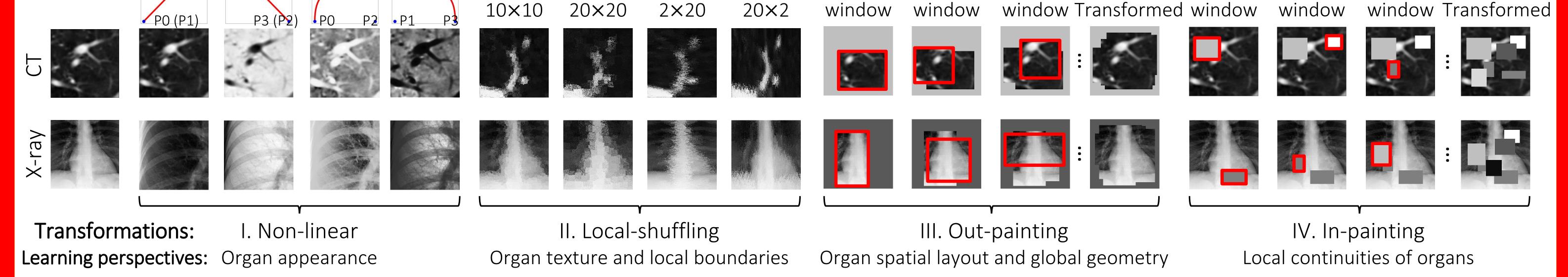


Models Genesis: Generic Autodidactic Models for 3D Medical Image Analysis

Zongwei Zhou¹, Vatsal Sodha¹, Md Mahfuzur Rahman Siddiquee¹, Ruibin Feng¹, Nima Tajbakhsh¹, Michael B. Gotway², and Jianming Liang¹

> ¹Arizona State University ²Mayo Clinic Project page: github.com/MrGiovanni/ModelsGenesis

