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Two Aspects of Proof Complexity

1 Propositional Proof Complexity (Pitassi’s invited talk)

the lengths of proofs of tautologies in various proof systems

2 Bounded Arithmetic

the power of weak formal systems to prove theorems of interest in
computer science

(1) and (2) are related by “propositional translations”

a proof in theory T  uniform short proofs in propositional system PT

bounded arithmetic = uniform version of propositional proof complexity

“bounded”: induction axioms are restricted to bounded formulas
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Bounded Arithmetic - Main Goals

Complexity Theory Bounded Arithmetic

Classify problems according
to complexity classes

Classify theorems according to
the computational complexity of
concepts needed to prove them.

“Bounded Reverse Mathematics”
[Cook-Nguyen ’10]

Separate (or collapse) Separate (or collapse)
complexity classes formal theories

for various complexity classes
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Feasible reasoning with VPV

The VPV theory

associated with complexity class P (polytime)

universal theory based on Cook’s theory PV (’75)

with symbols for all polytime functions and their defining axioms
based on Cobham’s Theorem (’65).

Induction on polytime predicates: a derived result via binary search.

Proposition translation: polynomial size extended Frege proofs

Proofs in VPV are feasibly constructive.

Given a proof in VPV for the formula ∀X∃Yϕ(X ,Y ), where ϕ
represents a polytime predicate, we can extract a polytime function
F (X ) and a correctness proof in VPV of ∀Xϕ(X ,F (X )).

Induction is restricted to polytime “concepts”.
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Feasible proofs

Polytime algorithms usually have feasible correctness proofs, e.g.,

the “augmenting-path” algorithm: finding a maximum matching

the Hungarian algorithm: finding a minimum-weight matching

. . .

(formalized in VPV, see the full version on our websites)

Main Question

How about randomized algorithms and probabilistic reasoning?

“Formalizing Randomized Matching Algorithms”
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How about randomized algorithms?

Two fundamental randomized matching algorithms

1 RNC2 algorithm for testing if a bipartite graph has a perfect matching
(Lovász ’79)

2 RNC2 algorithm for finding a perfect matching of a bipartite graph
(Mulmuley-Vazirani-Vazirani ’87)

Recall that:
Log-Space ⊆ NC2 ⊆ P

RNC2 ⊆ RP

Important Remark

The two algorithms above also work for general undirected graphs, but we
only consider bipartite graphs.
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Lovász’s Algorithm

Problem:

Given a bipartite graph G , decide if
G has a perfect matching.

a b c

d e f

d e f
a
b
c

 1 0 1
1 1 0
0 1 1


replace ones with
distinct variables

MG =

 x11 0 x13
x21 x22 0
0 x32 x33


Edmonds’ Theorem (provable in VPV)

G has a perfect matching if and only if Det(MG ) is not identically zero.

The usual proof is not feasible since. . .

it uses the formula Det(M) =
∑

σ∈Sn sgn(σ)
∏n

i=1M(i , σ(i)),
which has n! terms.
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 x11 0 x13
x21 x22 0
0 x32 x33


Edmonds’ Theorem (provable in VPV)

G has a perfect matching if and only if Det(MG ) is not identically zero.

Observation: instance of the polynomial identity testing problem
Det(Mn×n

G ) is a polynomial in n2 variables xij with degree at most n.
Det(MG ) is called the Edmonds’ polynomial of G .

Lovász’s RNC2 Algorithm

Pick n2 random values rij from S = {0, . . . , 2n}
If Det(MG )(~r) = 0 then YES (Det(MG ) ≡ 0) else NO.

1 if Det(MG ) ≡ 0, then Det(MG )(~r) = 0
2 if Det(MG ) 6≡ 0, then Pr

~r∈RSn2

[
Det(MG )(~r) 6= 0

]
≥ 1/2

((2) follows from the Schwartz-Zippel Lemma)
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Obstacle #1 - Talking about probability

Given a polytime predicate A(X ,R),

PrR∈{0,1}n
[
A(X ,R)

]
=
|{R ∈ {0, 1}n |A(X ,R)}|

2n

The function F (X ) := |
{
R ∈ {0, 1}n |A(X ,R)

}
| is in #P.

