
Incorporating Goal Analysis in Database Design: A Case Study from
Biological Data Management

Lei Jiang1, Thodoros Topaloglou1, Alex Borgida2, John Mylopoulos1
1University of Toronto, 2Rutgers University

leijiang@cs.toronto.edu, thodoros@mie.utoronto.ca, borgida@cs.rutgers.edu,
jm@cs.toronto.edu

Abstract

We present a case study of a real-world industrial
application which produced several versions of
conceptual schema design for a biological database
during its evolution. We apply the techniques of early
requirements analysis to produce a goal model of the
problem domain. We then show that by incorporating
goal analysis in the design process we can account for
the original schemas by tracing them back to
stakeholder goals. Moreover, the goal-oriented
analysis supports the systematic examination of the
space of design alternatives, and better explains what
the output of the design process (a conceptual schema)
really means. Our results advocate the need for an
extended design methodology for databases driven by
stakeholder goals.

1. Introduction

If one were to design an information system fifteen
years ago, she'd want to use a requirements modelling
language such as SADT or DFD for the functional part
of the system, and ER diagrams to design the database.
If she were brave, she might use instead object-
oriented analysis techniques (which were quite new at
the time) for both the data and functional parts of the
system-to-be. The state-of-the-art in Requirements
Engineering (RE) has changed dramatically in these
fifteen years. Goal-oriented requirements analysis
techniques have added an earlier phase to software
requirements analysis where one starts from
stakeholders and their intentions, and derives from
them functional and non-functional requirements
through a systematic, tool-supported process. This
process explores a space of alternatives and selects one
on the basis of criteria. Unfortunately, the state-of-the-
art for designing the database part of an information
system hasn't changed at all during this period. We are
interested in an extended database design methodology

in which stakeholder goals drive the design process in
a systematic way.

We begin our research with a case study based on a
real-world industrial application, which produced
several versions of conceptual schema design for a
biological database during its evolution. The case study
compares two different methods for designing a
database. We start with an analysis of the original
conceptual schema and its evolving design. We then
revisit the design process using a modified version of
goal-driven requirements engineering technique. We
aim to construct a goal model for the problem domain,
starting from top-level goals of the application, by
applying basic goal reasoning techniques. Goal
analysis makes explicit and explores a space of design
alternatives that lead to a set of data requirements
specifications, each of which corresponds to a
particular choice to fulfill the top-level goals.

The objective of this paper is to describe the case
study, the methodology by which we recovered
portions of the design space, and the conclusions we
draw from our results. The rest of the paper is
organized as follows. In Section 2, we give a brief
introduction to the application domain of the biological
database and describe four versions of its conceptual
schema design. In Section 3, we present the modified
design process for the same database, extended with a
goal analysis phase. In Section 4, we compare the
original design decisions with design recommendations
suggested by the goal analysis, and demonstrate the
benefits brought by the goal-driven approach. In
Section 5, we conclude and point to our research plan
towards a database design methodology driven by
stakeholder goals.

2. Design of a biological database

In this section we review the design motivation and
corresponding outcomes of a biological database that is
part of a commercial system, for the management of

gene expression data generated using gene microarrays
and for the support of gene expression analysis.

2.1. Application domain background

Genomics 101: Gene expression systems, simply
put, measure the level of the activity of genes in
biological samples. For the software engineer, an
analog of the genome is the source code of a very large
and poorly documented concurrent program, where
each gene is a “function”. We identify the genes by
looking for matching pairs of begin and end
statements. Each cell is an interpreter that has a copy of
the full genome. At a given state of the execution,
functions that are running represent genes that are
expressed in the cell. A biological sample contains
millions of cells. A gene microarray is a camera that
takes a picture of the sample and counts all the pixels
corresponding to each gene for all cells, and thus
reports an expression value for each gene. (In fact, a
gene array does not recognize all the genes of an
organism, but recognizes several thousands of them
that are printed on the array.) Given that we only have
partial knowledge of what genes do, the significance of
these pictures (experiments) is that they allow us to
infer the function of the genes by correlating them with
the conditions of the samples. In other words, if we
know something about the samples and the identity of
genes on the array, we can make sense of what these
functions do. A gene expression database is an
invaluable research tool for studying the biology of
genes and how gene expression changes in the
presence of diseases or drug treatments. For example,
such a tool can handle queries like “find genes whose
expression goes up or down in samples derived from
prostate biopsies of donors with PSA1>4, relative to
normal tissues” An answer to this query requires
knowing about the origin of the sample, including the
donor and his/her medical information. One goal of a
gene expression database is to maintain comprehensive
information about the experimental samples.

