express this relationship equivalently using the set of
dependenciesCV constructed as follows. For each viewV ∈ V ,
assume w.l.o.g. that it is defined by the query

V (x) : − body(x,y)

wherebody is a conjunctive query body andx,y are its vari-
ables. Letd1

V , d
2

V be the dependencies (over schemaΣ1 ∪ V):

d1

V : body(x,y) → V (x) d2

V : V (x) → ∃y body(x,y)

2And in fact, the very idea of minimization is based on such assumption.

which state the inclusions between the result of the query defin-
ing the view, and the materialized tableV . Set

CV := {d1

V | V ∈ V} ∪ {d2

V | V ∈ V}.

We consider two flavors of rewriting using views: rewrit-
ings using exclusively the views (also calledtotal rewritings
in [25]), and rewritings using both the views and the base ta-
bles inΣ1 (calledpartial rewritings in [25]). Thus, given con-
junctiveΣ1-queryq and set of constraintsC overΣ1, the prob-
lem of finding all total conjunctive query rewritings ofq re-
duces to finding all minimal reformulations ofq against schema
Σ2 := V under constraintsC ∪ CV . For partial rewritings, we
setΣ2 := Σ1 ∪ V . According to Theorem 2, both flavors are
completely solved by the C&B algorithm.

Example 7 Continuing our example, consider the following
query launched at Site 1, which retrieves all parts providedby
Japanese suppliers and ordered by US customers.

j2us(p) : − WebOrder(p, s, o, c, q), Cust(c, “US”),

SuppCatalog(s, sa, “Japan”, d)

In general, the query would need to access Sites 1 and 2. As-
sume however that the previously answered queryq from Ex-
ample 3 is cached at Site 1, in cache entrycacheq. Thenj2us
has a partial rewriting which reuses the pre-computed join of
WebOrder andSuppCatalog, performing only the remain-
ing join between the cache entry and the customer table, both
located at Site 1:

j2us′(p) : −cacheq(p, c, sa, “Japan”), Cust(c, “US”)

This is more efficient as it avoids network access to Site 2,
and saves the time to recompute the join ofWebOrder and
SuppCatalog.

The C&B algorithm discovers this rewriting when called
with Σ2 := Σ1 ∪ V andC ∪ CV , whereV contains the names
of all active cache entries,Σ1 is the union of the schemas at all
sites, andCV is constructed as described above. For instance,
entrycacheq can be seen as the materialized view

cacheq(p, c, sa, sn) : − WebOrder(p,s, o, c, q),

SuppCatalog(s, sa, sn, d)

andCV includes the constraints:

d
1

cacheq
: WebOrder(p, s, o, c, q) ∧ SuppCatalog(s, sa, sn, d)

→ cacheq(p, c, sa, sn)

d
2

cacheq
: cacheq(p, c, sa, sn) → ∃s∃o∃q∃d

WebOrder(p,s, o, c, q)

∧SuppCatalog(s, sa, sn, d)

Now j2us chases withm1, thend1

cacheq
, to

j2us1(p) : − WebOrder(p, s, o, c, q), Cust(c, “US”),

SuppCatalog(s, sa, “Japan”, d),

MasterSupp(s, sa, “Japan”, h),

Supp2Cust(s, o, c),

MasterCust(c, “US”, ca),

cacheq(p, c, sa, “Japan”)



This is the universal plan, and it contains the equivalent
(and minimal) rewritingj2us′ as the subquery given by the
second and last atoms. In fact, the universal plan includes even
more. The following two subqueries of the universal plan are
alsoC-minimal reformulations ofj2us:

j2us
′′(p) : − WebOrder(p, s, o, c, q), Cust(c, “US”),

MasterSupp(s, sa, “Japan”, h)

j2us
′′′(p) : − WebOrder(p, s, o, c, q),

MasterSupp(s, sa, “Japan”, h),

MasterCust(c, “US”, ca)

While the first of the two rewritings above is similar to the
earlier rewritingq′ (Example 3), the second of the two rewrit-
ings is slightly different and less obvious. Its equivalence to
the original query (which can be proven by chasing) depends
essentially on the existence of several of the constraints in the
system (specifically,m2, f1, and even the egde). The last two
reformulations do not include the view (cacheq) but they can
be equally good candidates for execution.

This example shows the versatility of the C&B method as a
rewriting tool that unifies several different concepts (e.g., views,
constraints, mappings) under one umbrella, that of rewriting
under constraints.

