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Abstract 
 

We present a case study of a real-world industrial 
application which produced several versions of 
conceptual schema design for a biological database 
during its evolution. We apply the techniques of early 
requirements analysis to produce a goal model of the 
problem domain. We then show that by incorporating 
goal analysis in the design process we can account for 
the original schemas by tracing them back to 
stakeholder goals. Moreover, the goal-oriented 
analysis supports the systematic examination of the 
space of design alternatives, and better explains what 
the output of the design process (a conceptual schema) 
really means. Our results advocate the need for an 
extended design methodology for databases driven by 
stakeholder goals.  
 
1. Introduction 
 

If one were to design an information system fifteen 
years ago, she'd want to use a requirements modelling 
language such as SADT or DFD for the functional part 
of the system, and ER diagrams to design the database. 
If she were brave, she might use instead object-
oriented analysis techniques (which were quite new at 
the time) for both the data and functional parts of the 
system-to-be. The state-of-the-art in Requirements 
Engineering (RE) has changed dramatically in these 
fifteen years. Goal-oriented requirements analysis 
techniques have added an earlier phase to software 
requirements analysis where one starts from 
stakeholders and their intentions, and derives from 
them functional and non-functional requirements 
through a systematic, tool-supported process. This 
process explores a space of alternatives and selects one 
on the basis of criteria. Unfortunately, the state-of-the-
art for designing the database part of an information 
system hasn't changed at all during this period. We are 
interested in an extended database design methodology 

in which stakeholder goals drive the design process in 
a systematic way.  

We begin our research with a case study based on a 
real-world industrial application, which produced 
several versions of conceptual schema design for a 
biological database during its evolution. The case study 
compares two different methods for designing a 
database. We start with an analysis of the original 
conceptual schema and its evolving design. We then 
revisit the design process using a modified version of 
goal-driven requirements engineering technique. We 
aim to construct a goal model for the problem domain, 
starting from top-level goals of the application, by 
applying basic goal reasoning techniques. Goal 
analysis makes explicit and explores a space of design 
alternatives that lead to a set of data requirements 
specifications, each of which corresponds to a 
particular choice to fulfill the top-level goals.  

The objective of this paper is to describe the case 
study, the methodology by which we recovered 
portions of the design space, and the conclusions we 
draw from our results. The rest of the paper is 
organized as follows. In Section 2, we give a brief 
introduction to the application domain of the biological 
database and describe four versions of its conceptual 
schema design. In Section 3, we present the modified 
design process for the same database, extended with a 
goal analysis phase. In Section 4, we compare the 
original design decisions with design recommendations 
suggested by the goal analysis, and demonstrate the 
benefits brought by the goal-driven approach. In 
Section 5, we conclude and point to our research plan 
towards a database design methodology driven by 
stakeholder goals.     
 
2. Design of a biological database 
 

In this section we review the design motivation and 
corresponding outcomes of a biological database that is 
part of a commercial system, for the management of 



gene expression data generated using gene microarrays 
and for the support of gene expression analysis.  

 
2.1. Application domain background 
 

Genomics 101: Gene expression systems, simply 
put, measure the level of the activity of genes in 
biological samples. For the software engineer, an 
analog of the genome is the source code of a very large 
and poorly documented concurrent program, where 
each gene is a “function”. We identify the genes by 
looking for matching pairs of begin and end 
statements. Each cell is an interpreter that has a copy of 
the full genome. At a given state of the execution, 
functions that are running represent genes that are 
expressed in the cell. A biological sample contains 
millions of cells. A gene microarray is a camera that 
takes a picture of the sample and counts all the pixels 
corresponding to each gene for all cells, and thus 
reports an expression value for each gene. (In fact, a 
gene array does not recognize all the genes of an 
organism, but recognizes several thousands of them 
that are printed on the array.) Given that we only have 
partial knowledge of what genes do, the significance of 
these pictures (experiments) is that they allow us to 
infer the function of the genes by correlating them with 
the conditions of the samples. In other words, if we 
know something about the samples and the identity of 
genes on the array, we can make sense of what these 
functions do. A gene expression database is an 
invaluable research tool for studying the biology of 
genes and how gene expression changes in the 
presence of diseases or drug treatments. For example, 
such a tool can handle queries like “find genes whose 
expression goes up or down in samples derived from 
prostate biopsies of donors with PSA1>4, relative to 
normal tissues” An answer to this query requires 
knowing about the origin of the sample, including the 
donor and his/her medical information. One goal of a 
gene expression database is to maintain comprehensive 
information about the experimental samples. 