2.2. 3Sdb schema description

This sub-section describes the scientific information
needs, the application requirements and the evolving
design of the biological database in the early stages of
the product. We analyze the requirements and design
of four versions that emerged over a period of 18
months. These four versions of conceptual schema
design (hereafter referred to as v1, v2, v3 and v4)
demonstrate the evolution of the database due to

1 PSA (Prostatic Antigen) is an early diagnostic marker for prostate
cancer.

improved understanding of the initial requirements and
changing information needs of the application. Given
the sheer size of the original database schema and
specific goal of our analysis, which is linking early
requirements to schema design, our discussion is
limited to a small subset, concerning the sample
component of the database (hereafter called 3Sdb --
small subset of sample database). Our analysis is based
on design notes (from the period 1998-2000) and
published product literature [1]2.

3Sdb is a repository of data on biological samples
explored during gene expression analysis. It stores
information on biological samples and their donors.
The major decisions the database designers had to
make at the conceptual modeling stage include the
modeling of: (a) different categories of biological
samples, (b) the relationships between samples, based
on origin or other considerations, (c) experimental
studies and (d) donor clinical profiles. Here we give a
brief description of these decisions and how they differ
between versions.

The central concept in 3Sdb is “biological sample”,
representing the tissue, cell or RNA material that
originates from a donor of a given species. Therefore
biological samples can be classified by sample type
(i.e. tissue, cells, RNA) and donor species (i.e. human
and animal). In v1, the concept Sample with a long list
of attributes is used to represent all biological samples.
Starting in v2, the Sample concept is specialized into
Tissue Sample, Cell Culture, etc. Figure 1 shows the
conceptual design for Sample introduced in v23

Figure 1. Design for biological sample (v2)

Biological samples are related to each other in many

ways depending on the collection process and the
studies they belong to. The concept Study Group,
introduced in v1, represents a group of samples
characterized according to a set of experimental

2 Because of confidentiality and intellectual property restrictions,
reference to the entire schema or complete concepts is avoided in this
paper. Instead, we mention concepts and properties as they fit to the
topic of discussion. We also edited the names of sensitive entities
and refrain from showing complete lists of attributes.
3 In this paper, conceptual design is represented using UML class
diagrams with most of the association names omitted for brevity.

parameters. In v3, the concept Matched Sample is
added to model samples known to be related by origin
(e.g. a tumor liver and a normal liver sample from the
same biopsy) or samples from the same donor without
any connection to a common condition (e.g. a liver
sample and a brain sample taken from the same patient
many years apart). Figure 2 shows the design for these
sample relationships introduced in v1 and v3.

Figure 2. Design for sample relationships (v1, v3)

In addition to human samples, a significant number

of samples originate from “designed experiments”.
Such experiments monitor, for example, the dose-
response of animal subjects or cell cultures to a drug
over time. Subjects are typically divided into multiple
groups with different treatment conditions (e.g. drug
dose), and observed at various time points. In v1,
studies are modeled by concepts Study and Study
Group. Study captures study-specific metadata (e.g.
start/end date of study, number of dose groups, number
of time points), while Study Group models information
on treatments administered to the group and the
associated observations (e.g. drug agent used, dose
level, number of subjects per dose group at the
beginning of the study). Moreover, the concept
Repeated Observation is used to record data obtained
as a result of the same type of observation repeated
over time (e.g., growth, weight, temperature). In v4,
the concept Treatment is separated from Study Group
to allow multiple treatments within a study group.
These concepts are shown in Figure 3. The evolution
of the Study concept is due to the increased complexity
of the study data encountered.

