
Randomness, Pseudorandomness and Derandomization Sept 14th, 2010

Lecture Notes 1: Randomness - A computational complexity view
Professor: Avi Wigderson (Institute for Advanced Study) Scribe: Dai Tri Man Lê

1 Computational Complexity

1.1 Hard vs. easy problems

The problem of multiplying two integers is clearly an easy problem since the simple grade school
multiplication algorithm can return the product of two n digit numbers inO(n2) steps. A problem is
easy if it can be solved by a polynomial time algorithm, i.e., algorithm that runs in polynomial steps
with respect to the size of the input. The class of all problems that can be solved using a polynomial
time algorithm is denoted by P.

Next consider the FACTORING problem, where we want to split an integer into two smaller
non-trivial divisors, which when multiplied together equal the original integer. The best known
algorithm for factoring takesO(exp(

√
n)) steps on an n digit input. It is open whether factoring has

a polynomial time algorithm or not. So we don’t know if factoring is a hard problem. However, it
is widely believe that factoring is hard since the theory of public key cryptography depends on the
hardness of factoring. We call a problem hard if there is no polynomial time algorithm solving it.

1.2 The P vs. NP question

Consider the MAP COLORING problem, where we take input as a planar map M with n countries.
We observe the following questions:

– 2-COLORING: Is M 2-colorable?
– 3-COLORING: Is M 3-colorable?
– 4-COLORING: Is M 4-colorable?

The 2-COLORING problem is clearly easy since we answer using a simple greedy algorithm.
The 4-COLORING problem is extremely easy since the answer is always yes for every planar graph
by the four color theorem. However, it remains unknown if the 3-COLORING problem is easy or
not, but we know the following theorem:

Theorem 1 (Cook-Levin ’71, Karp ’72). 3-COLORING is NP-complete. �

Here NP stands for nondeterministic polynomial time. Intuitively, NP is the class of problems
whose solutions can be verified easily. For example, for 3-COLORING, once given a coloring of the
map M , we can easily check in polynomial time if that coloring is valid by checking if any two
adjacent countries have different color.

A problem in NP is called NP-complete if and only if we can reduce any other NP problems
to it by a polynomial time transformation of the inputs. In fact, many problems in all sciences and
engineering are NP-complete.



Note that we know FACTORING is in NP since we can easily check if the product of two integers
is equal to another integer. But it remains open whether or not FACTORING is NP-complete.

The most fundamental question, i.e., the P vs. NP question, in computational complexity can
be stated as following: is the 3-COLORING problem (or any other NP-complete problem) easy? Or
informally it is the question: can creativity be automated? More generally we want to know how
fast can we solve:

– The FACTORING problem
– Map coloring
– Satisfiability of Boolean formulae
– Computing the Permanent of a matrix
– Computing optimal Chess/Go strategies
– . . .

The best known algorithms for these problems seem to take exponential time/size. But is expo-
nential time/size necessary for some? This is the most fundamental question of computational com-
plexity. Most of complexity theorists believe that all NP-complete problems are hard, i.e., P 6= NP.
Actually complexity theorists believe the following stronger conjecture:

Conjecture 1. All NP-complete problems require exponential size circuits to compute. �

2 The power of randomness in saving time

We will see a host of problems, which we have probabilistic polytime algorithm, but (still) have no
deterministic polytime algorithms.

The main idea is to introduce randomness into the polytime algorithm, and we only require
good probabilistic algorithm to succeed with high probability, e.g., with 99.99% probability. But
one might ask why we tolerate errors? The reasons are:

– we tolerate errors in life
– we can reduce the probability of errors to arbitrarily small (< exp(−n)) by repetition.
– to compensate, we can do much more. . .

We next have a look at well-known probabilistic algorithms.