 
2.2. 3Sdb schema description 
 

This sub-section describes the scientific information 
needs, the application requirements and the evolving 
design of the biological database in the early stages of 
the product. We analyze the requirements and design 
of four versions that emerged over a period of 18 
months. These four versions of conceptual schema 
design (hereafter referred to as v1, v2, v3 and v4) 
demonstrate the evolution of the database due to 
                                                        
1 PSA (Prostatic Antigen) is an early diagnostic marker for prostate 
cancer.  

improved understanding of the initial requirements and 
changing information needs of the application. Given 
the sheer size of the original database schema and 
specific goal of our analysis, which is linking early 
requirements to schema design, our discussion is 
limited to a small subset, concerning the sample 
component of the database (hereafter called 3Sdb -- 
small subset of sample database). Our analysis is based 
on design notes (from the period 1998-2000) and 
published product literature [1]2.  

3Sdb is a repository of data on biological samples 
explored during gene expression analysis. It stores 
information on biological samples and their donors. 
The major decisions the database designers had to 
make at the conceptual modeling stage include the 
modeling of: (a) different categories of biological 
samples, (b) the relationships between samples, based 
on origin or other considerations, (c) experimental 
studies and (d) donor clinical profiles. Here we give a 
brief description of these decisions and how they differ 
between versions.  

The central concept in 3Sdb is “biological sample”, 
representing the tissue, cell or RNA material that 
originates from a donor of a given species. Therefore 
biological samples can be classified by sample type 
(i.e. tissue, cells, RNA) and donor species (i.e. human 
and animal). In v1, the concept Sample with a long list 
of attributes is used to represent all biological samples. 
Starting in v2, the Sample concept is specialized into 
Tissue Sample, Cell Culture, etc. Figure 1 shows the 
conceptual design for Sample introduced in v23  

 

 
Figure 1. Design for biological sample (v2) 

 
Biological samples are related to each other in many 

ways depending on the collection process and the 
studies they belong to. The concept Study Group, 
introduced in v1, represents a group of samples 
characterized according to a set of experimental 
                                                        
2  Because of confidentiality and intellectual property restrictions, 
reference to the entire schema or complete concepts is avoided in this 
paper. Instead, we mention concepts and properties as they fit to the 
topic of discussion. We also edited the names of sensitive entities 
and refrain from showing complete lists of attributes.   
3 In this paper, conceptual design is represented using UML class 
diagrams with most of the association names omitted for brevity. 



parameters. In v3, the concept Matched Sample is 
added to model samples known to be related by origin 
(e.g. a tumor liver and a normal liver sample from the 
same biopsy) or samples from the same donor without 
any connection to a common condition (e.g. a liver 
sample and a brain sample taken from the same patient 
many years apart). Figure 2 shows the design for these 
sample relationships introduced in v1 and v3.  

 

 
Figure 2. Design for sample relationships (v1, v3) 
 
In addition to human samples, a significant number 

of samples originate from “designed experiments”. 
Such experiments monitor, for example, the dose-
response of animal subjects or cell cultures to a drug 
over time. Subjects are typically divided into multiple 
groups with different treatment conditions (e.g. drug 
dose), and observed at various time points. In v1, 
studies are modeled by concepts Study and Study 
Group. Study captures study-specific metadata (e.g. 
start/end date of study, number of dose groups, number 
of time points), while Study Group models information 
on treatments administered to the group and the 
associated observations (e.g. drug agent used, dose 
level, number of subjects per dose group at the 
beginning of the study). Moreover, the concept 
Repeated Observation is used to record data obtained 
as a result of the same type of observation repeated 
over time (e.g., growth, weight, temperature). In v4, 
the concept Treatment is separated from Study Group 
to allow multiple treatments within a study group. 
These concepts are shown in Figure 3. The evolution 
of the Study concept is due to the increased complexity 
of the study data encountered. 

 

 
Figure 3. Design for study (v1, v4) 

 
An important feature of 3Sdb is the association of 

samples to their donor medical profiles. In v1, the 
concept Donor and its sub-concepts, specialized by 

species (i.e., Human Donor and Animal Donor), are 
used to organize donor information. This information 
includes diagnoses, medications and family history. 
Here the Donor concept depends on the Sample 
concept, in the sense that it is used to associate a 
snapshot of the donor’s profile to the sample. If a new 
sample is taken from the same donor, two donor 
records need to be kept in order to associate each 
sample to the correct donor snapshot. Figure 4 shows 
the design for donor profiles introduced in v1. 