Figure 3. Design for study (v1, v4)

An important feature of 3Sdb is the association of

samples to their donor medical profiles. In v1, the
concept Donor and its sub-concepts, specialized by

species (i.e., Human Donor and Animal Donor), are
used to organize donor information. This information
includes diagnoses, medications and family history.
Here the Donor concept depends on the Sample
concept, in the sense that it is used to associate a
snapshot of the donor’s profile to the sample. If a new
sample is taken from the same donor, two donor
records need to be kept in order to associate each
sample to the correct donor snapshot. Figure 4 shows
the design for donor profiles introduced in v1.

Figure 4. Design for sample donor (v1)

In v3, two new concepts Donor Visit and Visit

Update are introduced. Each sample is associated with
a Donor Visit, which may involve multiple Visit
Updates. The concept Visit Update represents an event
that updates the donor’s information. In this design,
donor is not directly associated to sample; rather a
donor can participate in many visits, i.e. give many
samples. The temporal dimension of donor information
is controlled by Visit Update. Therefore the sample-
specific portion of the donor information can be easily
separated from the entire donor medical profile. Figure
5 shows the design for donor profiles introduced in v3.

Figure 5. Design for sample donor (v3)

3. Design process revisited

We revisit the design process of 3Sdb by

introducing a goal analysis step to gather data
requirements before the conceptual modeling and
design phase. Our aim is to start from high level goals,
deriving and exploring design alternatives, much like
what the Tropos methodology [4] does for software
systems design. We follow the KAOS methodology [2]
to identify domain concepts from the descriptions of
goals and activities, and adopt the notion from the NFR
framework [3] to describe stakeholder softgoals.

The goal model is constructed based on the design
notes for the database. The major challenges we faced

were 1) to understand the application domain, and 2) to
reserve-engineer the intentions behind the design from
the design notes, which mainly provided us with the
details of the design decisions that had been made. To
overcome these difficulties, one of the original 3Sdb
designers was consulted whenever necessary. He acted
as the source of the domain knowledge, clarified
ambiguous points in the design notes and provided
additional information that we could not find in the
documents (e.g., the initial high-level goals of the
design, alternatives that had been considered).

3.1. Goal analysis

The top level goal for 3Sdb is to collect and

organize data about biological samples, including
clinical data about sample donors, for the purpose of
correlating sample and donor conditions with gene
expression data (0) generated from gene expression
experiments using microarrays4. This goal is the entry
point to goal analysis using basic goal reasoning
techniques, such as AND/OR decomposition which
refines goals into sub-goals. The result of this analysis
is a goal model, which represent alternative ways to
achieve the top-level goal. In the sub-problem of
database design, these alternatives lead to different
data requirements specifications.

Figure 6 represents a portion of the goal model5. To
fulfill the top-level goal, one needs to correlate gene
expression data with normal organs (1.1), diseases and
drugs (1.2), and other lifestyle factors (1.3), such as
diet, exercise and smoking habit. Goal 1.2 is further
AND-decomposed into subgoals 2.1, 2,2, 2,3 and 2.4.
In order to obtain sample and donor data (2.2), one
chooses between several experimental strategies; these
include studies that involve disease models (3.1),
human tissues (3.2) or both (3.3). Depending on the
choice of strategy, the corresponding design of 3Sdb
will be very different. As we will see in Section 4, the
actual 3Sdb design has followed goal 3.3.

4 Other component databases manage gene expression data and
reference 3Sdb data through identifiers on samples.
5 The definition of each node in the goal model consists of a short
descriptive name and a detailed textual description, which we do not
show here.