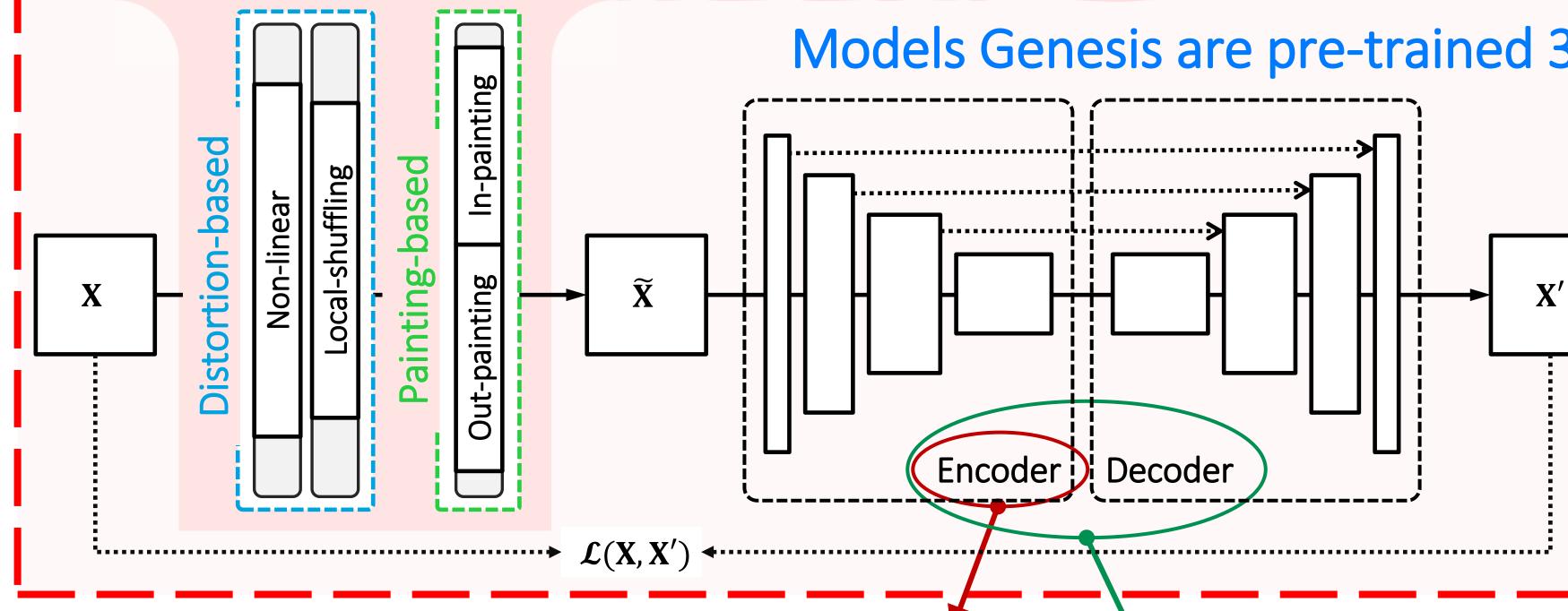


3rd

We provide pre-trained 3D models for 3D medical image analysis

Background: Transfer learning from natural images to medical images has established as one of the most practical paradigms in deep learning for medical image analysis. However, to fit this paradigm, 3D imaging tasks in the most prominent imaging modalities (e.g., CT and MRI) have to be reformulated and solved in 2D, losing rich 3D anatomical information and inevitably compromising the performance. Pre-trained 3D models have yet to emerge for 3D medical imaging. Contribution: A collection of pre-trained 3D generic source models, called Models Genesis, built directly from unlabeled 3D images with our novel selfsupervised learning method to learn common visual representation of anatomy for generating powerful application-specific target models via transfer learning. Vision: Through open science, we envision that Models Genesis may serve as a primary resource in transfer learning for 3D medical imaging, in particular, with limited annotation, and hope that such collaborative efforts will lead to the Holy Grail of Models Genesis, effective across diseases, organs, and modalities.

V. Combination


Image transformation

Ablation study: Learning from multiple perspectives leads to robust models

3rd

Task	Scratch (%)	I & II (%)	III & IV (%)	V (%)	<i>p</i> -value
Lung nodule false positive reduction	94.25 <u>+</u> 5.07	96.46 <u>+</u> 1.03	98.20 <u>+</u> 0.51	97.90 <u>+</u> 0.57	0.0848
Lung nodule segmentation	74.05 <u>+</u> 1.97	77.08 <u>+</u> 0.68	77.02 <u>+</u> 0.58	77.62±0.64	0.0520
PE false positive reduction	79.99 <u>+</u> 8.06	88.04±1.40	87.18 <u>+</u> 2.72	87.20 <u>+</u> 2.87	0.2102
Liver segmentation	74.60 <u>+</u> 4.57	79.08 <u>+</u> 4.26	78.62 <u>+</u> 4.05	79.52 <u>+</u> 4.77	0.4249
Brain tumor segmentation	90.16 <u>+</u> 0.41	90.60 <u>+</u> 0.20	90.46 <u>+</u> 0.21	90.59 <u>+</u> 0.21	0.4276

The statistical analyses are conducted between the top-2 models in each row highlighted in red.

Models Genesis are pre-trained 3D models for 3D medical image analysis

Take the pre-trained encoder for target **classification** tasks

Take the pre-trained encoder-decoder for target **segmentation** tasks

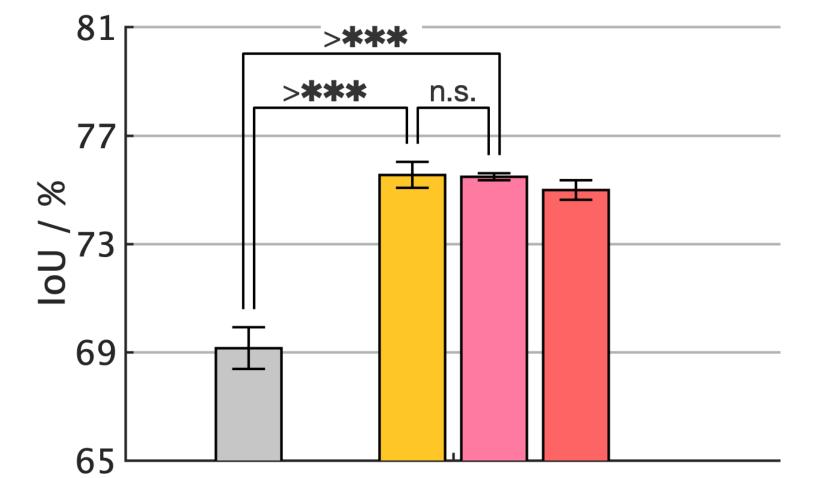
Result 1: Models Genesis outperform 3D models trained from scratch