 

 
Figure 4. Design for sample donor (v1) 

 
In v3, two new concepts Donor Visit and Visit 

Update are introduced. Each sample is associated with 
a Donor Visit, which may involve multiple Visit 
Updates. The concept Visit Update represents an event 
that updates the donor’s information. In this design, 
donor is not directly associated to sample; rather a 
donor can participate in many visits, i.e. give many 
samples. The temporal dimension of donor information 
is controlled by Visit Update. Therefore the sample-
specific portion of the donor information can be easily 
separated from the entire donor medical profile. Figure 
5 shows the design for donor profiles introduced in v3. 

  
 

 
Figure 5. Design for sample donor (v3) 

 
3. Design process revisited 

 
We revisit the design process of 3Sdb by 

introducing a goal analysis step to gather data 
requirements before the conceptual modeling and 
design phase. Our aim is to start from high level goals, 
deriving and exploring design alternatives, much like 
what the Tropos methodology [4] does for software 
systems design. We follow the KAOS methodology [2] 
to identify domain concepts from the descriptions of 
goals and activities, and adopt the notion from the NFR 
framework [3] to describe stakeholder softgoals.  

The goal model is constructed based on the design 
notes for the database. The major challenges we faced 



were 1) to understand the application domain, and 2) to 
reserve-engineer the intentions behind the design from 
the design notes, which mainly provided us with the 
details of the design decisions that had been made. To 
overcome these difficulties, one of the original 3Sdb 
designers was consulted whenever necessary. He acted 
as the source of the domain knowledge, clarified 
ambiguous points in the design notes and provided 
additional information that we could not find in the 
documents (e.g., the initial high-level goals of the 
design, alternatives that had been considered). 

 
3.1. Goal analysis 

 
The top level goal for 3Sdb is to collect and 

organize data about biological samples, including 
clinical data about sample donors, for the purpose of 
correlating sample and donor conditions with gene 
expression data (0) generated from gene expression 
experiments using microarrays4. This goal is the entry 
point to goal analysis using basic goal reasoning 
techniques, such as AND/OR decomposition which 
refines goals into sub-goals. The result of this analysis 
is a goal model, which represent alternative ways to 
achieve the top-level goal. In the sub-problem of 
database design, these alternatives lead to different 
data requirements specifications.   

Figure 6 represents a portion of the goal model5. To 
fulfill the top-level goal, one needs to correlate gene 
expression data with normal organs (1.1), diseases and 
drugs (1.2), and other lifestyle factors (1.3), such as 
diet, exercise and smoking habit. Goal 1.2 is further 
AND-decomposed into subgoals 2.1, 2,2, 2,3 and 2.4. 
In order to obtain sample and donor data (2.2), one 
chooses between several experimental strategies; these 
include studies that involve disease models (3.1), 
human tissues (3.2) or both (3.3). Depending on the 
choice of strategy, the corresponding design of 3Sdb 
will be very different. As we will see in Section 4, the 
actual 3Sdb design has followed goal 3.3. 

 

                                                        
4  Other component databases manage gene expression data and 
reference 3Sdb data through identifiers on samples. 
5 The definition of each node in the goal model consists of a short 
descriptive name and a detailed textual description, which we do not 
show here.  

 
Figure 6. A partial model of high level goals  

 
Goals can be further analyzed using another type of 

goal reasoning technique, means-end analysis, to 
reveal (alternative) activities that need to be carried out 
in order to achieve these goals. Activities can also be 
decomposed into sub-activities. For our purpose, there 
is no clear-cut distinction between goals and activities. 
Goals express desired states of affairs. Goal 
decomposition gradually shifts the focus from the 
desired states of world to the activities that can 
potentially help us to reach them. In this spirit, high 
level goals can be thought of as defining generic 
activities, and goal decomposition and means-end 
analysis as specifying these activities with more details 
[13]. But there are some guidelines we follow 
whenever possible: something is a goal, if we are 
exploring alternative ways to achieve it; otherwise, it is 
an activity, if there is an established procedure to do it. 
 