Figure 6. A partial model of high level goals

Goals can be further analyzed using another type of

goal reasoning technique, means-end analysis, to
reveal (alternative) activities that need to be carried out
in order to achieve these goals. Activities can also be
decomposed into sub-activities. For our purpose, there
is no clear-cut distinction between goals and activities.
Goals express desired states of affairs. Goal
decomposition gradually shifts the focus from the
desired states of world to the activities that can
potentially help us to reach them. In this spirit, high
level goals can be thought of as defining generic
activities, and goal decomposition and means-end
analysis as specifying these activities with more details
[13]. But there are some guidelines we follow
whenever possible: something is a goal, if we are
exploring alternative ways to achieve it; otherwise, it is
an activity, if there is an established procedure to do it.

Figure 7. Means-end analysis for 3.1 and 3.2

Figure 7 shows different means to fulfill goal 3.1

and 3.2. For goal 3.1, there are three study alternatives
which involve animal models (4.1), cell cultures (4.2)
or both (4.3). In these studies, animal models or cell
cultures are treated with drugs and then analyzed for
gene expression. A further analysis of activity 4.1
reveals a sequence of steps that need to be carried out.
These include: “select one or more drugs, the dosage of
the drugs, and the time points of the treatment”,

“collect clinical tests on animal models” and “perform
gene expression measurements on animal samples”.

Unlike disease model studies where treatments are
performed under controlled conditions, in human tissue
studies the treatments or diseases are the properties of
the specimens. Therefore to fulfill goal 3.2, the
investigators use samples from patients (4.4) to link
gene expression data to its contributing factors. As a
result, activity 4.4 requires different sub-activities,
such as “collect human tissue samples from sources”
and “obtain sample and donor clinical information”. As
we’ll see later, study choices are sources of complexity
for 3Sdb design.

3.2. Data requirements elicitation

Traditional database design techniques start with the
analysis of data requirements that “dictate” the
structure of data to be stored. Recent RE research
suggests that instead of specifying the functionality of
a system, early requirements should concentrate on
modeling its environment [5]. For database design, this
implies that a good requirements specification should
not focus on the structure of data, but rather on the
stakeholders’ information needs. A goal model
determines the boundary of the domain of discourse for
the database-to-be. The descriptions of goals and
activities reveal important domain concepts for which
data need to collected and stored. These domain
concepts, their associations and the queries over them
form the data requirements that better capture
stakeholders’ information needs.

We follow the KAOS methodology [2] for
identifying domain concepts from the descriptions of
goals and activities. In the goal context, a domain
concept represents an entity or a phenomenon the goal
refers to. For example, the descriptions of goal 1.1 ~
1.3 refer to concepts gene expression, organ, disease,
drug, diet, exercise, smoking habit, correlation of gene
expression with organ, etc. As we move along the goal
hierarchy, new concepts can be introduced and existing
concepts can be refined. For example, depending on
which subgoal of goal 2.2 is chosen, the concept donor
can be refined into animal donor, human donor or
both.

In the activity context, a domain concept represents
an entity or phenomenon that the activity has effect on
or depends on. It can be identified by analyzing the
input, output and control of the activity, using
techniques such as UML Activity Diagram. For
example, activity 4.1 is further decomposed into sub-
activities, such as “order animal study”, “define and
execute a treatment plan”, and “collect tissue samples”.
Concepts such as treatment plan and animal tissue

sample can be identified from descriptions of these
sub-activities.

Goal models are also sources of high level queries
as well. In our case study, we did not address this
problem. Instead, we encountered query requirements
directly in the design notes of 3Sdb and interpret them
as additional data requirements. We noticed that some
queries are associated with a single node in the goal
model. For example, the query “find the animals with
specified treatment conditions” is related to the sub-
activity “define a treatment plan”. In other cases,
interesting queries involve multiple goals or activities.
For example, only when sub-activities “order animal
study” and “define a treatment plan” are considered
together within the context of their parent goal 1.2, will
the query “find sample tissues of animals from a
specific population that are subject to specified drug
treatment” be considered.