Task	Modality	Metric	Scratch (%)	Genesis (%)	<i>p</i> -value	-
Lung nodule false positive reduction	СТ	AUC	94.25 <u>+</u> 5.07	98.20±0.51	0.0180	-
Lung nodule segmentation	CT	IoU	74.05 <u>+</u> 1.97	77.62 <u>+</u> 0.64	1.04e-4	
PE false positive reduction	CT	AUC	79.99 <u>+</u> 8.06	88.04 <u>+</u> 1.40	0.0058	
Liver segmentation	CT	IoU	74.60 <u>+</u> 4.57	79.52 <u>+</u> 4.77	0.0361	
Brain tumor segmentation	MRI	IoU	90.16 <u>+</u> 0.41	90.60±0.20	0.0041	
						-

The statistical analyses are conducted between Scratch and Genesis.

Properties of Models Genesis:

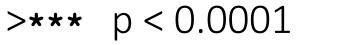
- Autodidactic—requiring no manual labeling
- Robust—learning from multiple perspectives
- Scalable—accommodating many training schemes


1 st

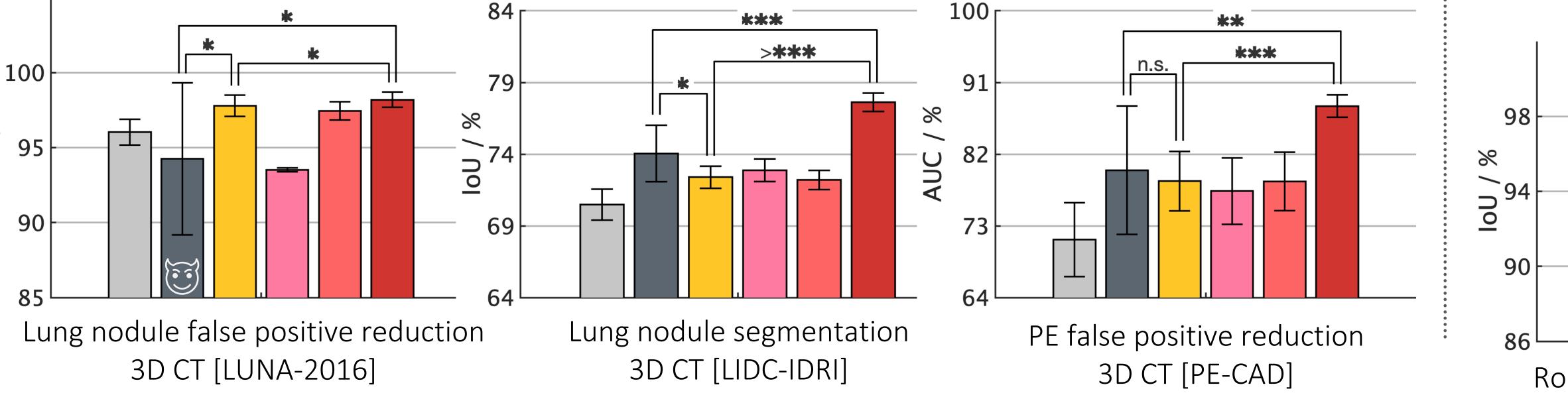
2nd

Generic—yielding diverse applications

Scratch 2D Scratch 3D ImageNet Genesis X-ray 2D Genesis CT 2D Genesis CT 3D no significance p < 0.05 p < 0.01 p < 0.001


Result 3: Models Genesis (downgraded 2D) offer performances equivalent to supervised pre-trained models (unprecedentedly)

Result 2: Models Genesis consistently top any 2D approaches


%

AUC

Eight pulmonary diseases classification 2D X-ray [ChestX-ray8]

n.s.

Rol/bulb/background classification 2D Ultrasound [UFL MCAEL]

😇 : Learning from scratch simply in 3D may not necessarily yield performance better than ImageNet-based transfer learning in 2D

Acknowledgments: This research has been supported partially by ASU and Mayo Clinic through a Seed Grant and an Innovation Grant, and partially by NIH under Award Number R01HL128785.