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Abstract 
Residential broadband digital subscriber loop (DSL) 
networks are used for many applications, such as surfing 
the Web, ICQ and e-mail. One of the more performance-
intensive applications is distributed gaming. Participants 
in an online game may subscribe to multiple ISP’s, or 
they may share the same ISP. In the case where several 
gamers share the same ISP, they will likely all reside in 
the same non -broadcast multiple access (NBMA) 
network. In this situation, manual configuration of each 
subscriber’s machine is often required for them to 
communicate. In this paper we detail a met hod that 
removes the need for manual intervention, and enables 
communications between machines on the same NBMA 
network. 
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1. INTRODUCTION 
In this paper we document a method for enabling 
communications between subscribers in differ ent 
premises connected by the non-broadcast multiple access 
(NBMA) network of an Internet services provider (ISP). 
The environment we discuss is typical of those used to 
provide high-speed digital subscriber link (DSL) services. 
A typical DSL network (see Figure 1) concentrates traffic 
from hundreds of subscribers at a DSLAM. The aggregate 
traffic is carried over a 45 Mbps DS -3 link from the 
DSLAM to an ATM edge switch. The traffic from several 
DSLAMs is aggregated at the edge switch and carried 
over a 155 Mbps optical OC-3 link to the ISP’s core 
switch. The core switch passes all the DSL traffic to a 
device which is a combined bridge / router. This last 
device is configured to bridge at layer 2 whenever 
possible, and only resorts to routing when it must. 
 
This network is called a “non -broadcast” multi-access 
(NBMA) network because broadcast traffic originated by 
a subscriber is not rebroadcast out the same physical 
interface on which it arrives at the ISP. This is the bridge / 
router interface labeled “1” in  Figure 1. This single 
physical interface may carry thousands of subscriber 
virtual circuits so that a misbehaving client PC could 
flood the network with broadcasts if all broadcasts were 
echoed at interface “1”. One consequence of NBMA 
behavior is that ARP requests from subscriber machines 

are terminated at the ISP. This is problematic for ISP's 
whose subscribers want to do such apparently simple 
things as running multiplayer games over the network. 
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Figure 1. DSL Network 

 
The ISP's network is usually configured at the bridge / 
router so that all subscribers are in the same IP subnet. 
This allows traffic between subscribers, and traffic 
incoming from the Internet to be bridged at layer 2 rather 
than routed at layer 3. Bridging is much less costly in 
terms of machine resources because the typical filter / 
forward / flood decisions can be implemented in terms of 
looking for an exact match in a table. In contrast, routing 
is based on a much more expensive "longest match" 
algorithm. If the subscribers were routed rather than 
bridged, then all incoming traffic (e.g. Web browsing) 
would have to be routed to each of the potentially 
thousands of subscribers. This would be incredibly 
wasteful of router cycles as all those subscribers are 
actually connected to the same physical interface, 
although using different virtual interfaces. 
 
When one subscriber's machine wishes to communicate 
with another on the same subnet, it sends out an ARP 



request.  The ARP request is sent as broadcast traffic, and 
in an NBMA network it will be terminated at the ISP. The 
target will not hear the ``broadcast'', and the requesting 
client will not get an ARP reply. 
 
The ARP broadcast problem could be solved by placing 
each subscriber premise in a separate subnet, but this is 
not feasible as it would require routing at the ISP. Proxy 
ARP, in which the bridge / router would reply with its 
own MAC address, is not feasible either because this 
would result in all inter -subscriber traffic being routed 
because the bridge / router would see a frame with its 
MAC address, but an IP address belonging to another 
device. 
 
ISP staff could walk each subscriber through the process 
of adding static ARP entries for each of their friends' 
machines to their PC, but this is very expensive in terms 
of support staff time.  In fact, the single most critical 
factor in an ISP's profitability is its ability to minimize 
time on the phone with subscribers. Further, dynamic 
address assignment through DHCP is common in these 
networks, so subscribers will have to be prepared to 
update their static entries whenever a friend's address 
changes. 
 
To solve this problem for a particular ISP, we began the 
process of developing a server running on a PC attached 
to a dedicated interface on the bridge / router. Our focus 
was on enabling subscriber-to-subscriber communications 
while relying as much as possible on the existing 
functionality in the network, and minimizing any manual 
configuration. In particular, we wanted to keep the PC out 
of the series path of normal communication, and minimize 
the functionality embedded in the server. 
 
We describe our work in the following, beginning with a 
review of previous work. This is followed by a 
description of the tests we performed at the ISP's 
premises. After describing our solution we present the 
performance of the server in order to address scalability 
concerns. The paper concludes with a summary and 
suggestions for future work. 

2. PREVIOUS WORK 
The original specification of ARP appears in RFC-826 [1]  
``An Ethernet Address Resolution Protocol.'' This RFC 
states explicitly that ``hosts do not transmit information 
about anyone other than themselves,'' so that the 
application outlined here is outside the original 
specification for ARP. 
 
