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Motivation
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editors, Proc. 5th. BCS-FACS Refinement Workshop, 1992.
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Structure Learning

Structure: patterns and relationships ...
= between labels and observations,
= between labels.

Basic components:
- Observations ¥ ={x1,...,x7|xi € R%}
= Labels Y = {y1,...,yr|y; € V}

Goal: learn a mapping from observations to labels.



Why is it difficult?

If sequences are considered as a whole:

= Observations have indeterminate dimensionality,

= Number of joint classifications of labels is exponential inT.
If the items are considered separately:

= |nformation about label structures is lost.

How do we learn a mapping while maintaining tractability and
exploiting structure!
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Probabilistic Models

Choices:
= Generative vs. conditional.
= Directed vs. undirected model.
= Use latent states!?

= Connectivity?

Generative models express the conditional distribution
P(Y|X) in terms of the joint distribution P(Y,X) and require a
model of the observations P(X).

We focus on conditional models.
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Conditional Models

These model the conditional distribution p(Y|X) directly and
make extensive use of features: functions of the observations.

Features can be overlapping and non-independent.
Examples:

= Regular Expressions: [A-Z]

= Category:“is a name”

= Exact match: Morgan

Assumption: raw observations have been pre-processed by a set
of feature functions.



Models

We implemented
= logistic regression (LR)

= the Maximum Entropy Markov Model (MEMM) and a version with
observation independent transitions (the IMEMM),

= the Conditional Random Field (CRF) and a version with observation
independent edge potentials (the ICRF).

= the Input Output Hidden Markov Model (IOHMM)
= the Hidden Random Field (HRF)

= the RBM-CRF template model.

We report results for LR, the CRF the IOHMM, the HRFE and
RBM-CRF models.
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CRF &

Conditional random field [Lafferty, McCallum, Pereira 2002]

It is the undirected version of the maximum entropy Markov
model (MEMM).
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CRF &

Most implementations use a second-order quasi-Newton
optimizer (e.g. L-BFGS) to optimize the weights.
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Input output HMM [Bengio, Frasconi 1995]

It is an HMM where the transition and emission distributions are
conditional on the observations.

A set of latent random variables H that form a chain structure
are used to maintain state information.

p(Y|X) = ZHP hi|he—1, xe)p(Ye| e, Xt ).

H t=1
p(ht = jlhi—1 = k,x¢) o< exp{Ajk - Xt }

p(ye = Jlhe = k, %) o eXP{ij $ X4}
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The EM algorithm is used to train the IOHMM.

In the E step, we need to calculate the posterior distributions:

p(hi" = jIVi, X;)
p(hy” = j, b = k[Y;, X;)
The M step updates:
|. the transition weights,

2. the emission weights.

Both of these updates are weighted logistic regression problems.
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Hidden random field [Kakade, Teh, Roweis 2002]

It is the undirected equivalent of the IOHMM.

p(YIX) = > »(Y,H|X)
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Like the IOHMM, training uses the EM algorithm.The M step
involves optimizing a fully-observed CRF.
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Label Features

CRF models are fully specified with respect to label
configurations.

Adding higher-order features results in an exponential increase in
model complexity.

|dea: learn higher-order structures from the data using label
features.

Label Feature: parameterized feature on a group of label
variables. The weights can be adjusted to change what the label
feature looks for.



RBM-CRF

Restricted Boltzmann machine CRF [He,Zemel,Carreira-Perpinan 2004]

A label feature is a binary random variable connected to | labels.

Define label features through groups:
g = <ng,og, {W,, n}n 1 >
ng : number of label features in the group.
o, : vector of offsets that specifies the connectivity.
Instantiate a group at time t (replication r):
g(t) = <”gvog( )s AWgntnZ1s >
0,(t) =04 +1



RBM-CRF: Example

Group: f




RBM-CRF

An RBM-CREF is just a collection of groups.