 
Figure 7. Means-end analysis for 3.1 and 3.2  

 
Figure 7 shows different means to fulfill goal 3.1 

and 3.2. For goal 3.1, there are three study alternatives 
which involve animal models (4.1), cell cultures (4.2) 
or both (4.3). In these studies, animal models or cell 
cultures are treated with drugs and then analyzed for 
gene expression. A further analysis of activity 4.1 
reveals a sequence of steps that need to be carried out. 
These include: “select one or more drugs, the dosage of 
the drugs, and the time points of the treatment”, 



“collect clinical tests on animal models” and “perform 
gene expression measurements on animal samples”. 

Unlike disease model studies where treatments are 
performed under controlled conditions, in human tissue 
studies the treatments or diseases are the properties of 
the specimens. Therefore to fulfill goal 3.2, the 
investigators use samples from patients (4.4) to link 
gene expression data to its contributing factors. As a 
result, activity 4.4 requires different sub-activities, 
such as “collect human tissue samples from sources” 
and “obtain sample and donor clinical information”. As 
we’ll see later, study choices are sources of complexity 
for 3Sdb design.  

 
3.2. Data requirements elicitation 
  

Traditional database design techniques start with the 
analysis of data requirements that “dictate” the 
structure of data to be stored. Recent RE research 
suggests that instead of specifying the functionality of 
a system, early requirements should concentrate on 
modeling its environment [5]. For database design, this 
implies that a good requirements specification should 
not focus on the structure of data, but rather on the 
stakeholders’ information needs. A goal model 
determines the boundary of the domain of discourse for 
the database-to-be. The descriptions of goals and 
activities reveal important domain concepts for which 
data need to collected and stored. These domain 
concepts, their associations and the queries over them 
form the data requirements that better capture 
stakeholders’ information needs.  

We follow the KAOS methodology [2] for 
identifying domain concepts from the descriptions of 
goals and activities. In the goal context, a domain 
concept represents an entity or a phenomenon the goal 
refers to. For example, the descriptions of goal 1.1 ~ 
1.3 refer to concepts gene expression, organ, disease, 
drug, diet, exercise, smoking habit, correlation of gene 
expression with organ, etc. As we move along the goal 
hierarchy, new concepts can be introduced and existing 
concepts can be refined. For example, depending on 
which subgoal of goal 2.2 is chosen, the concept donor 
can be refined into animal donor, human donor or 
both.  

In the activity context, a domain concept represents 
an entity or phenomenon that the activity has effect on 
or depends on. It can be identified by analyzing the 
input, output and control of the activity, using 
techniques such as UML Activity Diagram. For 
example, activity 4.1 is further decomposed into sub-
activities, such as “order animal study”, “define and 
execute a treatment plan”, and “collect tissue samples”. 
Concepts such as treatment plan and animal tissue 

sample can be identified from descriptions of these 
sub-activities.  

Goal models are also sources of high level queries 
as well. In our case study, we did not address this 
problem. Instead, we encountered query requirements 
directly in the design notes of 3Sdb and interpret them 
as additional data requirements. We noticed that some 
queries are associated with a single node in the goal 
model. For example, the query “find the animals with 
specified treatment conditions” is related to the sub-
activity “define a treatment plan”. In other cases, 
interesting queries involve multiple goals or activities. 
For example, only when sub-activities “order animal 
study” and “define a treatment plan” are considered 
together within the context of their parent goal 1.2, will 
the query “find sample tissues of animals from a 
specific population that are subject to specified drug 
treatment” be considered.  

Domain concepts and associated queries form the 
data requirements for the database-to-be. By selecting 
among the subgoals in a goal OR-decomposition, one 
can generate data requirements specifications that 
correspond to different choices to fulfill the top-level 
goal. For example, Table 1 shows a list of concepts and 
queries that are a part of a data requirements 
specification (DR1), assuming that activity 4.1, among 
others, is selected. If activity 4.2 is selected instead, in 
its corresponding data requirements specification 
(DR2), animal model study and animal tissue sample 
are replaced by the concept cell culture. Furthermore, 
if 3Sdb needs to support both animal model and cell 
culture studies, the resulting specification is the union 
of DR1 and DR2.  

