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Structure Learning

Structure: patterns and relationships ...

- between labels and observations,

- between labels.

Basic components:

- Observations

- Labels

Goal: learn a mapping from observations to labels.

Y = {y1, . . . , yT |yi ∈ Y}

X = { x1, . . . ,xT |xi ∈ R d }



Why is it difficult?

If sequences are considered as a whole:

- Observations have indeterminate dimensionality,

- Number of joint classifications of labels is exponential in T.

If the items are considered separately:

- Information about label structures is lost.

How do we learn a mapping while maintaining tractability and 
exploiting structure?
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Choices:

- Generative vs. conditional.

- Directed vs. undirected model.

- Use latent states?

- Connectivity?

Generative models express the conditional distribution
P(Y|X) in terms of the joint distribution P(Y,X) and require a 
model of the observations P(X).

We focus on conditional models.

Probabilistic Models

latent



Conditional Models

These model the conditional distribution p(Y|X) directly and 
make extensive use of features: functions of the observations.

Features can be overlapping and non-independent.

Examples:

- Regular Expressions: [A-Z]

- Category: “is a name”

- Exact match: Morgan

Assumption: raw observations have been pre-processed by a set 
of feature functions.



Models

We implemented

- logistic regression (LR)

- the Maximum Entropy Markov Model (MEMM) and a version with 
observation independent transitions (the IMEMM),

- the Conditional Random Field (CRF) and a version with observation 
independent edge potentials (the ICRF).

- the Input Output Hidden Markov Model (IOHMM)

- the Hidden Random Field (HRF)

- the RBM-CRF template model.

We report results for LR, the CRF, the IOHMM, the HRF, and 
RBM-CRF models.
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Conditional random field [Lafferty, McCallum, Pereira 2002]

It is the undirected version of the maximum entropy Markov 
model (MEMM).

CRF
y1 y2 yT

x1 x2 xT

y0

p(Y |X) =
1

Z(X)

T∏

t=1

φ(yt, yt−1,xt)

=
1

Z(X)

T∏

t=1

exp{θyt,yt−1 · xt}



CRF

Most implementations use a second-order quasi-Newton 
optimizer (e.g. L-BFGS) to optimize the weights.

Let          be one when            .

y1 y2 yT

x1 x2 xT

y0

∇θjk!(Θ;D) =
N∑

i=1

Ti∑

t=1

[mi,t,jmi,t−1,k − p(yt = j, yt−1 = k|Xi)]x
(i)
t

mi,t,j y(i)
t = j

!(Θ;D) =
N∑

i=1

log p(Yi|Xi)

=
N∑

i=1

Ti∑

t=1

θ
y(i)

t ,y(i)
t−1

· x(i)
t −

N∑

i=1

log Z(Xi)
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IOHMM

Input output HMM [Bengio, Frasconi 1995]

It is an HMM where the transition and emission distributions are 
conditional on the observations.

A set of latent random variables H that form a chain structure 
are used to maintain state information.

h1 h2 hT

x1 x2 xT

y1 y2 yT

h0

p(Y |X) =
∑

H

T∏

t=1

p(ht|ht−1,xt)p(yt|ht,xt).

p(ht = j|ht−1 = k,xt) ∝ exp{λjk · xt}

p(yt = j|ht = k,xt) ∝ exp{θjk · xt}



IOHMM

The EM algorithm is used to train the IOHMM.

In the E step, we need to calculate the posterior distributions:

The M step updates:

1. the transition weights,

2. the emission weights.

Both of these updates are weighted logistic regression problems.

h1 h2 hT

x1 x2 xT

y1 y2 yT

h0

p(h(i)
t = j|Yi, Xi)

p(h(i)
t = j, h(i)

t−1 = k|Yi, Xi)



HRF

Hidden random field [Kakade, Teh, Roweis 2002]

It is the undirected equivalent of the IOHMM.

Like the IOHMM, training uses the EM algorithm. The M step 
involves optimizing a fully-observed CRF.

h1 h2 hT

x1 x2 xT

y1 y2 yT

h0

p(Y |X) =
∑

H

p(Y, H|X)

=
1

Z(X)

∑

H

T∏

t=1

φ(ht, ht−1,xt)φ(yt, ht,xt)

=
1

Z(X)

∑

H

T∏

t=1

exp{λht,ht−1 · xt + θyt,ht · xt}
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Label Features

CRF models are fully specified with respect to label 
configurations.