When rolled-out across a sequence, the model has the form of a
restricted Boltzmann machine (RBM).

pe(Y,H) exp{z Z[b9>” + Z Wonk  le)hgnrt
— HHeXp{ gn"_zwgnk lk g,nr}
— HHpgnr g,n,7> )



RBM-CRF: Inference and Training

Exact inference is hard because of the loopy structure.

However, we can exploit the bipartite nature of the graph to
implement a block Gibbs sampler.

RBM-CRF models are products of experts so we can use
contrastive divergence to train them.



RBM-CRF: Observations

There are several ways to incorporate observations into RBM-
CRF models.

|. Use a pre-trained classifier (e.g.: logistic regression, CRF).
2. Train a classifier at the same time as the RBM-CRF.

3. Incorporate observations directly into the parameterization of the label
feature.

pe(Y, H|X) o exp{z Z[bg,n + Z Ognj- x5+ Z Wonk * Lk]hgnr}
r n 7 k
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Evaluation Metrics

With respect to label |, let
= A be the number of true positives, B be the number of false negatives

= C be the number of false positives, D be the number of true negatives
Fl score:FI = (2A)/(2A + B + C)

Accuracy: number of items labeled correctly divided by the total
number of items in a sequence.

Instance accuracy: percentage of sequences labeled entirely
correctly.

We use Viterbi decoding for the CRF IOHMM, and HRF and
maximum marginals for logistic regression and the RBM-CRF.



Toy Problem |

100 training instances &100 test instances, each of length 50.

Models require memory / knowledge of structures to classify
observation 5.

RBM-CRF models look at groups of six label variables.

|IOHMM/HRF have 3 states.
Observation Labels G ‘ °
1 : G 0:020
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Toy Problem |

LR/CRF IOHMM HRF RBM(I) RBM(2) RBM(3)

D 0.0 100 795 99.2 99.6 97.2
E 66.5 100 808 99.2 99.6 96.7
Avg. FI 77.8 100 234  99.7 99.9 98.8
Avg.Acc. 97.5 100 99.0 999 99.9 99.8

Inst. Acc.  26.0 100 520 98.0 99.0 92.0
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Toy Problem 2

Three labels:A,B,O
Label structures: AAAAAA, BBBBBB, BBB,AA, BA. Separated by O

Each label has a distribution over observations, but the interior of
the larger structures is a mixture distribution.

100 training instances, 1000 test instances.

RBM(I) has 9 pair-wise label features; RBM(2) has 9 pair-wise
features and 3 features that look at groups of 8 label variables.

Five-fold cross-validation used to choose humber of states in the
|IOHMM and the HRF (8).



Toy Problem 2

LR  CRF IOHMM HRF RBM(l) RBM(2)

A 739 822 /1.7 7128 8037 83.0
B 659 844 73.4 73.9 82.9 85.0

Avg. FI 83.0 88.6l 81.5 81.4 87.6 89.2

Avg.Acc. 908  93.7 90.0 89.8 93.4 94.2
Inst.Acc. 21.2 523 17.9 18.4 52.7 63.9




Toy Problem 3

From [Kakade, Teh, Roweis 2002].
Investigates variable term memory.

The CRF IOHMM, and HRF can model well, but achieve sub-
optimal performance.

RBM-CRF models with label features conditional on the input
can improve improve upon the performance of the CRF but are
not able to model the data perfectly because they maintain no
state.



Cora References

Consists of 500 bibliography entries from research papers; 350
are used for training and |50 are used for testing.

Labels: author, book title, date, editor; institution, journal,
location, note, pages, publisher, tech, title, and volume.

Entries tokenized by whitespace. Each token processed by 4191
features:
3*(19 regular expressions + 4 categorical + 1374 vocabulary)

The IOHMM and HRF took too long to train.