Domain concepts and associated queries form the
data requirements for the database-to-be. By selecting
among the subgoals in a goal OR-decomposition, one
can generate data requirements specifications that
correspond to different choices to fulfill the top-level
goal. For example, Table 1 shows a list of concepts and
queries that are a part of a data requirements
specification (DR1), assuming that activity 4.1, among
others, is selected. If activity 4.2 is selected instead, in
its corresponding data requirements specification
(DR2), animal model study and animal tissue sample
are replaced by the concept cell culture. Furthermore,
if 3Sdb needs to support both animal model and cell
culture studies, the resulting specification is the union
of DR1 and DR2.

Table 1. Data requirements 1 (DR1)

Domain Concepts:
gene expression, disease, drug, correlation of disease
and gene expression, correlation of drug and gene
expression, animal model study, study group,
treatment plan, animal tissue sample, …
Queries:
find animal tissue samples with the specified disease,
find animal tissue samples subject to the specified
drug treatment, …

3.3. Conceptual design

Conceptual design is the phase in the design process

where a data requirements specification is gradually
transformed into a formal description of data (i.e. a
conceptual schema) using the constructs provided by a
conceptual data model (e.g. the Entity-Relationship
Model). This process involves a series of decision-
making steps that are driven by stakeholder goals.

Traditional database design methodologies suggest
several strategies (i.e. top-down, bottom-up, inside-out
and mixed) to organize this transformation [6]. But
these approaches mix the understanding of the domain
with the decision-making, which is usually constrained
by the data model and other design considerations
(such as extensibility and performance), into a single
step. We believe that separation of these two phases
leads to more extensible and reusable conceptual
schema design. Future research needs to show how
such strategies can be extended to support the goal-
driven approach to database design.

4. Why goal analysis

A comparison of the design choices for 3Sdb as

originally made by its designers in successive versions
and the design recommendations suggested by the goal
analysis shows that the goal-driven approach results in
a design space that (a) includes original schemas built
through the evolution the application, and (b) suggests
additional alternatives that lead to more comprehensive
design. In addition, the goal-driven design (c) supports
systematic evaluation of design alternatives, and (d)
generates schemas with rich and explicit data
semantics. Our interpretation is that goal analysis
parallels the cognitive process that took place in the
actual design of 3Sdb, except that it was implicit; when
goals are made explicit, they lead to schema design
that better responds to the purpose of the application.
Bellow we discuss these points in detail.

4.1. Realistic design space for 3Sdb

An inspection of the schemas discussed in Section 2
suggests that the actual 3Sdb design supported both
disease model and human tissue studies. For example,
the concept Donor is specialized into both Animal
Donor and Human Donor. This raises the question:
whether the goal model can lead to all the design
decisions made throughout the evolution of 3Sdb?

Figure 8 presents the portion of the goal model that
refines goals 2.2, 2.3 and 2.46. Shaded nodes in the
model indicate leaf goals that were actually chosen by
the 3Sdb designers. For example, to perform human
tissue study (3.2), a decision has to be made on
whether to collect only disease specific (4.13) or
comprehensive (4.14) donor medical profile. The
actual 3Sdb design shows that the designers decided to
follow goal 4.14. This led to both disease specific (e.g.
diagnoses and medications) and historical (e.g. family
history) medical data being associated either with the

6 The subgoals of goal 3.1 apply equally no matter which activity
(4.1, 4.2 and 4.3) is chosen. So these activities are not shown here.

concept Donor (and its sub-concepts) in v1 and v2, or
with Donor Visit in v3 and v4. In other case, the
designers considered one alternative at the beginning
and switched to another one later. For example, v1 ~
v3 only support animal studies where single (5.5)
treatment is allowed on every study group. In these
versions, treatment is a property of Study Group. The
concept Treatment was introduced in v4 to
accommodate multiple (5.6) treatments of the same
study group over time.

