Machine Learning I 80-629A

Apprentissage Automatique I 80-629

Supervised Learning

- Week \#3

Today: Models for supervised learning

- (Mostly) linear models
- Focus on classification

1. Non-Probabilistic Models

- Nearest Neighbor, Support Vector Machines (SVMs)

2. Probabilistic Models

- Naive Bayes

Supervised learning


```
Task
```

$$
\mathbf{f}: \mathbb{R}^{\mathbf{n}} \rightarrow\{\mathbf{0}, \mathbf{1}, \mathbf{2}\}
$$

```
Test Data
```

	Nb.bed.	Area	Neigh.					ab	
x_{0}	1	0	0	0	0	У0		?	
x_{1}	2	50	1	. 3	. 8	y_{1}		?	
x_{2}	1	100	1	. 5	1.4	y_{2}		?	
x_{3}	4	170	0	. 7	. 4	y_{3}			
$\underbrace{x_{4}}$	1	120	3	. 9	. 5	y_{4}		?	

Supervised learning

Nearest Neighbor (NN)

- Conceptually simple yet very powerful model
- Non-parametric model
- No training phase
- Test: Predict according to the neighbors of the instance

$\mathbf{i}^{\prime}=\arg \min _{\mathbf{i}} \operatorname{dist}\left(\mathbf{x}_{\mathbf{i}}, \mathbf{x}_{\mathbf{j}}\right)$
 $y_{j}=y_{i^{\prime}}$

- 1-NN

Instance classified according to its nearest neighbor

X_{1}

- K-NN

Instance classified according to the majority of its K nearest neighbors

X_{1}

- weighted-NN

Instance classified according to all neighbors. The contribution of each neighbor is weighted by its distance.

Decision boundary

[^0]
Adding a "noisy"
 instance

NN properties (I)

- Requires storing the whole dataset
- Searching for nearest neighbour of a new datum can be expensive
- scikit-learn has options for faster (approximate) searches
algorithm : \{'auto', 'ball_tree', 'kd_tree', 'brute'\}, optional
Algorithm used to compute the nearest neighbors:
- 'ball_tree' will use BallTree
- 'kd_tree' will use KDTree
- 'brute' will use a brute-force search.
- 'auto' will attempt to decide the most appropriate algorithm based on the values passed to fit method
- Can also work with non-continuous data
p : integer, optional (default =2)
Power parameter for the Minkowski metric. When $\mathrm{p}=1$, this is equivalent to using manhattan_distance (I1), and euclidean_distance (12) for $\mathrm{p}=2$.
For arbitrary p, minkowski_distance (I_p) is used.
[http://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsClassifier.html]

NN properties (II)

- In the limit of $\mathrm{N} \rightarrow \infty$ the error rate is bounded by twice the optimal error (for $\mathrm{K}=1$)
- May not perform well with high-dimensional inputs due to the curse of dimensionality (i.e., may use very far neighbours)

NN summary

- Non-parametric approach
- Does not require fitting parameters
- Hyper-parameter is the number of neighbors
- Also good for regression and density estimation

Linear Classification

- Divide the space into regions
- Different regions correspond to different predictions
- Frontiers between regions are called decision boundaries

Linear Classification

Linear Classification

$$
\mathbf{y}(\mathbf{x})=\mathbf{w}^{\top} \mathbf{x}+\mathbf{w}_{0}
$$

Linear Classification

$$
\mathbf{y}(\mathbf{x})=\mathbf{w}^{\top} \mathbf{x}+\mathbf{w}_{0}
$$

$$
\text { Decision } \begin{aligned}
& \left(\mathbf{w}^{\top} \mathbf{x}+\mathbf{w}_{0}\right)>0 \Longrightarrow 0 \\
& \\
& \left(\mathbf{w}^{\top} \mathbf{x}+\mathbf{w}_{0}\right)<\mathbf{0} \Longrightarrow 0
\end{aligned}
$$