6 Other Considerations

Dictionaries. An interesting property of the query and de-
pendency languages used in [30, 11] is the use ofdictionary
structures. In conjunction with complex values, dictionaries
can be used (see [11]) to model OO classes with extents, pri-
mary and secondary indexes on either relations or class extents
and gmaps [33]. On one hand this allows one to express and
optimize arbitrary OQL queries [8]. On the other hand, the ex-
plicit presence of indexes allows an optimizer that uses C&Bto
automatically discover non-trivial execution plans that would
not be found by traditional optimizers (including the ones that
perform rewriting using materialized views [21]).
More expressive queries and constraints.For simplicity, we
have presented the C&B only for conjunctive queries and con-
straints given by tgds and egds. However, the soundness and
completeness of the C&B carries over to unions of conjunctive
queries with inequalities, and tgds and egds extended with dis-
junction and inequalities (using an appropriate generalization
of the chase) [10, 13, 14].
XML query reformulation. We were able to apply the C&B
method to XML query reformulation, by using a relational en-
coding of queries, views and constraints that are originally writ-
ten against a schema which models the XML tree. Relation-
ships between XML elements (such as parent-child and ancestor-
descendant) are captured by relational tables satisfying certain
constraints (e.g. each child has at most one parent, the descen-
dant table is transitive, etc.). We could show that for a sig-
nificant class of XML queries, the minimal reformulations are
found by running the C&B algorithm on the relational encod-
ing [10, 13, 14]. The encoding turned out to lead to queries and

universal plans of significantly larger size than encountered in
any real-life relational scenarios (as a typical data point, uni-
versal plans of 300 atoms were obtained by chasing queries of
20 atoms). Both the chase and the backchase implementation
were engineered to scale, and the feasibility of the method was
proven in a battery of experiments [10, 12].
Relationship to data integration and non-equivalent rewrit-
ings. The C&B algorithm looks for rewritings that are equiv-
alent (retrieve the same answers as the original query). Under
this semantics, it is more general than previously known algo-
rithms for rewriting using views, because it additionally takes
into account general constraints (tgds and egds). In many inte-
gration scenarios however, there is no equivalent rewriting and
one is content to approximate the original queryq by finding a
maximally-contained rewriting. Significant research has been
carried out on algorithms which find such rewritings for con-
junctive queries. Contained rewritings are unions of conjunc-
tive queries expressed exclusively in terms of the views and
contained inq [15, 21]. Maximally-contained rewritings are
contained rewritings which contain any other contained rewrit-
ing of q, thus being the best “under-approximation” ofq using
the views. The problem was generalized in [7] to replace views
with schema mapping constraints from the source schema to
the target schema, also allowing constraints on the target schema.
[22] generalizes the setting even further, allowing schemamap-
pings in both directions, and settling the problem by charting its
decidability boundaries and providing tight complexity bounds.

Although in its basic form the C&B algorithm returns only
equivalentrewritings, it turns out that a simplified version acts
as a dual to the algorithms for finding maximally-contained
rewritings [21], by providing an alternate approximation:the
minimally-containing rewriting. A containing rewriting ofq
is a conjunctive query against the views which containsq. A
minimally-containing rewriting is a containing rewritingwhich
is contained in any other containing rewriting ofq. It is thus
the best “over-approximation” ofq. The simplified algorithm
is the following:

1. Chaseq and obtain the universal planU .
2. Restrict the body ofU only to the vocabulary of views,

obtaining a queryM .
3. If M is safe (i.e., its head variables appear in the body),

outputM , otherwise output “no containing rewriting of
q exists”.

This simplification of C&B skips the backchase minimization
stage. The following result states that the algorithm is sound
and complete for finding the minimally-containing rewriting,
which is unique up to equivalence:

Theorem 4 Assume that the chase ofq terminates. Thenq ad-
mits a minimally-containing rewriting if and only if the simpli-
fied C&B algorithm outputs such a rewriting. Moreover, the
minimally-containing rewriting is unique up to equivalence.

Relationship to data exchangeThere are several interesting
parallels (and differences) between the C&B method and the
formalism for data exchange that was developed in [18, 19].



The data exchange problem is the problem of materializing an
instance of a target schema based on an instance of a source
schema, and based on a set of source-to-target constraints,rep-
resenting the mapping between the two schemas.

First of all, both methods make use of the chase in a fun-
damental way. The C&B method applies the chase to construct
the universal plan, while in data exchange, the chase is applied
on the source instance to construct auniversal solution. Philo-
sophically, the concepts of universal plan and universal solution
are somewhat similar and play equally important roles. The
universal plan defines the space of all minimal reformulations
while the universal solution is the “best” representative for the
space of all possible target instances (or, solutions).