Adding higher-order features results in an exponential increase in 
model complexity.

Idea: learn higher-order structures from the data using label 
features.

Label Feature: parameterized feature on a group of label 
variables. The weights can be adjusted to change what the label 
feature looks for.



RBM-CRF

Restricted Boltzmann machine CRF [He,Zemel,Carreira-Perpinan 2004]

A label feature is a binary random variable connected to J labels.

Define label features through groups:

    : number of label features in the group.

    : vector of offsets that specifies the connectivity.

Instantiate a group at time t (replication r):

g =
〈
ng,og, {Wg,n}

ng

n=1,bg

〉

ng

og

g(t) =
〈
ng,og(t), {Wg,n}

ng

n=1,bg

〉

og(t) = og + t



RBM-CRF: Example

0 1

Group: f

Group: g

0 1 2

Offsets:

Offsets:

y1 y2 y3 y4

hg,1,1 hg,1,2

hf,1,1 hf,2,1 hf,1,2 hf,2,2 hf,1,3 hf,2,3



RBM-CRF

An RBM-CRF is just a collection of groups.

When rolled-out across a sequence, the model has the form of a 
restricted Boltzmann machine (RBM).

pg(Y, H) ∝ exp{
∑

r

∑

n

[bg,n +
∑

k

wg,n,k · lk]hg,n,r}

=
∏

r

∏

n

exp{[bg,n +
∑

k

wg,n,k · lk]hg,n,r}

=
∏

r

∏

n

p̃g,n,r(hg,n,r, Y )



RBM-CRF: Inference and Training

Exact inference is hard because of the loopy structure.

However, we can exploit the bipartite nature of the graph to 
implement a block Gibbs sampler.

RBM-CRF models are products of experts so we can use 
contrastive divergence to train them.



RBM-CRF: Observations

There are several ways to incorporate observations into RBM-
CRF models.

1. Use a pre-trained classifier (e.g.: logistic regression, CRF).

2. Train a classifier at the same time as the RBM-CRF.

3. Incorporate observations directly into the parameterization of the label 
feature.

pg(Y, H|X) ∝ exp{
∑

r

∑

n

[bg,n +
∑

j

θg,n,j · xj +
∑

k

wg,n,k · lk]hg,n,r}
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Evaluation Metrics

With respect to label l, let

- A be the number of true positives, B be the number of false negatives

- C be the number of false positives, D be the number of true negatives

F1 score: F1 = (2A)/(2A + B + C)

Accuracy: number of items labeled correctly divided by the total 
number of items in a sequence.

Instance accuracy: percentage of sequences labeled entirely 
correctly.

We use Viterbi decoding for the CRF, IOHMM, and HRF and 
maximum marginals for logistic regression and the RBM-CRF.



Toy Problem 1

100 training instances &100 test instances, each of length 50.

Models require memory / knowledge of structures to classify 
observation 5.

RBM-CRF models look at groups of six label variables.

IOHMM/HRF have 3 states.

DRAFT
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Observation Labels

1 A

2 B

3 C

4 Q

5 D,E

Table 6.1: Observation-label mapping for Toy Problem 1.

exception of an ambiguity with observation 4, which can map either to D or to E. The

ambiguity can be resolved by using knowledge of the label structures present in the data:

continuous Qs, ABCD, and BCE. D and E only appear after a BC so the ambiguity

can be resolved when it is known whether or not an A precedes BC. Observation and

label sequences are generated from the state machine illustrated in Figure 6.1. State

S is the accepting state and does not generate any observations. The state transition

probabilities p(A|Q1) and p(B2|Q1) are equal.

This problem is difficult for all fully observed models because both the disambiguating

input and the disambiguating label are far from the ambiguous observation. The IOHMM

and the HRF should have no difficulty modeling the data as a three state FSM can model

the labeling process (Figure 6.2). RBM-CRF models with larger label features should be

able to learn the different structures.
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Figure 6.1: Finite state machine used to generate the data for Toy Problem 1.
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Toy Problem 1

LR/CRF IOHMM HRF RBM(1) RBM(2) RBM(3)

D 0.0 100 79.5 99.2 99.6 97.2

E 66.5 100 80.8 99.2 99.6 96.7

Avg. F1 77.8 100 93.4 99.7 99.9 98.8

Avg. Acc. 97.5 100 99.0 99.9 99.9 99.8

Inst. Acc. 26.0 100 52.0 98.0 99.0 92.0



Toy Problem 1
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Toy Problem 2

Three labels: A,B,O

Label structures: AAAAAA, BBBBBB, BBB, AA, BA. Separated by O

Each label has a distribution over observations, but the interior of 
the larger structures is a mixture distribution.