Linear Classification

decision boundary: $\mathbf{y}(\mathbf{x})=\mathbf{0}$
take two points on the boundary: $\mathrm{x}_{\mathrm{a}}, \mathrm{x}_{\mathrm{b}}$
then: $\mathbf{w}^{\top} \mathbf{x}_{\mathrm{a}}+\mathbf{w}_{\mathbf{o}}=\mathbf{w}^{\top} \mathbf{x}_{\mathrm{b}}+\mathbf{w}_{\mathbf{o}}$
$\Longrightarrow \mathbf{w}^{\top}\left(\mathbf{x}_{\mathrm{a}}-\mathbf{x}_{\mathrm{b}}\right)=\mathbf{0}$
$\Longrightarrow \mathbf{w}$ is perpendicular to the decision boundary w represents the orientation of the decision boundary

$$
\begin{aligned}
& \mathbf{y}(\mathbf{x})=\mathbf{w}^{\top} \mathbf{x}+\mathbf{w}_{0} \\
& \text { Decision } \\
& \left(\mathbf{w}^{\top} \mathbf{x}+\mathbf{w}_{0}\right)>0 \Longrightarrow 0 \\
& \left(\mathbf{w}^{\top} \mathbf{x}+\mathbf{w}_{0}\right)<\mathbf{0} \Longrightarrow 0
\end{aligned}
$$

Linear Classification

$$
\mathbf{y}(\mathbf{x})=\mathbf{w}^{\top} \mathbf{x}+\mathbf{w}_{0}
$$

Decision

w_{0} is a scalar
you can think of it like an intercept
take \mathbf{x}^{\prime} as the closest point on the decision boundary to the origin
$\mathbf{x}^{\prime}=\beta \mathbf{w}$
$\Longrightarrow \mathbf{y}\left(\mathbf{x}^{\prime}\right)=\mathbf{w}^{\top} \mathbf{x}^{\prime}+\mathbf{w}_{\mathbf{0}}$
$\Longrightarrow \mathbf{y}\left(\mathbf{x}^{\prime}\right)=\mathbf{w}^{\top}(\beta \mathbf{w})+\mathbf{w}_{0}$
$\Longrightarrow \mathbf{0}=\beta\|\mathbf{w}\|^{\mathbf{2}}+\mathbf{w}_{\mathbf{0}}$
$\Longrightarrow \beta=\frac{-\mathbf{w}_{0}}{\|\mathbf{w}\|^{2}}$
Then you know that the distance from the origin to x^{\prime} is:
$\left\|\mathbf{x}^{\prime}\right\|=\|\beta \mathbf{w}\|$
$\Longrightarrow\left\|\mathbf{x}^{\prime}\right\|=\beta\|\mathbf{w}\|$
$\Longrightarrow\left\|\mathbf{x}^{\prime}\right\|=\frac{-\mathbf{W}_{0}}{\|\mathbf{w}\|^{\mathbf{2}}}\|\mathbf{w}\|$
$\Longrightarrow\left\|\mathbf{x}^{\prime}\right\|=\frac{-\mathbf{W}_{\mathbf{0}}}{\|\mathbf{w}\|}$

Support Vector Machine (SVM)

Support Vector Machine (SVM)

- In the previous slide the estimated decision boundary may be affected by hyper parameters (e.g., the order of the dataset, how the parameters were initialized).

Support Vector Machine (SVM)

- In the previous slide the estimated decision boundary may be affected by hyper parameters (e.g., the order of the dataset, how the parameters were initialized).
- SVMs aim at finding the decision boundary that maximize the margin

Support Vector Machine (SVM)

- In the previous slide the estimated decision boundary may be affected by hyper parameters (e.g., the order of the dataset, how the parameters were initialized).
- SVMs aim at finding the decision boundary that maximize the margin
- Popular and powerful approach
- Comes with theoretical guarantees
- Results in a convex optimization
- Ideas extended to structured outputs

The objective is to find the separating boundary that maximizes the margin

\#Scikit-learn library
 clf = svm.SVC(kernel='linear', C=1000)
 clf.fit(X, y)

Probabilistic Models for Classification

Decision and Inference

- Classification models provide a class label given a datum
- Probabilistic classification models more clearly divide the problem into two sub-tasks:

1. Inferring
2. Making a decision based on the inference results

Decision Theory (1 slide)

$$
\begin{aligned}
p(\text { mistake }) & =p\left(\mathbf{x} \in \mathcal{R}_{1}, \mathcal{C}_{2}\right)+p\left(\mathbf{x} \in \mathcal{R}_{2}, \mathcal{C}_{1}\right) \\
& =\int_{\mathcal{R}_{1}} p\left(\mathbf{x}, \mathcal{C}_{2}\right) \mathrm{d} \mathbf{x}+\int_{\mathcal{R}_{2}} p\left(\mathbf{x}, \mathcal{C}_{1}\right) \mathrm{d} \mathbf{x} .
\end{aligned}
$$

Decision Theory (1 slide)

$$
\begin{aligned}
p(\text { mistake }) & =p\left(\mathbf{x} \in \mathcal{R}_{1}, \mathcal{C}_{2}\right)+p\left(\mathbf{x} \in \mathcal{R}_{2}, \mathcal{C}_{1}\right) \\
& =\int_{\mathcal{R}_{1}} p\left(\mathbf{x}, \mathcal{C}_{2}\right) \mathrm{d} \mathbf{x}+\int_{\mathcal{R}_{2}} p\left(\mathbf{x}, \mathcal{C}_{1}\right) \mathrm{d} \mathbf{x} .
\end{aligned}
$$

Extra flexibility

- Separating inference from decision can be useful:
- Examine (predictive) uncertainty
- Minimize risk
- Cost of false pos. differs from cost of false neg.
- Combine models
- Compensate for class imbalance

Probabilistic models

1. Model the conditional directly:

$$
P(y=k \mid x)
$$

2. Model the joint (or the prior and the class conditionals):

- In the next few slides we will build models from the ground up
- We will show how simple modeling decisions lead to known models
- In most cases we will parametrize the distributions, e.g.:

$$
\begin{aligned}
\underbrace{\mathbf{P}(\mathbf{y}=\mathbf{k} \mid \mathbf{x})}_{\text {posterior }} & \propto \underbrace{\mathbf{P}(\mathbf{y}=\mathbf{k}, \mathbf{x})}_{\text {joint }} \\
& =\underbrace{\mathbf{P (x | y = k)}}_{\text {class conditional densities class prior }} \underbrace{\mathbf{P}(\mathbf{y}=\mathbf{y})}
\end{aligned}
$$

$$
\underbrace{\mathbf{P}(\mathbf{x} \mid \mathbf{y}=\mathbf{k}, \theta)}_{\text {class conditional density }}
$$

- Assume that x is a vector of dimensionality M

$$
x=\left[\begin{array}{c}
x_{0} \\
x_{1} \\
x_{2} \\
\vdots \\
x_{M}
\end{array}\right]
$$

Building a model

- Assume that dimensions of x are independent

$$
\mathbf{P}(\mathbf{x} \mid \mathbf{y}=\mathbf{k})=\prod_{\mathrm{j}=1}^{\mathrm{M}} \mathbf{P}\left(\mathbf{x}_{\mathbf{j}} \mid \mathbf{y}=\mathbf{k}, \theta_{\mathrm{jk}}\right)
$$

- the problem is then to model each conditional (there are M of them)
- this model is known as a Naive Bayes classifier

Building a model

- If x is binary: $\mathrm{x}_{\mathrm{j}} \in\{0,1\} \forall \mathrm{j}$.

$$
\mathbf{P}\left(\mathbf{x}_{\mathbf{j}} \mid \mathbf{y}=\mathbf{k}, \theta_{\mathrm{jk}}\right)=\operatorname{Bernoulli}\left(\mathbf{x}_{\mathbf{j}} \mid \mathbf{p}_{\mathbf{j k}}\right) \quad \theta_{\mathbf{j k}}:=\mathbf{p}_{\mathbf{j k}}
$$