Cora References

Name Groups Observations
RBM-LR(2) (10,0:4), (10,0:9), (10,0:19) Pre-trained LR
RBM-CRF(2) (10,0:4), (10,0:9), (10,0:19) Pre-trained CRF
RBM(3) (15,0:1), (20,0:2), (5,0:9), (5,0:19) LR

Notation: (hnumber of nodes, offsets)



Cora References

LR RBM-LR CRF* CRF RBM-CRF RBM(3)
(2) (2)

Avg. FI 769 814 215  87.7 89.4 68.4
Avg.Acc.  85.1 90.1 954 945 95.1 76.8
Inst. Acc. 16.0 42.0 /7.3  66.0 65.3 29.3

CRF*: CRF trained by [Peng, McCallum 2005].
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Conclusions

We evaluated several methods for doing sequence labeling
including latent state models and parameterized templated
models.

IOHMMs and HRFs can be more expressive than CRFs, but it can
be difficult to pick a good number of latent states and training
take a long time and is subject to local optima.

Template models may improve performance, but it easy to pick
suboptimal architectures.They do not maintain state so they may
not be appropriate for all tasks.



Future Work

RBM-CREF:

= More experiments on real data are required.
= Feature induction to learn the architecture of the model.

= Extension to a hierarchical model.

= Integration of the RBM-CRF with one or more IOHMM/HRF models in
a product model.

|IOHMM/HREF:

= Investigation of training issues and methods.

All:

= Put them in a the Bayesian framework.



end.



Toy Problem |

Method Mean Time (s) Standard Deviation
LR 29.87 8.61
MEMM 14.76 0.18
IMEMM 246.62 87.74
CRF 387.09 160.36
ICRF 118.07 38.80
IOHMM 2169.60 220.54
HRF 3307.10 2970.70
RBM(1) 424.65 8.03
RBM (2) 945.44 102.97
RBM(6) 27201.00 1582.90
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Error

Toy Problem 2

Five—Fold Cross Validation Error versus Number of Latent States
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Toy Problem 2

Method Mean Time (s) Standard Deviation
LR 158.01 40.45
MEMM 11.08 1.50
IMEMM 430.17 75.19
CRF 229.09 39.58
ICRF 389.81 0.58
IOHMM 7344.30 940.12
HRF 5769.50 1533.00
RBM(1) 13491.00 712.38
RBM(2) 19795.00 3690.50
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Toy Problem 2
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Toy Problem 2

Label Feature 1 Label Feature 2

Label Feature 3
A

A A
2 2 2
© B S B < B
- | -
O (0] O
0 1 0 1 0 1
Offset Offset Offset
Label Feature 4 Label Feature 5 Label Feature 6
A A A
z z 2
© B © B -8 B
| | |
(e} (0] (e}
0 1 0 1 0 1
Offset Offset Offset
Label Feature 7 Label Feature 8

Label Feature 9
A

A A
g ©
B S B g B
| —
(0] 0] (0]
0 1
Offset Offset

Offset

RBM(2)



Label

Label

Toy Problem 2

Label Feature 1

Label Feature 2

Label

° et o 1 2 3
Offset

Offset

4 5

Label Feature 3

Offset

RBM(2)



Error
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Toy Problem 3

From [Kakade, Teh,Roweis 2002].
The label of the first | is always |.

A CRF can only model A/B/R.
No RBM-CRF can model A/B/R/l as no state is maintained.

Observation Label
A 0
I

B
R Last A/B
I

Inverse of last |




Toy Problem 3
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Toy Problem 3

LR CRF IOHMM HRF RBM(I) RBM(2)
Avg. FI 75.7 91.3 94.8 96.0 90.4 93.7
Avg.Acc. 76.4 91.3 94.8 96.0 90.4 93.7
Inst. Acc. 0.0 1.0 5.0 7.0 1.0 4.0

Per-observation error rates

LR CRF IOHMM HRF RBM(l) RBM(2)

R 48.2 | 1.4 1.8 0.1 12.5 4.8
I 44.4 42.5 46.2 41.3 47.2 45.0