#P problems are generally harder than NP problems

Solution [Jěrábek ’04]

We want to show PrR∈{0,1}n
[
A(X ,R)

]
≥ s/t, it suffices to show

|{R ∈ {0, 1}n |A(X ,R)}| · t ≥ 2n · s

Key idea: construct in VPV a polytime surjection

G : {R ∈ {0, 1}n |A(X ,R)} × [t]� {0, 1}n × [s],

where [m] := {1, . . . ,m}.
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Lê and Cook (University of Toronto) 9 / 16



Cardinality comparison for large sets

Definition (Jěrábek 2004 – modified)

Let Γ,∆ ⊆ {0, 1}n be polytime definable sets. Define Γ is “larger” than ∆
if there exists a polytime surjective function F : Γ� ∆.

A bit of history

A series of papers by Jěrábek (2004–2009) justifying and utilizing the
above definition

A very sophisticated framework

Based on approximate counting techniques

Related to the theory of derandomization and pseudorandomness

Application: formalizing probabilistic complexity classes

Lê and Cook (University of Toronto) 10 / 16



The Schwartz-Zippel Lemma

Let P(X1, . . . ,Xn) be a non-zero polynomial of degree D over a field F.
Let S be a finite subset of F. Then

Pr~R∈Sn

[
P(~R) = 0

]
≤ D

|S |
.

Obstacle #2

The usual proof assumes we can rewrite

P(X1, . . . ,Xn) =
D∑

J=0

X J
1 · PJ(X2, . . . ,Xn)

This step is not feasible when P is given as arithmetic circuit or
symbolic determinant

Solution

Being less ambitious: restrict to the case of Edmonds’ polynomials

Take advantage of the special structure of Edmonds’ polynomials
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Edmonds’ polynomials

d e f
a
b
c

 1 0 1
1 1 0
0 1 1


replace ones with
distinct variables

Edmonds’ matrix:

MG =

 x11 0 x13
x21 x22 0
0 x32 x33


Useful observation:

Each variable xij appears at most once in MG .

From the above example, by the cofactor expansion,

Det(MG ) = −x33 · Det

(
x11 0
x21 x22

)
+ Det

 x11 0 x13
x21 x22 0
0 x32 0


Thus, we can apply the idea in the original proof.
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Schwartz-Zippel Lemma for Edmonds’ polynomials

Theorem (provable in VPV)

Assume the bipartite graph G has a perfect matching.

Let S = {0, . . . , s} be the sample set.

Let Mn×n
G be the Edmonds’ matrix of G .

Then we can construct polytime surjection

F : [n]× Sn2−1 �
{
~r ∈ Sn2 |Det(MG )(~r) = 0

}
.

The degree of the polynomial Det(MG ) is at most n.

The surjection F witnesses that

Pr
~r∈Sn2

[
Det(MG )(~r) = 0

]
=
|
{
~r ∈ Sn2 |Det(A)(~r) = 0

}
|

sn2
≤ n

s
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The Mulmuley-Vazirani-Vazirani Algorithm

RNC2 algorithm for finding a perfect matching of a bipartite graph

Key idea: reduce to the problem of finding a unique min-weight
perfect matching using the isolating lemma.

Obstacle

The isolating lemma seems too general to give a feasible proof.

Solution

Consider a specialized version of the isolating lemma.

Lemma

Given a bipartite graph G. Assume the family F of all perfect matchings
of G is nonempty. If we assign random weights to the edges, then

Pr
[
the min-weight perfect matching is unique

]
is high.
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Summary

Main motivation

Feasible proofs for randomized algorithms and probabilistic reasoning:
“Formalizing Randomized Matching Algorithms”

We demonstrate the techniques through two randomized algorithms:

1 RNC2 algorithm for testing if a bipartite graph has a perfect matching
[Lovász ’79]

the Schwartz-Zippel Lemma for Edmonds’ polynomials

2 RNC2 algorithm for finding a perfect matching of a bipartite graph
[Mulmuley-Vazirani-Vazirani ’87]

a specialized version of the isolating lemma for bipartite matchings.

Take advantage of special linear-algebraic properties of
Edmonds’ matrices and Edmonds’ polynomials
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Open problems and future work

Open questions

1 Can we prove in VPV more general version of the Schwartz-Zippel
lemma? (We only considered Edmonds’ polynomials.)

2 Can we do better than VPV, e.g., VNC 2 [Cook & Nguyen ’10]?

Future work

1 How about RNC2 matching algorithms for undirected graphs?

Use properties of the pfaffian
Need to generalize results from [Soltys ’01] [Soltys & Cook ’02]

(with Cook and Fontes)

2 Use Jěrábek’s techniques to formalize constructive aspects of
fundamental theorems that require probabilistic reasoning.

Cryptography: the Goldreich-Levin Theorem, construction of
pseudorandom generator from one-way functions, etc. (with George)
Moser-Tados constructive proof of Lovász Local Lemma (with Filmus)
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