100 training instances, 1000 test instances.

RBM(1) has 9 pair-wise label features; RBM(2) has 9 pair-wise 
features and 3 features that look at groups of 8 label variables.

Five-fold cross-validation used to choose number of states in the 
IOHMM and the HRF (8).



Toy Problem 2

LR CRF IOHMM HRF RBM(1) RBM(2)

A 73.9 82.2 71.7 71.28 80.37 83.0

B 65.9 84.4 73.4 73.9 82.9 85.0

Avg. F1 83.0 88.61 81.5 81.4 87.6 89.2

Avg. Acc. 90.8 93.7 90.0 89.8 93.4 94.2
Inst. Acc. 21.2 52.3 17.9 18.4 52.7 63.9



Toy Problem 3

From [Kakade, Teh, Roweis 2002].

Investigates variable term memory.

The CRF, IOHMM, and HRF can model well, but achieve sub-
optimal performance.

RBM-CRF models with label features conditional on the input 
can improve improve upon the performance of the CRF but are 
not able to model the data perfectly because they maintain no 
state.



Cora References

Consists of 500 bibliography entries from research papers; 350 
are used for training and 150 are used for testing.

Labels: author, book title, date, editor, institution, journal, 
location, note, pages, publisher, tech, title, and volume.

Entries tokenized by whitespace. Each token processed by 4191 
features:
    3*(19 regular expressions + 4 categorical + 1374 vocabulary)

The IOHMM and HRF took too long to train.



Name Groups Observations

RBM-LR(2) (10,0:4), (10,0:9), (10,0:19) Pre-trained LR

RBM-CRF(2) (10,0:4), (10,0:9), (10,0:19) Pre-trained CRF

RBM(3) (15,0:1), (20,0:2), (5,0:9), (5,0:19) LR

Cora References

Notation: (number of nodes, offsets)



Cora References

LR RBM-LR
(2)

CRF* CRF RBM-CRF
(2)

RBM(3)

Avg. F1 76.9 81.4 91.5 87.7 89.4 68.4
Avg. Acc. 85.1 90.1 95.4 94.5 95.1 76.8
Inst. Acc. 16.0 42.0 77.3 66.0 65.3 29.3

CRF*: CRF trained by [Peng, McCallum 2005].
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Conclusions

We evaluated several methods for doing sequence labeling 
including latent state models and parameterized templated 
models.

IOHMMs and HRFs can be more expressive than CRFs, but it can 
be difficult to pick a good number of latent states and training 
take a long time and is subject to local optima.

Template models may improve performance, but it easy to pick 
suboptimal architectures. They do not maintain state so they may 
not be appropriate for all tasks.



Future Work

RBM-CRF:

- More experiments on real data are required.

- Feature induction to learn the architecture of the model.

- Extension to a hierarchical model.

- Integration of the RBM-CRF with one or more IOHMM/HRF models in 
a product model.

IOHMM/HRF:

- Investigation of training issues and methods.

All:

- Put them in a the Bayesian framework.



end.
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account for poor starting points, five random restarts were done for each fold; the model

that performed the best on the test partition was chosen as the representative for the

fold. The number of states in the IOHMM was set to three based on the cross-validation

results. Cross-validation was not done for the HRF; rather, the number of states used

for the final IOHMM model was the number used for the HRF. For both models, at most

100 iterations of optimization were done during the M step. The total number of EM

training iterations was limited to 100.

The RBM-CRF models all had a group of label features that looked at set of six

label nodes; they differed only in the number of features in the group. RBM(1) had

one feature, RBM(2) had two, and RBM(6) had six. All three models incorporated

a logistic regression expert that mapped observations to labels. To get a feel for the

capabilities of the model, RBM(6) was trained first. The other two models were trained

after the results of RBM(6) were examined. The learning rate was set to 0.1, the weight

decay was set to 1
σ2 , and a momentum of 0.9 was incorporated after 25 iterations. Three

reconstruction steps were done in the reconstruction phase of CD. All models were trained

for 100 iterations. 50 iterations of Gibbs sampling were done to compute the approximate

marginals for the RBM-CRF models at test time; none of the samples were discarded as

burn-in.