The most closely related work is described in RFC-1735 
[2], ``NBMA Address Resolution Protocol (NARP),'' 
which deals with address resolution in NBMA networks. 
The focus of RFC -1735 is on resolving addresses 
belonging to foreign subnets within the same NBMA 
cloud. If the destination belongs to the same subnet, RFC-

1735 specifies that ARP or preconfigured tables are to be 
used. NARP is used only to resolve the address for a host 
in another subnet. Even in that case, the NBMA ARP 
server (NAS) is assumed to reside at an explicitly 
configured IP address. 
 
In RFC-1620 [3] the use of Address Resolution servers 
for shared media is outlined, but the document goes on to 
say that end stations must know the layer 2 address of the 
server - there is no intent to serve address resolution via 
broadcast. 
 
Finally, RFC-1433 [4] deals with a type of proxy ARP 
service in which foreign IP addresses are resolved to layer 
2 addresses. Again, this is quite different than the current 
problem, in which we are dealing with addresses within 
the same subnet. 
 
As there was no existing standardized method for solving 
the problem without having to configure each subscriber's 
machine(s), we proceeded to experiment with possible 
solutions. 

3. ISP PREMISE TESTS 
The solution we developed was to connect a server to a 
physical interface at the ISP's bridge / router distinct from 
the interface terminating the subscribers, as indicated in 
Figure 1. As a result, the ARP requests are broadcast to 
the server. The server then broadcasts an ARP request to 
the destination on behalf of the source.  Once the 
destination replies, the ARP server caches the reply as 
well as forwarding it to the original client. 
 
The test environment used to develop this solution 
consisted of two clients in separate geographic locations 
attached to the same NBMA network by DSL modems. 
The PVCs from the modems were terminated on a bridged 
virtual interface (BVI) within one router card of the 
bridge / router, which was a Cisco 6400.  An Ethernet 
interface on the router card was used to connect a PC 
running the test software to the BVI. 
 
When a client sends out an ARP request, the bridge / 
router will broadcast the request out the interface to which 
the ARP server is attached because it is on a different 
physical interface than the one on which the broadcast 
originally arrived. 
 
We first tried to have the PC create the ARP replies itself, 
but the 6400 refused to forward frames containing the 
containing its own MAC address (the MAC address of the 
BVI). We then configured the ARP server to react to an 
ARP request by originating a new ARP request for the 
destination on behalf of the original client. On receipt of 
the reply, the result is cached at the server and also sent 
back to the original client. 
 



This is a much better solution than just turning the PC 
into a special-purpose router, or finding some way to 
coerce an additional router into performing this service. 
Once the ARP server has returned the ARP reply to the 
original source, subsequent traffic flows via the 6400 
without involving the ARP server on the PC. This 
removes the PC from the series path of the subsequent 
data flow. 
 
Note that the ARP server is performing a service quite 
different than simple proxy ARP, in that it is exploring the 
subnet and replying on behalf of clients in the local 
subnet. The service is actually more like ARP spoofing, 
except that the server actually points the requesting client 
at the correct destination machine. This solution allows 
providers to maintain their current configurations while 
removing the need for any manual setup or maintenance 
of clients. 

4. SCALABILITY 
Once we had a working solution to the problem, we 
needed to determine how scalable the idea was. Even 
though the ARP server was not in the direct data flow of 
the DSL service, we wanted some idea of the rate of ARP 
requests it could be expected to handle. A simple PC 
running Linux might be acceptable in a production 
environment because this particular function may not be 
sufficiently critical that a highly reliable platform is 
required. 
 
Performance tests were run in the Co mmunication 
Networks Research Lab at the University of Alberta.  The 
lab test environment consisted of a PC that hosted the 
software, a Wandel & Goltermann DominoFE 
internetwork analyzer that generated ARP requests, and a 
Cisco 2505 router.  The PC was an Intel 400 MHz 
Celeron-based machine with 64 MB of SDRAM and five 
3Com 3c905B Ethernet interfaces. The operating system 
used was RedHat Linux 6.1, kernel 2.2.12.  We used three 
different test configurations to determine the effects of 
network rate and number of interfaces used. 

10 Mbps, HDX 
In this test, the DominoFE was attached to one port of the 
10 Mbps half-duplex Ethernet hub on the Cisco 2505. An 
Ethernet interface on the PC was attached to another port 
on the hub. The DominoFE generated ARP requests and 
sent them to router which then flooded them to the PC. 
The software on the PC received the ARP requests and 
sent back replies. No ARP lookups, ARP table 
maintenance or caching was done by the server; a fixed 
MAC address was used in all ARP replies. 
 