NUMBER THEORY: PRIMES. Consider the following problem asked by Gauss: given n ∈ [2n, 2n+1]
is x prime? Two simple and fast probabilistic algorithms were invented in 1975 by Solovay-Strassen
and Rabin. A later breakthrough is the discovery of polynomial time deterministic algorithm, aka
AKS algorithm, for primality testing in 2002 due to Agrawal, Kayal and Saxena, but the AKS algo-
rithm is not as efficient, and thus not often used in practice.

However, no deterministic polynomial time algorithm is known for the following closely related
problem: given n, find a prime in [2n, 2n+1]. But we can solve the problem using the following
simple probabilistic algorithm: pick at random a sequence of random numbers x1, x2, . . . , x100n

from [2n, 2n+1], and for each xi apply primality test. By the prime number theorem, we can easily
show that the Prob[∃i, xi is a prime] is very high.



ALGEBRA: POLYNOMIAL IDENTITIES. For example, we want to check if

det




1 x1 x

2
1 . . . x

n−1
1

1 x2 x
2
2 . . . x

n−1
2

1 x3 x
2
3 . . . x

n−1
3

...
...

...
. . .

...
1 xn x

2
n . . . x

n−1
n



−
∏

1≤i<j≤n

(xj − xi) ≡ 0?

We know from a theorem by Vandermonde, the answer is yes. But assume that we don’t know
this theorem, how do we check if this identity is true?

In general, given (implicitly, e.g. as a formula) a polynomial p(x1, . . . , xn) of degree d, we want
to known if p(x1, . . . , xn) ≡ 0. The following probabilistic algorithm by Schwartz-Zippel from ’80
solves the problem: pick ri independently at random from 1, 2, . . . , 100d. Then

p ≡ 0⇒ Prob[p(r1, . . . , rn) = 0] = 1
p 6≡ 0⇒ Prob[p(r1, . . . , rn) 6= 0] > .99

Again no polynomial time deterministic algorithm is known for this problem. Polynomial identity
testing has applications in program testing.

ANALYSIS: FOURIER COEFFICIENTS. Given (implicitely) a function f : (Z2)n → {−1, 1} (e.g.
as a formula), and ε > 0, find all characters χ such that | 〈f, χ〉 | > ε. Observe that there are at
most 1/ε2 such χ. Thus using adaptive sampling technique Goldreich and Levin in ’89 introduced
a probabilistic algorithm solving this problem, which succeeds with high probability. This method
was later generalized to other Abelian groups.

These algorithms have applications in coding theory, complexity theory, learning theory, game
theory. A polytime deterministic algorithm is also not known for this problem.

GEOMETRY: ESTIMATING VOLUMES. Given (implicitly) a convex body K in Rd, where d is
large, e.g. by a set of linear inequalities. Estimate volume(K). Computing volume(K) exactly is
very hard since it is #P-complete. #P is defined to be the class of counting functions f : σ∗ → Z,
such that there exists a polynomial time bounded Turing machine M such that for all x, f(x) =
|{y |M(x, y) accepts}|.

However, a probabilistic algorithm for this algorithm was given by Dyer-Frieze-Kannan in ’91.
To simplify our explanation, consider the case of R2. The idea is to put the bodyK inside a grid, and
then use the random sampling technique to approximately count the number of cells inside the body
K, which gives the approximate volume of K. Randomly sampling was done by taking a random
walk inside K. The correctness proof of this algorithm uses rapid mixing of Markov chains and the
connection between spectral gap and isoperimetric inequality. This algorithm has found applications
in areas like statistical mechanics and group theory.

This leads us to the second most fundamental question of computational complexity. We want
to know whether or not randomness helps in saving time. In other words, are there problems with
probabilistic polynomial time algorithm but no deterministic one? One might conjecture that:



Conjecture 2. There exists a problem that can be solved with a probabilistic polynomial time algo-
rithm but not with a deterministic polynomial time algorithm. Formally, BPP 6= P. �

Surprisingly, a theorem by Impagliazzo-Wigderson in ’97 together with an observation by V.
Kabanets suggest that Conjecture1 and Conjecture 2 can not be both true! This point can be ex-
plained more clearly when we discuss the so called “hardness vs. randomness” paradigm in the next
section.