- If x is continuous:

$$
\mathbf{P}\left(\mathbf{x}_{\mathbf{j}} \mid \mathbf{y}=\mathbf{k}, \theta_{\mathbf{j k}}\right)=\mathcal{N}\left(\mathbf{x}_{\mathbf{j}} \mid \mu_{\mathbf{j k}}, \sigma_{\mathbf{j k}}^{\mathbf{2}}\right) \quad \theta_{\mathbf{j k}}:=\left\{\mu_{\mathbf{j k}}, \sigma_{\mathbf{j k}}^{2}\right\}
$$

- If x is "mix" we can use a different distribution for each dimension

Estimating the parameters (e.g., θ)

- What is our performance measure?
- Turn the estimation problem into an optimization problem

1. Maximum likelihood estimate (MLE)
2. Maximum a posterior (MAP)
3. Full posterior

Maximum Likelihood (MLE)

Likelihood: $\mathbf{P}(\mathbf{x}, \mathbf{y} \mid \theta)$

$$
\begin{aligned}
& =\mathbf{P}(\mathbf{x} \mid \mathbf{y}, \beta) \mathbf{P}(\mathbf{y} \mid \boldsymbol{\pi}) \quad \theta=\{\beta, \boldsymbol{\pi}\} \\
& =\prod_{\mathbf{j}}^{\mathbf{M}} \mathbf{P}\left(\mathbf{x}_{\mathbf{j}} \mid \mathbf{y}, \beta\right) \mathbf{P}(\mathbf{y} \mid \boldsymbol{\pi})
\end{aligned}
$$

- Parametrize both distributions according to the data type
- E.g., a multinomial for y and a Bernoulli for binary x .
- Solve the following optimization problem:

$$
\hat{\theta}=\arg \max _{\theta} \mathbf{P}(\mathbf{x}, \mathbf{y} \mid \theta)
$$

- For a binary X and a categorical Y

$$
\begin{aligned}
\text { log-likelihood } & =\log \left(\prod_{j=1}^{M} \mathbf{P}\left(\mathbf{x}_{\mathbf{j}} \mid \mathbf{y}, \mathbf{p}\right) \mathbf{P}(\mathbf{y} \mid \boldsymbol{\pi})\right) \\
& =\log \left(\prod_{j=1}^{M} \prod_{\mathrm{k}=1}^{\mathrm{K}} \operatorname{Bernoulli}\left(\mathbf{x}_{\mathrm{j}} \mid \mathbf{p}_{\mathrm{jk}}\right) \text { Categorical }\left(\mathbf{y}=\mathbf{k} \mid \boldsymbol{\pi}_{\mathrm{k}}\right)\right) \\
& =\sum_{\mathrm{j}=1}^{\mathrm{M}} \sum_{\mathrm{k}=1}^{\mathrm{K}} \mathbf{P}\left(\mathbf{x}_{\mathrm{j}} \mid \mathbf{p}_{\mathrm{jk}}\right)+\sum_{\mathrm{k}=1}^{\mathrm{K}} \mathbf{N}_{\mathrm{k}} \log \boldsymbol{\pi}_{\mathrm{k}}
\end{aligned}
$$

- MLE solutions:

$$
\begin{aligned}
& \hat{\mathbf{P}}_{\mathrm{jk}}=\frac{\mathbf{N}_{\mathrm{jk}}}{\mathbf{N}_{\mathrm{k}}} \quad \begin{array}{l}
\mathrm{N}: \text { total number of instances } \\
\hat{\mathbf{N}}_{\mathrm{k}}: \text { number of instances where } \mathrm{y}=\mathrm{k} \\
\mathbf{N}_{\mathrm{k}} \\
\mathbf{N}
\end{array} \quad \mathbf{N}_{\mathrm{jk}}: \text { number of instances where } \mathrm{y}=\mathrm{k} \text { and } \mathrm{x}_{\mathrm{j}}=1
\end{aligned}
$$

Making predictions

- You can then use the MLE estimates for predictions

Making predictions

- You can then use the MLE estimates for predictions

Bayes' Theorem

$$
\underbrace{\mathbf{P}(\mathbf{y}=\mathbf{k} \mid \mathbf{x})}_{\text {posterior }} \propto \underbrace{\mathbf{P}(\mathbf{y}=\mathrm{k}, \mathbf{x})}_{\text {joint }}
$$

$$
=\underbrace{\mathbf{P}(\mathbf{x} \mid \mathbf{y}=\mathbf{k})}_{\text {class conditional densities class prior }} \underbrace{\mathbf{P}(\mathbf{y}=\mathbf{k})}_{\text {clater }}
$$