Second, both methods use minimization: in C&B, to gen-
erate all the minimal reformulations, in data exchange, to com-
pute the smallest universal solution (thecore of the universal
solutions [19]). In C&B, minimization is performed under con-
straints and we look for multiple and non-isomorphic refor-
mulations that are minimal under constraints. In contrast,in
data exchange there is only one core of the universal solutions
(up to isomorphism). This core is defined independently of the
constraints and represents the minimal form of a universal so-
lution, under homomorphisms which preserve the values that
appear in the source instance. Finally, another (important) dif-
ference is the complexity of the minimization process in the
two cases. In data exchange, computing the core of the univer-
sal solutions has polynomial-time algorithms in several cases
of practical relevance [19, 20]. In the more general settingof
C&B, minimization is exponential (NP-hard even without con-
straints, when it becomes tableau minimization [9]).

7 Conclusion

Many classical database problems such as semantic optimiza-
tion (i.e. rewriting using semantic constraints), minimization,
rewriting using views, equivalent query reformulation in data
publishing and integration, are particular instances of query re-
formulation under constraints. While the general reformula-
tion problem is undecidable, the least restrictive known con-
ditions which are sufficient to guarantee decidability (namely
weak acyclicity of the constraint set) hold in numerous prac-
tical scenarios. Under these conditions, C&B is a sound and
complete algorithm, thus providing a uniform solution to the
above problems (with applicability to object-oriented andXML
settings). Our experiments show that, with careful engineering
of the chase and backchase phases, the C&B method is viable
in practice. An online demo of the C&B method can be found
athttp://cb.ucsd.edu.

References

[1] S. Abiteboul and O. M. Duschka. Complexity of Answer-
ing Queries Using Materialized Views. InPODS, pages
254–263, 1998.

[2] S. Abiteboul, R. Hull, and V. Vianu. Foundations of
Databases. Addison-Wesley, 1995.

[3] S. Adali, K. S. Candan, Y. Papakonstantinou, and V. Sub-
rahmanian. Query Caching and Optimization in Dis-
tributed Mediator Systems. InSIGMOD, pages 137–148,
1996.

[4] C. Beeri and Y. Kornatzky. Algebraic Optimisation of
Object Oriented Query Languages.TCS, 116(1):59–94,
1993.

[5] C. Beeri and M. Y. Vardi. A Proof Procedure for Data
Dependencies.JACM, 31(4):718–741, 1984.

[6] P. Buneman, S. Naqvi, V. Tannen, and L. Wong. Prin-
ciples of Programming with Collection Types.TCS,
149(1):3–48, 1995.

[7] A. Calı̀, D. Calvanese, G. D. Giacomo, and M. Lenzerini.
Data Integration under Integrity Constraints. InCAiSE,
pages 262–279, 2002.

[8] R. G. G. Cattell, D. K. Barry, M. Berler, J. Eastman,
D. Jordan, C. Russell, O. Schadow, T. Stanienda, and
F. Velez, editors.The Object Data Standard: ODMG 3.0.
Morgan Kaufmann, 2000.

[9] A. K. Chandra and P. M. Merlin. Optimal Implementa-
tion of Conjunctive Queries in Relational Data Bases. In
STOC, pages 77–90, 1977.

[10] A. Deutsch.XML Query Reformulation Over Mixed and
Redundant Storage. PhD thesis, Dept. of Computer and
Information Sciences, University of Pennsylvania, 2002.

[11] A. Deutsch, L. Popa, and V. Tannen. Physical Data Inde-
pendence, Constraints and Optimization with Universal
Plans. InVLDB, pages 459–470, 1999.

[12] A. Deutsch and V. Tannen. MARS: A System for Publish-
ing XML from Mixed and Redundant Storage. InVLDB,
pages 201–212, 2003.

[13] A. Deutsch and V. Tannen. Reformulation of XML
Queries and Constraints. InICDT, pages 225–241, 2003.

[14] A. Deutsch and V. Tannen. XML Queries and Constraints,
Containment and Reformulation.TCS, 336(1):57–87,
2005.

[15] O. M. Duschka and M. R. Genesereth. Answering recur-
sive queries using views. InPODS, pages 109–116, 1997.

[16] R. Fagin. Horn Clauses and Database Dependencies.
JACM, 29(4):952–985, Oct. 1982.

[17] R. Fagin, P. G. Kolaitis, R. J. Miller, and L. Popa. Data
Exchange: Semantics and Query Answering. InICDT,
pages 207–224, 2003.



[18] R. Fagin, P. G. Kolaitis, R. J. Miller, and L. Popa.
Data Exchange: Semantics and Query Answering.TCS,
336(1):89–124, 2005.

[19] R. Fagin, P. G. Kolaitis, and L. Popa. Data Exchange:
Getting to the Core.ACM TODS, 30(1):174–210, 2005.

[20] G. Gottlob. Computing Cores for Data Exchange: New
Algorithms and Practical Solutions. InPODS, 2005.