 
Table 1. Data requirements 1 (DR1)  

 

Domain Concepts: 
gene expression, disease, drug, correlation of disease 
and gene expression, correlation of drug and gene 
expression, animal model study, study group, 
treatment plan, animal tissue sample, … 
Queries: 
find animal tissue samples with the specified disease, 
find animal tissue samples subject to the specified 
drug treatment, … 

 
3.3. Conceptual design  

 
Conceptual design is the phase in the design process 

where a data requirements specification is gradually 
transformed into a formal description of data (i.e. a 
conceptual schema) using the constructs provided by a 
conceptual data model (e.g. the Entity-Relationship 
Model). This process involves a series of decision-
making steps that are driven by stakeholder goals. 



Traditional database design methodologies suggest 
several strategies (i.e. top-down, bottom-up, inside-out 
and mixed) to organize this transformation [6]. But 
these approaches mix the understanding of the domain 
with the decision-making, which is usually constrained 
by the data model and other design considerations 
(such as extensibility and performance), into a single 
step. We believe that separation of these two phases 
leads to more extensible and reusable conceptual 
schema design. Future research needs to show how 
such strategies can be extended to support the goal-
driven approach to database design.  

 
4. Why goal analysis 

 
A comparison of the design choices for 3Sdb as 

originally made by its designers in successive versions 
and the design recommendations suggested by the goal 
analysis shows that the goal-driven approach results in 
a design space that (a) includes original schemas built 
through the evolution the application, and (b) suggests 
additional alternatives that lead to more comprehensive 
design. In addition, the goal-driven design (c) supports 
systematic evaluation of design alternatives, and (d) 
generates schemas with rich and explicit data 
semantics. Our interpretation is that goal analysis 
parallels the cognitive process that took place in the 
actual design of 3Sdb, except that it was implicit; when 
goals are made explicit, they lead to schema design 
that better responds to the purpose of the application. 
Bellow we discuss these points in detail.   

 
4.1. Realistic design space for 3Sdb  
 

An inspection of the schemas discussed in Section 2 
suggests that the actual 3Sdb design supported both 
disease model and human tissue studies. For example, 
the concept Donor is specialized into both Animal 
Donor and Human Donor. This raises the question: 
whether the goal model can lead to all the design 
decisions made throughout the evolution of 3Sdb?  

Figure 8 presents the portion of the goal model that 
refines goals 2.2, 2.3 and 2.46. Shaded nodes in the 
model indicate leaf goals that were actually chosen by 
the 3Sdb designers. For example, to perform human 
tissue study (3.2), a decision has to be made on 
whether to collect only disease specific (4.13) or 
comprehensive (4.14) donor medical profile. The 
actual 3Sdb design shows that the designers decided to 
follow goal 4.14. This led to both disease specific (e.g. 
diagnoses and medications) and historical (e.g. family 
history) medical data being associated either with the 
                                                        
6 The subgoals of goal 3.1 apply equally no matter which activity 
(4.1, 4.2 and 4.3) is chosen. So these activities are not shown here.    

concept Donor (and its sub-concepts) in v1 and v2, or 
with Donor Visit in v3 and v4. In other case, the 
designers considered one alternative at the beginning 
and switched to another one later. For example, v1 ~ 
v3 only support animal studies where single (5.5) 
treatment is allowed on every study group. In these 
versions, treatment is a property of Study Group. The 
concept Treatment was introduced in v4 to 
accommodate multiple (5.6) treatments of the same 
study group over time. 
 

 
Figure 8. A partial analysis of goal 3.3 

 
Table 2 summarizes the important concepts that 

were introduced in different versions of 3Sdb (shown 
in the horizontal heading of the table) as the result of 
the changing preferences to various design alternatives 
(shown in the vertical heading of the table), as 
illustrated by the goal model. For example, the 
concepts Cell Culture and Tissue Sample were 
introduced in v2 to support classifying samples by 
sample type (4.7). Similarly, the concepts Donor Visit 
and Visit Update introduced in v3 were derived from 
goal 3.6. It solved the problem that one could not 
distinguish (3.7) a donor’s condition specific to a 
sample (e.g. diagnosis of a cancer at sample-collecting 
time) from the rest of her medical profile in the 
background with respect to the sample (e.g. diagnosis 
of a cancer 1 year before sample donation).  