MLE estimates: $\quad \hat{\boldsymbol{p}}_{\mathrm{jk}}=\frac{\mathbf{N}_{\mathrm{jk}}}{\mathbf{N}_{\mathrm{k}}} \quad \quad \hat{\boldsymbol{T}}_{\mathrm{k}}=\frac{\mathbf{N}_{\mathrm{k}}}{\mathbf{N}}$

$$
\begin{aligned}
\hat{\mathbf{p}}_{\mathrm{jk}} & =\frac{\mathbf{N}_{\mathrm{jk}}}{\mathbf{N}_{\mathrm{k}}} \\
\hat{\boldsymbol{\pi}}_{\mathrm{k}} & =\frac{\mathbf{N}_{\mathrm{k}}}{\mathbf{N}}
\end{aligned}
$$

- The MLE estimate relies solely on the training set
- It provides the best fit to the observed data given the model
- It can overfit.

Maximum a posterior (MAP)

- As a fix we can model the parameters are R.V.
- This allows us to encode prior knowledge
- e.g., all classes have some non-zero probability
- Compared to MLE the MAP procedure takes into account this prior

$$
\mathbf{P}(\boldsymbol{\pi})=\operatorname{Dirichlet}\left(\alpha_{\mathbf{1}}, \ldots, \alpha_{\mathbf{K}}\right)
$$

$$
\hat{\boldsymbol{\pi}}_{\mathbf{k}}=\frac{\mathbf{N}_{\mathbf{k}}+\alpha_{\mathbf{k}}}{\mathbf{N}+\sum_{\mathbf{k}^{\prime}} \text { alpha }_{\mathbf{k}^{\prime}}}
$$

>>> import numpy as np
>>> $X=n p . r a n d o m . r a n d i n t(2$, size $=(6,100))$
>>> $Y=n p . \operatorname{array}([1,2,3,4,4,5])$
>>> from sklearn.naive_bayes import BernoulliNB
>>> clf = BernoulliNB()
>>> clf.fit(X, Y)
BernoulliNB(alpha=1.0, binarize=0.0, class_prior=None, fit_prior=True) >>> print(clf.predict(X[2:3])) [3]

Complete example

Use Naive Bayes to train a document classifier

- A model that predicts a document's topic (class)
- Document will be encoded using Bag-of-Words

- Documents are email messages sent to a newsgroup

```
From: bcash@crchh410.NoSubdomain.NoDomain (Brian Cash)
Subject: Re: free moral agency
Nntp-Posting-Host: crchh410
Organization: BNR, Inc.
Lines: 17
In article <735295730.25282@minster.york.ac.uk>, cjhs@minster.york.ac.uk writes:
|> : Are you saying that their was a physical Adam and Eve, and that all
> : humans are direct decendents of only these two human beings.? Then who
|> : were Cain and Able's wives? Couldn't be their sisters, because A&E
|> : didn't have daughters. Were they non-humans?
|>
> Genesis 5:4
|
> and the days of Adam after he begat Seth were eight hundred years, and
> he begat sons and daughters:
|
|> Felicitations -- Chris Ho-Stuart
Yeah, but these were not the wives. The wives came from Nod, apparently
a land being developed by another set of gods.
Brian /-|-\
```

Document 40

- Classes correspond to newsgroup topic

- Each document belongs to a single class

```
From: bcash@crchh410.NoSubdomain.NoDomain (Brian Cash)
Subject: Re: free moral agency
Nntp-Posting-Host: crchh410
Organization: BNR, Inc.
Lines: 17
In article <735295730.25282@minster.york.ac.uk>, cjhs@minster.york.ac.uk writes:
|> : Are you saying that their was a physical Adam and Eve, and that all
|> : humans are direct decendents of only these two human beings.? Then who
|> : were Cain and Able's wives? Couldn't be their sisters, because A&E
|> : didn't have daughters. Were they non-humans?
|>
    Genesis 5:4
|>
|> and the days of Adam after he begat Seth were eight hundred years, and
|> he begat sons and daughters:
|>
|> Felicitations -- Chris Ho-Stuart
Yeah, but these were not the wives. The wives came from Nod, apparently
a land being developed by another set of gods.
Brian /-|-\
```