Figure 8. A partial analysis of goal 3.3

Table 2 summarizes the important concepts that

were introduced in different versions of 3Sdb (shown
in the horizontal heading of the table) as the result of
the changing preferences to various design alternatives
(shown in the vertical heading of the table), as
illustrated by the goal model. For example, the
concepts Cell Culture and Tissue Sample were
introduced in v2 to support classifying samples by
sample type (4.7). Similarly, the concepts Donor Visit
and Visit Update introduced in v3 were derived from
goal 3.6. It solved the problem that one could not
distinguish (3.7) a donor’s condition specific to a
sample (e.g. diagnosis of a cancer at sample-collecting
time) from the rest of her medical profile in the
background with respect to the sample (e.g. diagnosis
of a cancer 1 year before sample donation).

Table 2. Summary of design decisions

 v1 v2 v3 v4

4.7 Cell Culture,
Tissue Sample

5.1, 5.5 Study Group

5.3, 5.4 Matched
Sample

5.6 Treatment

5.8 Repeated
Observation

4.14
Diagnosis,

Medication,
Family History

3.6 Donor Visit,
Visit Update

4.2. Additional design alternatives

 The goal model not only provides an explanation
why a schema was designed in a particular way, it also
suggests additional alternatives that lead to more
comprehensive design in terms of the coverage of
stakeholder goals. Here we show two such examples.
Throughout its evolution, 3Sdb gradually covers a
wider range of sample grouping schemes. These
include grouping of samples by treatment plan (5.1),
which is supported by the concept Study Group
introduced in v1, and by sample origin in the sense that
two samples originated from same donor can be either
related explicitly (5.3) or implicitly (5.4), which is
supported by the concept Matched Sample introduced
in v3. However, from the goal model, one can clearly
notice that another grouping scheme was missed by the
designers. Samples in the same study can also be
grouped by user specified conditions (5.2) which are
not in the pre-defined treatment plan. An advantage of
this scheme is that it allows different groups to have
their own ad hoc grouping conditions. If this scheme is
also commonly used, the concept Sample Set can be
introduced, as shown in Figure 9.

Figure 9. New design for sample relationships

As another example, 3Sdb supports classification of

samples by sample type (4.7) through use of the
concepts Sample, Tissue Sample, Cell Culture, and etc;
other classification dimensions (e.g. donor species) are
collapsed into Sample properties. If extensibility was
of primary concern, the designers could have followed
the subgoal classify samples by multiple dimensions
(4.10), which leads to a more comprehensive design
that allows classification of samples by one or more

existing or anticipated dimensions, as shown in Figure
10. In this design, we can associate dimension-specific
data to each subclass of Sample Data.

Figure 10. New design for sample

4.3. Evaluation of design alternatives

An important property of the goal model is that all

the alternatives are there to be examined, regardless
whether they are selected or not. Goal analysis
provides a systematic way for evaluating design
alternatives through use of softgoals. Softgoals are
goals without clear-cut criteria for their satisfaction [7]
and usually used to model non-functional requirements
[3] of a software system. Design alternatives represent
different information needs that may have positive or
negative contributions to the fulfillment of the
softgoals. For example, in Section 3.1, we discussed
several alternative ways to fulfill goal 2.2: to obtain
sample and donor data. They are repeated in table 3.

Table 3. Alternative means to fulfill Goal 2.2

4.1: (to perform disease model study) using animal models
4.2: (to perform disease model study) using cell cultures
4.4: (to perform human tissue study) using patient samples
or some combination of above

In this section, we confirmed that 3Sdb design

followed the alternative (4.1)+(4.2)+(4.4). Why was
this so? The 3Sdb design documents offer no clear
explanation. An analysis of the high level softgoals for
the gene expression system reveals the reason.
Softgoals such as greater coverage of diseases and
treatment conditions (s1), controlled budget of
experiments (s2) and highest biological relevance to
drug discovery (s3) ultimately influence the ranking of
these alternatives, as summarized in Table 4.