 
Table 2. Summary of design decisions  

  



 v1 v2 v3 v4 

4.7  Cell Culture, 
Tissue Sample   

5.1, 5.5 Study Group    

5.3, 5.4   Matched  
Sample  

5.6    Treatment

5.8 Repeated 
Observation 

   

4.14 
Diagnosis, 

Medication,  
Family History 

 
  

3.6   Donor Visit, 
Visit Update  

 
4.2. Additional design alternatives  
 

 The goal model not only provides an explanation 
why a schema was designed in a particular way, it also 
suggests additional alternatives that lead to more 
comprehensive design in terms of the coverage of 
stakeholder goals. Here we show two such examples. 
Throughout its evolution, 3Sdb gradually covers a 
wider range of sample grouping schemes. These 
include grouping of samples by treatment plan (5.1), 
which is supported by the concept Study Group 
introduced in v1, and by sample origin in the sense that 
two samples originated from same donor can be either 
related explicitly (5.3) or implicitly (5.4), which is 
supported by the concept Matched Sample introduced 
in v3. However, from the goal model, one can clearly 
notice that another grouping scheme was missed by the 
designers. Samples in the same study can also be 
grouped by user specified conditions (5.2) which are 
not in the pre-defined treatment plan. An advantage of 
this scheme is that it allows different groups to have 
their own ad hoc grouping conditions. If this scheme is 
also commonly used, the concept Sample Set can be 
introduced, as shown in Figure 9.  

 

 
Figure 9. New design for sample relationships 

 
As another example, 3Sdb supports classification of 

samples by sample type (4.7) through use of the 
concepts Sample, Tissue Sample, Cell Culture, and etc; 
other classification dimensions (e.g. donor species) are 
collapsed into Sample properties. If extensibility was 
of primary concern, the designers could have followed 
the subgoal classify samples by multiple dimensions 
(4.10), which leads to a more comprehensive design 
that allows classification of samples by one or more 

existing or anticipated dimensions, as shown in Figure 
10. In this design, we can associate dimension-specific 
data to each subclass of Sample Data.  

 

 
Figure 10. New design for sample 

 
4.3. Evaluation of design alternatives 

 
An important property of the goal model is that all 

the alternatives are there to be examined, regardless 
whether they are selected or not. Goal analysis 
provides a systematic way for evaluating design 
alternatives through use of softgoals. Softgoals are 
goals without clear-cut criteria for their satisfaction [7] 
and usually used to model non-functional requirements 
[3] of a software system. Design alternatives represent 
different information needs that may have positive or 
negative contributions to the fulfillment of the 
softgoals. For example, in Section 3.1, we discussed 
several alternative ways to fulfill goal 2.2: to obtain 
sample and donor data. They are repeated in table 3.  

 
Table 3. Alternative means to fulfill Goal 2.2 

 

4.1: (to perform disease model study) using animal models 
4.2: (to perform disease model study) using cell cultures 
4.4: (to perform human tissue study) using patient samples 
or some combination of above 

 
In this section, we confirmed that 3Sdb design 

followed the alternative (4.1)+(4.2)+(4.4). Why was 
this so? The 3Sdb design documents offer no clear 
explanation. An analysis of the high level softgoals for 
the gene expression system reveals the reason. 
Softgoals such as greater coverage of diseases and 
treatment conditions (s1), controlled budget of 
experiments (s2) and highest biological relevance to 
drug discovery (s3) ultimately influence the ranking of 
these alternatives, as summarized in Table 4. 

 
Table 4. An evaluation of study alternatives 

 

 4.1 4.2 4.1+4.2 4.4 4.1+4.4 4.2+4.4 4.1+4.2+4.4
s1 ++ +++ +++++ + +++ ++++ ++++++ 
s2 --- -- ----- - ---- --- ------ 
s3 ++ + +++ ++++ ++++++ +++++ +++++++ 

 
A ‘+’ is a unit of positive response of an alternative 

to a softgoal, while a ‘-’ represents a unit of negative 
response. For example, the choice of patient samples 



(4.4) burdens the budget (s2) by a ‘-’, while the choice 
of animal models (4.1) is significantly more costly 
(represented by ‘---’ for s2) as it yields more samples 
and therefore requires more experiments. With respect 
to biological relevance from a drug discovery 
perspective (s3), human data (4.4) are more valuable 
than animal data (4.1 and 4.2).  On the other hand, cell 
cultures (4.2) give better coverage of disease and 
treatment conditions (s1) than animal models (4.1) or 
patient samples (4.4), because they are easier to 
manipulate. From Table 5, we can infer that (4.4) is the 
less costly choice with the maximum return, while for 
the situation where the budget is less of a concern, 
choice (4.1)+(4.2)+(4.4) is more preferable. If the cost 
of database design was a softgoal, it might have tipped 
the balance in a different direction. Such reasoning at 
the requirements stage guides decisions that have an 
impact on the database design and the way it will be 
populated and used. 
 