comp.graphics comp.os.ms-windows.misc comp.sys.ibm.pc.hardware comp.sys.mac.hardware comp.windows.x
rec.autos
rec.motorcycles
rec.sport.baseball
rec.sport.hockey
sci.crypt sci.electronics
sci.med
sci.space
misc.forsale
talk.politics.misc
talk.politics.guns
talk.politics.mideast
talk.religion.misc alt.atheism soc.religion.christian

Document 40

- Bag-of-word encoding encodes the frequency of words (forgets word order, syntax, etc.)

Document 40

```
From: bcash@crchh410.NoSubdomain.NoDomain (Brian Cash)
Subject: Re: free moral agency
Nntp-Posting-Host: crchh410
Organization: BNR, Inc.
Lines: 17
In article <735295730.25282@minster.york.ac.uk>, cjhs@minster.york.ac.uk writes:
|> : Are you saying that their was a physical Adam and Eve, and that all
| : humans are direct decendents of only these two human beings.? Then who
| : were Cain and Able's wives? Couldn't be their sisters, because A&E
> : didn't have daughters. Were they non-humans?
|
    Genesis 5:4
> and the days of Adam after he begat Seth were eight hundred years, and
|> he begat sons and daughters:
|
|> Felicitations -- Chris Ho-Stuart
Yeah, but these were not the wives. The wives came from Nod, apparently
a land being developed by another set of gods.
Brian /-|-\
```


Vocabulary: 61,168 words

- Bag-of-word encoding encodes the frequency of

 words (forgets word order, syntax, etc.)Document 40

```
From: bcash@crchh410.NoSubdomain.NoDomain (Brian Cash)
Subject: Re: free moral agency
Nntp-Posting-Host: crchh410
Organization: BNR, Inc.
Lines: 17
In article <735295730.25282@minster.york.ac.uk>, cjhs@minster.york.ac.uk writes:
|> : Are you saying that their was a physical Adam and Eve, and that all
    humans are direct decendents of only these two human beings.? Then who
    : were Cain and Able's wives? Couldn't be their sisters, because A&E
    |> : didn't have daughters. Were they non-humans:
|
    Genesis 5:4
    and the days of Adam after he begat Seth were eight hundred years, and
    |> he begat sons and daughters:
|
|> Felicitations -- Chris Ho-Stuart
Yeah, but these were not the wives. The wives came from Nod, apparently
a land being developed by another set of gods.
Brian /-|-\
```


humans

```
\(>\) and the days of Adam after he begat Seth were eight hundred years, and |>
|> Felicitations -- Chris Ho-Stuart
Yeah, but these were not the wives. The wives came from Nod, apparently a land being developed by another set of gods.
Brian /-|-\
- Bag-of-word encoding encodes the frequency of words (forgets word order, syntax, etc.)

Document 40
```

From: bcash@crchh410.NoSubdomain.NoDomain (Brian Cash)
Subject: Re: free moral agency
Nntp-Posting-Host: crchh410
Organization: BNR, Inc.
Lines: 17
In article 735295730.25282@minster.york.ac.uk, cjhs@minster.york.ac.uk writes:
|> : Are you saying that their was a physical Adam and Eve, and that all
| : humans are direct decendents of only these two human beings.? Then who
| : were Cain and Able's wives? Couldn't be their sisters, because A\&E
> : didn't have daughters. Were they non-humans?
|>
Genesis 5:4
> and the days of Adam after he begat Seth were eight hundred years, and
|> he begat sons and daughters:
|
|> Felicitations -- Chris Ho-Stuart
Yeah, but these were not the wives. The wives came from Nod, apparently
a land being developed by another set of gods.
Brian /-|-\

```

humans
:

\section*{- Bag-of-word encoding encodes the frequency of} words (forgets word order, syntax, etc.)

Document 40
```