Table 4. An evaluation of study alternatives

 4.1 4.2 4.1+4.2 4.4 4.1+4.4 4.2+4.4 4.1+4.2+4.4
s1 ++ +++ +++++ + +++ ++++ ++++++
s2 --- -- ----- - ---- --- ------
s3 ++ + +++ ++++ ++++++ +++++ +++++++

A ‘+’ is a unit of positive response of an alternative

to a softgoal, while a ‘-’ represents a unit of negative
response. For example, the choice of patient samples

(4.4) burdens the budget (s2) by a ‘-’, while the choice
of animal models (4.1) is significantly more costly
(represented by ‘---’ for s2) as it yields more samples
and therefore requires more experiments. With respect
to biological relevance from a drug discovery
perspective (s3), human data (4.4) are more valuable
than animal data (4.1 and 4.2). On the other hand, cell
cultures (4.2) give better coverage of disease and
treatment conditions (s1) than animal models (4.1) or
patient samples (4.4), because they are easier to
manipulate. From Table 5, we can infer that (4.4) is the
less costly choice with the maximum return, while for
the situation where the budget is less of a concern,
choice (4.1)+(4.2)+(4.4) is more preferable. If the cost
of database design was a softgoal, it might have tipped
the balance in a different direction. Such reasoning at
the requirements stage guides decisions that have an
impact on the database design and the way it will be
populated and used.

4.4. Better data semantics support

Another benefit of the goal-driven design process is

that it helps establish explicit traces from elements in a
schema to the concepts they refer to and the purpose
they serve. In software development, explicit
traceability management [8, 9], is critical to support
decision making and reuse of design knowledge. In
database design, knowledge captured at design time is
essential for attaching meaning to schema elements
and thus provides rich and explicit data semantics for
the schema. This view is in harmony with our earlier
statement that “data semantics consists of a schema, as
well as the intentions behind its design” [10]. This
notion of traceability is present in the example of
Section 3. For example, the fulfillment of goal 3.2
“leads to” the query “select human tissue samples with
specific donor conditions”, which “is responsible” for
introducing the concepts of Donor Visit and Visit
Update in v3. The design rationale for modeling
human sample donor conditions in this way is the
softgoal that calls to maximize biological relevance to
aid drug discovery (s3). The links from Donor Visit
and Visit Update back to goal 3.2 and softgoal s3 form
a “grid” that explains the choices of the design.

5. Concluding remarks and future work

In this paper, we have considered an extended

database design methodology driven by stakeholder
goals. A methodology for designing general
Information Systems, including a conceptual schema,
which also emphasizes enterprise goals, has long been
advocated by Janis Bubenko and his group [11]. A

distinguishing feature of the present work is the more
systematic consideration of decomposition and
alternatives. A sketch of the methodology is implied in
the revisited design process of 3Sdb, in Section 3.
Incorporating goal analysis in database design is an
endeavor that involves many challenges. Below we
briefly discuss some of these open problems.

5.1. Exploration of the design space

 Goal modeling is about making explicit a space of
design alternatives. In the case study, we focused on
the part of the design space characterized by domain
stakeholders (e.g. database users) and their goals. But
in the design notes that we reviewed, we found that
considerations coming from development stakeholders
(e.g. data modelers) are also abound. It would be
interesting to see how we can combine these two sub-
spaces in the design methodology. We also want to
explore the notion of generic conceptual design, where
a conceptual schema covers more than one design
alternative. Such conceptual schema can be used, for
example, to produce more suitable representation of
the data at run-time based on the environment
conditions.

5.2. From requirements to schemas

A specification of data requirements represents the
understanding of the domain of discourse and contains
the high level constraints on the organization of the
data to be stored. A conceptual schema accumulates a
series of detailed design decisions based on the
understanding and constraints, and ultimately
stakeholder goals behind the design. We are interested
in a systematic approach to this decision-making
process.

For example, concepts derived from goal analysis
include a temporal dimension, while a conceptual
schema is a static, time-invariant. Decisions have to be
made on how to approximate the (infinitely detailed)
temporal information using finite structures. Temporal
database modeling techniques [12] focus on
representation of the temporal components of data,
once the choices have been made. We are interested in
rational ways to make such decisions based on the
analysis of stakeholder intentions. As another example,
our analysis does not explore the use of any domain
knowledge in a formal representation (e.g., domain
ontologies) to aid the design process. We believe, and
the case study supports the belief, that there are
“blocks” of conceptual understanding of a problem
domain that can help refine the data requirements and
transform requirements to schemas.