4.4. Better data semantics support  

 
Another benefit of the goal-driven design process is 

that it helps establish explicit traces from elements in a 
schema to the concepts they refer to and the purpose 
they serve. In software development, explicit 
traceability management [8, 9], is critical to support 
decision making and reuse of design knowledge. In 
database design, knowledge captured at design time is 
essential for attaching meaning to schema elements 
and thus provides rich and explicit data semantics for 
the schema. This view is in harmony with our earlier 
statement that “data semantics consists of a schema, as 
well as the intentions behind its design” [10]. This 
notion of traceability is present in the example of 
Section 3. For example, the fulfillment of goal 3.2 
“leads to” the query “select human tissue samples with 
specific donor conditions”, which “is responsible” for 
introducing the concepts of Donor Visit and Visit 
Update in v3. The design rationale for modeling 
human sample donor conditions in this way is the 
softgoal that calls to maximize biological relevance to 
aid drug discovery (s3). The links from Donor Visit 
and Visit Update back to goal 3.2 and softgoal s3 form 
a “grid” that explains the choices of the design.  

 
5. Concluding remarks and future work 

 
In this paper, we have considered an extended 

database design methodology driven by stakeholder 
goals. A methodology for designing general 
Information Systems, including a conceptual schema, 
which also emphasizes enterprise goals, has long been 
advocated by Janis Bubenko and his group [11]. A 

distinguishing feature of the present work is the more 
systematic consideration of decomposition and 
alternatives. A sketch of the methodology is implied in 
the revisited design process of 3Sdb, in Section 3. 
Incorporating goal analysis in database design is an 
endeavor that involves many challenges. Below we 
briefly discuss some of these open problems. 
 
5.1. Exploration of the design space 
 

 Goal modeling is about making explicit a space of 
design alternatives. In the case study, we focused on 
the part of the design space characterized by domain 
stakeholders (e.g. database users) and their goals. But 
in the design notes that we reviewed, we found that 
considerations coming from development stakeholders 
(e.g. data modelers) are also abound. It would be 
interesting to see how we can combine these two sub-
spaces in the design methodology. We also want to 
explore the notion of generic conceptual design, where 
a conceptual schema covers more than one design 
alternative. Such conceptual schema can be used, for 
example, to produce more suitable representation of 
the data at run-time based on the environment 
conditions.  

 
5.2. From requirements to schemas 
 

A specification of data requirements represents the 
understanding of the domain of discourse and contains 
the high level constraints on the organization of the 
data to be stored. A conceptual schema accumulates a 
series of detailed design decisions based on the 
understanding and constraints, and ultimately 
stakeholder goals behind the design. We are interested 
in a systematic approach to this decision-making 
process.  

For example, concepts derived from goal analysis 
include a temporal dimension, while a conceptual 
schema is a static, time-invariant. Decisions have to be 
made on how to approximate the (infinitely detailed) 
temporal information using finite structures. Temporal 
database modeling techniques [12] focus on 
representation of the temporal components of data, 
once the choices have been made. We are interested in 
rational ways to make such decisions based on the 
analysis of stakeholder intentions. As another example, 
our analysis does not explore the use of any domain 
knowledge in a formal representation (e.g., domain 
ontologies) to aid the design process. We believe, and 
the case study supports the belief, that there are 
“blocks” of conceptual understanding of a problem 
domain that can help refine the data requirements and 
transform requirements to schemas.  



 
5.3. Support for explicit data semantics  
 

As we have mentioned in Section 4.4, the 
“byproduct” of the goal-driven database design process 
is the direct trace from intentions to requirements to 
schemas. The knowledge captured during design can 
be used to attach explicit meaning to the elements in 
the schema and propagate to the data organized by the 
schema. We distinguish two classes of semantics: 
intentional and non-intentional. Intentional semantics 
conveys the purpose behind the collection, store and 
use of the data, while non-intentional semantics 
corresponds to the real-world entities or phenomena for 
which the data is kept. Support for explicit data 
semantics requires representation of these types of 
knowledge with conceptual schemas and calls for an 
extension to existing conceptual data models.  

 
Our long-term research objective is incorporation of 

goal analysis in database design. The case study 
reported in this paper has provided evidence for the 
relevance of this objective, and helped us to understand 
the issues and outline a research plan. 
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