Method Mean Time (s) Standard Deviation

LR 29.87 8.61

MEMM 14.76 0.18

IMEMM 246.62 87.74

CRF 387.09 160.36

ICRF 118.07 38.80

IOHMM 2169.60 220.54

HRF 3307.10 2970.70

RBM(1) 424.65 8.03

RBM(2) 945.44 102.97

RBM(6) 27201.00 1582.90

Table 6.2: Training times of various the models averaged over five runs.

The mean training time of each model is shown in Table 6.2. The times for the
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Toy Problem 2
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Figure 6.7: Five-fold cross-validation results for the IOHMM model on Toy Problem 2.

times with different initial parameter settings. All models used a weight decay regularizer

with σ = 10.

The number of states in the IOHMM was chosen from two to 13 using five-fold cross-

validation. The results from cross-validation are shown in Figure 6.7. Five restarts at

different initial parameter settings were done for each fold to help deal with local optima.

The number of states chosen for the final model was eight. The HRF also had eight

states. To keep the training time reasonable, the number of iterations of EM was limited

to 100 and the number of steps of optimization in the M step was limited to 100.

The first RBM-CRF model, RBM(1), has a logistic regression expert and one group

of nine label features that look at adjacent label variables. This structure emulates the

ICRF. RBM(2) is like RBM(1) but also includes a group of two label features that look at

eight label variables in a row. The learning rate was 0.1, the weight decay was 1
σ2 , and a

momentum of 0.9 was incorporated after 25 iterations. 1000 iterations of CD were done.

For the first 500 iterations, one reconstruction step was used; after iteration 500, the

number of reconstruction steps was increased to three. 150 iterations of Gibbs sampling
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Toy Problem 2
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were done to compute the approximate marginals for the RBM-CRF models at test time;

50 of the samples were discarded as burn-in.

Method Mean Time (s) Standard Deviation

LR 158.01 40.45

MEMM 11.08 1.50

IMEMM 430.17 75.19

CRF 229.09 39.58

ICRF 389.81 0.58

IOHMM 7344.30 940.12

HRF 5769.50 1533.00

RBM(1) 13491.00 712.38

RBM(2) 19795.00 3690.50

Table 6.5: Training times of various the models averaged over five runs.

The training times for each model are shown in Table 6.5. The time for the IOHMM

does not include the time taken to run cross-validation.

6.2.2 Results

The results of running the trained models on the test data are shown in Table 6.6.

The logistic regression model performs the most poorly with respect to all three overall

performance metrics. The F1 scores for labels A and B are also low, but the F1 score for

O is high because there is very little ambiguity in the O observations.

Adding links between adjacent label variables significantly improved both the F1

scores for the A and B labels as well as the overall performance. Using observation-

dependent transitions increased the whole instance accuracy by about 6 to 8% when

compared to using observation-independent transtitions. The reason for the increase

could be because the transitions may provide useful information about what values for

the previous label are good. For example, the last item in the large blocks of A and

B has a fairly unambiguous observation while the strong labeling may influence the

previous label to also be an A or a B. The undirected models performed better than

their directed cousins. The CRF performed better than the MEMM, classifying about

15% more sequences correctly. The ICRF classified about 14% more sequences correctly
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Toy Problem 2
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Toy Problem 2
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Toy Problem 2
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Toy Problem 2
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Toy Problem 2
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Toy Problem 3

From [Kakade,Teh,Roweis 2002].

The label of the first I is always 1.

A CRF can only model A/B/R.

No RBM-CRF can model A/B/R/I as no state is maintained.

Observation Label

A 0
B 1
R Last A/B
I Inverse of last I



Toy Problem 3
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Toy Problem 3

LR CRF IOHMM HRF RBM(1) RBM(2)

Avg. F1 75.7 91.3 94.8 96.0 90.4 93.7

Avg. Acc. 76.4 91.3 94.8 96.0 90.4 93.7

Inst. Acc. 0.0 1.0 5.0 7.0 1.0 4.0

LR CRF IOHMM HRF RBM(1) RBM(2)

R 48.2 11.4 1.8 0.1 12.5 4.8
I 44.4 42.5 46.2 41.3 47.2 45.0

Per-observation error rates