[21] A. Halevy. Answering Queries Using Views: A Survey.
VLDB Journal, pages 270–294, 2001.

[22] C. Koch. Query Rewriting with Symmetric Constraints.
In Proceedings of FoIKS (LNCS 2284), pages 130–147,
2002.

[23] K. Lellahi and V. Tannen. A calculus for collections and
aggregates. In E. Moggi and G. Rosolini, editors,LNCS
1290: Category Theory and Computer Science (Proceed-
ings of CTCS’97), pages 261–280, 1997.

[24] M. Lenzerini. Data Integration: A Theoretical Perspec-
tive. In PODS, pages 233–246, 2002.

[25] A. Y. Levy, A. O. Mendelzon, Y. Sagiv, and D. Srivastava.
Answering Queries Using Views. InPODS, pages 95–
104, 1995.

[26] A. Y. Levy, A. Rajamaran, and J. J. Ordille. Querying Het-
erogeneous Information Sources Using Source Descrip-
tions. InVLDB, pages 251–262, 1996.

[27] D. Maier, A. O. Mendelzon, and Y. Sagiv. Testing Im-
plications of Data Dependencies.ACM TODS, 4(4):455–
469, 1979.

[28] L. Popa. Object/Relational Query Optimization with
Chase and Backchase. PhD thesis, Dept. of Computer and
Information Sciences, University of Pennsylvania, 2000.

[29] L. Popa, A. Deutsch, A. Sahuguet, and V. Tannen. A
Chase Too Far? InSIGMOD, pages 273–284, 2000.

[30] L. Popa and V. Tannen. An Equational Chase for Path-
Conjunctive Queries, Constraints, and Views. InICDT,
pages 39–57, 1999.

[31] L. Popa, Y. Velegrakis, R. J. Miller, M. A. Hernandez,
and R. Fagin. Translating Web Data. InVLDB, pages
598–609, 2002.

[32] J. Shanmugasundaram, J. Kiernan, E. Shekita, C. Fan, and
J. Funderburk. Querying XML Views of Relational Data.
In VLDB, pages 261–270, 2001.

[33] O. Tsatalos, M. Solomon, and Y. Ioannidis. The GMAP:
A Versatile Tool for Physical Data Independence.VLDB
Journal, 5(2):101–118, 1996.

A Some Definitions

We review the standard definitions of conjunctive queries, ho-
momorphisms, containment mappings and chase.

A conjunctive queryq over a schemaΣ is an expression
of the formq(x) : − φ(x,y) whereφ(x,y) is a conjunction
of atomic formulas (i.e., relational atoms, also calledsubgoals)
overΣ. We follow the usual notation and separate the atoms
in a query by commas. We callq(x) the headandφ(x,y)
thebody. We use a notation such asx for a vector of variables
x1, . . . , xk (not necessarily distinct). Every variable in the head
must appear in the body(i.e., the query must besafe). The set
of variables iny is assumed to be existentially quantified.

Given two conjunctionsφ(u) andψ(v) of atomic formulas,
a homomorphismfrom φ(u) to ψ(v) is a mappingh from the
set of variables inu to the set of variables inv such that for ev-
ery atomR(u1, . . . , un) of φ, the atomR(h(u1), . . . , h(un))
is in ψ. Given two conjunctive queriesq1(x) : − φ(x,y)
andq2(x′) : − ψ(x′,y′), a containment mappingfrom q1 to
q2 is a homomorphismh from φ(x,y) to ψ(x′,y′) such that
h(x) = x

′. A classical result [9] states that a necessary and
sufficient condition for the containment (under all instances) of
a conjunctive queryq1 into a conjunctive queryq2 is the exis-
tence of a containment mapping fromq2 to q1.

Assume a conjunctive queryq(x) : − φ(x,y) and a tgdt
of the form∀u(α(u) → ∃vβ(u,v)). Assume without loss of
generality thatv and the query have no variables in common.
The chase ofq with t is applicable if there is a homomorphism
h from α(u) to the body ofq, and moreover, ifh cannot be
extended to a homomorphismh′ from α(u) ∧ β(u,v) to the
body of q. In that case, achase stepof q with t andh is a
rewrite ofq into q′(x) : − φ(x,y) ∧ β(h(u),v).

Similarly, we can define a chase step with an egd. As-
sume a conjunctive queryq as before and an egde of the form
∀u(α(u) → (u1 = u2)). The chase ofq with e is applicable if
there is a homomorphismh fromα(u) toφ(x,y) so thath(u1)
andh(u2) are not the same variable. In that case, achase step
of q with e andh is a rewrite ofq into a queryq′ which is the
same asq except that all occurrences of the variableh(u1) (in
the head and in the body) are replaced by the variableh(u2).