3 The hardness vs. randomness paradigm and the weakness of randomness

This “hardness vs. randomness” paradigm is the result of almost 20 years of development by
many researchers (Blum-Micali, Yao, Nisan-Wigderson, Impagliazzo-Wigderson et al.) starting
with questions in cryptography. The basic and informal intuition is that if there are natural hard
problems (“natural” in the sense that problems are in NP or #P), then we can use this hardness
to generate sequences that look random in a deterministic fashion, and thus randomness can be
efficiently eliminated from probabilistic algorithms.

More formally, we will state one of the strongest results we have in this “hardness vs. random-
ness” paradigm:

Theorem 2 (Impagliazzo-Wigderson ’98). If there exists a problem, say SAT ∈ NP, in exponential
time that requires exponential size circuits, then every probabilistic polynomial-time algorithm has
a deterministic counterpart.

The Impagliazzo-Wigderson Theorem essentially gives us one directional connection: “hardness
implies randomness”. In fact, there has been some work showing a partial converse of Theorem 2:

Theorem 3 (IKW ’04, Impagliazzo-Kabanets ’05). Derandomization implies hardness.

We will not discuss more about this converse direction in this talk. But we will try to give the main
idea of how we can show the “hardness implies randomness” direction. Note that the Impagliazzo-
Wigderson Theorem seems extremely strong since it claims that it can deramdomize all probabilistic
polynomial-time algorithms, including the ones that are not yet known and invented. How are we
supposed to prove that?

The key idea lies in the notion of “computational pseudorandomness”. Observe that a generic
probabilistic polytime algorithm can be seen as a polytime algorithmA(x, r) taking two inputs. The
first input x is the input of the function you want to compute, e.g., the number of you want to test for
primality etc. And the second input r is the sequence of random (unbiased and independent) bits.
Our goal is to run this algorithm without the truly random input! To do so, we need to understand
how the probability of the output of the algorithm changes if the random sequence input is not
drawn from a uniform distribution (i.e., the bits might be biased and dependent). Thus, the absolute
key is to understand which distribution can fool this probabilistic algorithm and cause it to behave
as if the random input is taken from a perfect uniform distribution. We will call these distributions
pseudorandom.

Definition 1 (Goldwasser-Micali ’81). A distribution D is pseudorandom if for every “efficient”
algorithm A(x, r), for every input x, the difference between the probability that A(x, r) outputs
1 with r sampled from D and the probability that A(x, r) outputs 1 with r sampled from a truly
uniform distribution is negligible. �



In other words, no efficient algorithm can distinguish a pseudorandom distribution from a uni-
form distribution! Thus, it suffices to be able to generate these pseudorandom distributions. How-
ever, we do not know if such pseudorandom distribution with such low, says zero, entropy can be
generated deterministically and efficiently. So we relax our goal by assuming that we have very
few (logarithmic) truly random bits (seed), we want to have a deterministic efficient construction
that generates much longer (polynomial length) pseudorandom bits. Such a construction is called a
pseudorandom generator.

Note that using a pseudorandom generators, we can derandomize a probabilistic polytime algo-
rithm trying to run it on all possible outputs of a pseudorandom generator for all possible logarithmic-
length random seeds, and then take the majority vote. Since all the seeds have logarithmic length,
this derandomized version of the algorithm still takes polynomial time.

Thus, it remains to show how we can build such a pseudorandom generator, and here is where
we need the hardness assumption. For simplicity of this talk, we will only discuss the construction
of a “toy” pseudorandom generator that can extend a truly random seed of length k to produce a
pseudorandom string of length k + 1, assuming that we have a hard function f : {0, 1}k → {0, 1}.
In this case, given a random seed s ∈ {0, 1}k, it is not hard to verify that the sequence consisting
of s followed by the bit produced by f(s) is pseudorandom. Intuitively, if there is an efficient
algorithm that can distinguish this pseudorandom last bit f(s) with a truly random bit, then it can
also computes the hard function, which is a contradiction.