5.3. Support for explicit data semantics

As we have mentioned in Section 4.4, the
“byproduct” of the goal-driven database design process
is the direct trace from intentions to requirements to
schemas. The knowledge captured during design can
be used to attach explicit meaning to the elements in
the schema and propagate to the data organized by the
schema. We distinguish two classes of semantics:
intentional and non-intentional. Intentional semantics
conveys the purpose behind the collection, store and
use of the data, while non-intentional semantics
corresponds to the real-world entities or phenomena for
which the data is kept. Support for explicit data
semantics requires representation of these types of
knowledge with conceptual schemas and calls for an
extension to existing conceptual data models.

Our long-term research objective is incorporation of

goal analysis in database design. The case study
reported in this paper has provided evidence for the
relevance of this objective, and helped us to understand
the issues and outline a research plan.

6. References

[1] V. M. Markowitz and T. Topaloglou, “Applying Data
Warehousing Concepts to Gene Expression Data
Management”, Proc. of the 2nd IEEE International
Symposium on Bioinformatics & Bioengineering (BIBE’01),
2001

[2] A. Dardenne, A. van Lamsweerde and S. Fickas, “Goal-
Directed Requirements Acquisition”, Science of Computer
Programming, North Holland, 1993, 20:3-50

[3] L. K. Chung, B. A. Nixon, E. Yu and J. Mylopoulos,
Non-Functional Requirements in Software Engineering,
Kluwer Publishing, 2000

[4] P. Bresciani, P. Giorgini, F. Giunchiglia, J. Mylopoulos,
and A. Perini, “TROPOS: An Agent-Oriented Software
Development Methodology”, Journal of Autonomous Agents
and Multi-Agent Systems 8(3), Kluwer Academic Publishers,
2004, 203-236

[5] B. A. Nuseibeh and S. M. Easterbrook, “Requirements
Engineering: A Roadmap”, In A. C. W. Finkelstein (ed.), The
Future of Software Engineering, Computer Society Press,
2000

[6] C. Batini, S. Ceri, S. B. Navathe, Conceptual database
design: an entity-relationship approach, Benjamin/
Cummings Pub. Co., Redwood City, Calif., 1992

[7] J. Mylopoulos, L. Chung, and E. Yu, “From Object-
Oriented to Goal-Oriented Requirements Analysis”,
Communications of the ACM, ACM Press, 1999, 42(1):31-37

[8] B. Ramesh and M. Jarke “Toward reference models for
requirements traceability”, IEEE Transactions on Software
Engineering, 2001, 27(1):58 -93

[9] O. Gotel and A. Finkelstein, “An Analysis of the
Requirements Traceability Problem”, Proc. of the IEEE
International Conference on Requirements Engineering,
1994

[10] A. Borgida, J. Mylopoulos, “Data Semantics Revisited”,
VLDB Workshop on the Semantic Web and Databases
(SWDB’04), Toronto, 2004, Springer-Verlag LNCS, 9-26

[11] R. Gustas, J. Bubenko jr., B. Wangler, “Goal Driven
Enterprise Modelling: Bridging Pragmatic and Semantic
Descriptions of Information Systems”, European - Japanese
Seminar on Information Modelling and Knowledge Bases,
Sapporo, Japan, 1995

[12] H. Gregersen and C. S. Jensen, “Temporal Entity-
Relationship Models—A Survey”, IEEE Transactions on
Knowledge and Data Engineering, 1999, 11:3

[13] S. Liaskos, A. Lapouchnian, Y. Yu, E. Yu, J.
Mylopoulos, “On Goal-based Variability Acquisition and
Analysis”, In Proceedings of 14th IEEE International
Requirements Engineering Conference, 2006