For this test, the Ethernet utilization (which was due 
solely to ARP traffic) was set at levels between 1% and 
10%. For each value of Ethernet utilization, the CPU 
utilization was recorded along with the number of ARP 

requests processed per second. The duration of each test 
was 60 seconds. Table 1 shows the results of this test. 
 
Ethernet 
Utilization, % 

ARP requests / 
sec 

CPU 
utilization, % 

1 126 1 
2 250 1 
3 373 2 
4 498 2 
5 622 2 

10 1241 5 
Table 1. Results of testing with 10Mbps HDX 

interface 
 
The ARP l oads used during this test are quite high. 
Virtually all network operating systems implement MAC 
address caching so there will not be an excessive amount 
of ARP traffic. For example, if clients typically hold one 
ARP entry (e.g. for gaming), and they age that entry out 
after 60 seconds, then a load of 100 ARPs/sec represents 
the load that would result from 6000 concurrently active 
clients in a single subnet. 
 
Our results show that the software can handle over 1200 
ARPs/sec using a simple 10 Mbps HDX link. Using the 
rough guide of 100 ARPs/sec for 6000 clients, this would 
be sufficient to support 72,000 subscribers. 

100 Mbps, FDX, One Interface 
The second test involved only the DominoFE and the PC.  
In this configuration, ARP requests generated by the 
DominoFE were sent directly over a 100 Mbps full duplex 
Ethernet link to an interface on the PC. The software sent 
all ARP replies back out the interface on which they 
arrived. 
 
In this test, Ethernet utilization was started at 10% and 
was increased until it reached 20%. Again, the CPU 
utilization of the software and the number of ARP 
requests processed per second were recorded. The 
duration of each test was 60 seconds. Table 2 contains the 
results of the second test. The data indicates that the 
software can comfo rtably handle a load of 10,000 
ARPs/sec on a 100 Mbps full-duplex link. Using the same 
rough guide as above, this would be sufficient to support 
600,000 subscribers. 
 
Ethernet 
Utilization, % 

ARP requests / 
sec 

CPU 
utilization, % 

10 12,376 51 
15 17,808 82 
17 18,298 99 
20 16,816 99 

Table 2. Results of testing with 100Mbps FDX 
interface 

 



At loads over 15,000 ARPs/sec, some losses were noted. 
That is, the number of ARP requests recorded did not 
equal the number of replies. We suspect that NIC buffer 
overruns were destroying some of the traffic. 

100 Mbps, FDX, Two Interfaces 
The third configuration was an extension of the second: 
instead of sending ARP replies out the receiving interface, 
the software sent them out a second 100 Mbps interface. 
Ethernet utilization was increased from 10% to 25%, and 
the number of ARP requests processed per second and the 
CPU utilization were recorded. Each test lasted 60 
seconds. 
 
Ethernet 
Utilization, % 

ARP requests / 
sec 

CPU 
utilization, % 

10 12,378 26 
12 14,989 28 
15 18,707 35 
17 21,129 45 
20 24,935 74 
25 13,920 99 

Table 3. Results of testing with two 100Mbps 
FDX interfaces 

 
By adding a second interface for outbound traffic, we 
hoped to increase the rate at which responses could be 
generated (see Table 3). Our results  show that the 
software operated well up to about 25,000 ARPs/sec. This 
demonstrates conclusively that a simple PC should be 
able to service even an extremely large DSL NBMA 
subnet of over 1,000,000 subscribers. 

5. SUMMARY AND FUTURE WORK 
NBMA environments limit broadcast traffic. While this is 
desirable because it decreases bandwidth consumption, it 
stops protocols such as ARP from working. We created an 
application to re-enable ARP and tested its performance 
on a Linux-based PC.  The results show that the software 
can handle 1200 ARPs/sec over a simple 10 Mbps HDX 
link, 10,000 ARPs/sec on a 100 Mbps FDX link, and 
25,000 ARPs/sec on a 100 Mbps FDX link using separate 
interfaces for receive and transmit. This final value 
represents the load that might be gen erated by over 
1,000,000 concurrently active clients, so that the use of a 
simple PC is not a significant limit in a production 
environment. 
 
Overall, this is a good solution to the requirement for 
subscriber-to-subscriber communication in a typical 
NBMA D SL network. The server generates an ARP 
request on behalf of the original client in order to discover 
the IP-MAC mapping needed, and then distributes this 
information in an ARP reply.  It also caches and ages the 
result for future use. There is a minimal a mount of 
functionality supplied by the server, and it is out of the 

series path of the normal communication between 
subscribers. 
 
In the future, we propose to implement this application 
within the Linux kernel in order to improve performance. 
This could be done either as a kernel module, similar to 
kHTTPd and kNFSd, or as a straight modification to the 
ARP code. This application has also suggested a new 
form of bridging that we call ``active bridging'' that is 
useful in this type of NBMA environment, where Layer 3 
information can be used to give direction to Layer 2 
operation. The use of active bridging in NBMA 
environments will also be explored further. 
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