It is interesting to note that although we haven’t been able to prove that a hard function exists, in
many cases, we can derandomize a specific probabilistic polytime algorithm without the hardness
assumption. One famous example is the AKS algorithm for primality testing mentioned previously.
The solution of this primality testing problem really fits into the framework discussed here. First, a
new randomized algorithm was designed by Agrawal and Biswas in 1999 for primality testing. Then,
Agrawal, Kayal and Saxena was able to analyze and understand the way the algorithm used the
random bits well enough to design a “pseudorandom generator” specifically made to derandomize
this algorithm.

4 The power of randomness in other settings

In the rest of this talk, we will turn to some other advantages of randomness in algorithms, beyond
that of saving time. We will also see some situations where randomness are essential.

4.1 Randomness and space complexity

A famous example randomness can be used to save space is the reachability problem on undirected
graphs. Imagine we are lost in a city without a map, and we want to get back to our hotel! It turns
out that there is a simple randomized logarithmic-space algorithm due to Aleliunas, Karp, Lipton,
Lovász, and Rackoff in ’79 that by simply taking a random walk will lead us back to our hotel
in polynomial time. Actually, in polytime we will be able to visit every hotel in the city, and not
just our hotel using a random walk. A deterministic log-space algorithm for undirected reachability
was an open problem for nearly 25 years, and was resolved recently by Reingold in 2005, where
the source of pseudorandomness is from a very different source called expander graphs which we
consider in the third lecture.



4.2 The power of randomness in Proof Systems

Two other famous, and striking, applications of randomness lie in interactive proof systems, where
a verifier is trying to check a claim that a prover can prove a given statement S (e.g. the Riemann
hypothesis). More formally, the verifier employs some algorithm V that takes S as input, performs
some queries to the prover, and then returns a boolean output. A deterministic verifier should satisfy
the following two properties:

1. Soundness: if the prover does not have a proof of S, then V rejects.
2. Completeness: if the prover does indeed have a proof of S, then V accepts.

A probabilistic verifier is defined similarly, except that if the prover does not have a proof of S, we
only require V to reject with very high probability.

Constructing a verifier with the soundness and completeness properties is trivial since the prover
can simply hand over the entire proof to the verifier and the verifier can then check all the steps of
the proof. Thus, if the proof has length n, then this procedure will take time O(n). However, Arora,
Lund, Motwani, Safra, Sudan and Szegedy in ’90 showed a remarkable fact that a probabilistic
verifier only needs to see a very tiny portion of the proof to verify it!

Theorem 4 (PCP theorem). Every proof of a statement S of length n in a formal system can be
converted in polytime into another proof in a special format which can be verified by a probabilistic
verifier in O(log n) time using only constant number of queries to the prover.

The PCP theorem has many applications in computational complexity, especially in the theory
of computational hardness of approximation.

In a rather different direction, instead of verifying a proof as quickly as possible, one can con-
sider the prover’s desire of wanting to have his or her claim of proving S verified without allowing
the verifier to learn enough of the proof to publish it first. Another remarkable fact is that this is pos-
sible (under some plausible complexity assumption). It was shown in [Goldwasser-Micali-Rackoff
’85] and [Goldreich-Micali-Wigderson ’86] that assuming factoring is hard, there exists a polyno-
mial time probabilistic verifier for proofs of a statement S of length n which is zero-knowledge in
the sense that the verification algorithm does not tell the verifier anything that the verifier did not al-
ready know, other than that the statement S is provable. We will discuss more about zero-knowledge
proofs in the second talk.

(End of the first talk.)