From: bcash@crchh410.NoSubdomain.NoDomain (Brian Cash)
Subject: Re: free moral agency
Subject: Re: free moral agency
Organization: BNR, Inc.
Lines: 17
In article 735295730.25282@minster.york.ac.uk, cjhs@minster.york.ac.uk writes:
|> : Are you saying that their was a physical Adam and Eve, and that all
|> : humans are direct decendents of only these two human beings.? Then wh
> : were Cain and Able's wives? Couldn't be their sisters, because A\&E
|> : didn't have daughters. were they non-humans?
>
Genesis 5:4
|> and the days of Adam after he begat Seth were eight hundred vears, and
|> he begat sons and daughters:
>
|> Felicitations -- Chris Ho-Stuart
Yeah, but these were not the wives. The wives fame from Nod, apparently
a land being developed by another set of gods.
Brian /-|-\

```

humans
wives
years
their
:
:
```

Vocabulary: 61,168 words

```
- Bag-of-word encoding encodes the frequency of words (forgets word order, syntax, etc.)

Document 40
```

From: bcash@crchh410.NoSubdomain.NoDomain (Brian Cash)
Subject: Re: free moral agency
Nntp-Posting-Host: crchh410
Organization: BNR, Inc.
Lines: 17
In article 735295730.25282@minster.york.ac.uk, cjhs@minster.york.ac.uk writes:
|> : Are you saying that their was a physical Adam and Eve, and that all
| : humans are direct decendents of only these two human beings.? Then who
| : were Cain and Able's wives? Couldn't be their sisters, because A\&E
> : didn't have daughters. Were they non-humans?
|>
Genesis 5:4
> and the days of Adam after he begat Seth were eight hundred years, and
|> he begat sons and daughters:
|
|> Felicitations -- Chris Ho-Stuart
Yeah, but these were not the wives. The wives came from Nod, apparently
a land being developed by another set of gods.
Brian /-|-\
Brian /-|-\

```


Vocabulary: 61,168 words

\section*{- Bag-of-word encoding encodes the frequency of words (forgets word order, syntax, etc.)}

Document 40
```

```
From: bcash@crchh410.NoSubdomain.NoDomain (Brian Cash)
```

```
From: bcash@crchh410.NoSubdomain.NoDomain (Brian Cash)
Subject: Re: free moral agency
Subject: Re: free moral agency
Nntp-Posting-Host: crchh410
Nntp-Posting-Host: crchh410
Organization: BNR, Inc.
Organization: BNR, Inc.
Lines: 17
Lines: 17
In article <735295730.25282@minster.york.ac.uk>, cjhs@minster.york.ac.uk writes:
In article <735295730.25282@minster.york.ac.uk>, cjhs@minster.york.ac.uk writes:
|> : Are you saying that their was a physical Adam and Eve, and that all
|> : Are you saying that their was a physical Adam and Eve, and that all
| : humans are direct decendents of only these two human beings.? Then who
| : humans are direct decendents of only these two human beings.? Then who
| : were Cain and Able's wives? Couldn't be their sisters, because A&E
| : were Cain and Able's wives? Couldn't be their sisters, because A&E
> : didn't have daughters. Were they non-humans?
> : didn't have daughters. Were they non-humans?
>
>
    Genesis 5:
    Genesis 5:
    > and the days of Adam after he begat Seth were eight hundred years, and
    > and the days of Adam after he begat Seth were eight hundred years, and
    |> he begat sons and daughters:
    |> he begat sons and daughters:
>
>
|> Felicitations -- Chris Ho-Stuart
|> Felicitations -- Chris Ho-Stuart
Yeah, but these were not the wives. The wives came from Nod, apparently
Yeah, but these were not the wives. The wives came from Nod, apparently
a land being developed by another set of gods.
a land being developed by another set of gods.
Brian /-|-\
```

Brian /-|-\

```
```

|

```
```

|

```


humans
- Bag-of-word encoding encodes the frequency of words (forgets word order, syntax, etc.)

Document 40
```

From: bcash@crchh410.NoSubdomain.NoDomain (Brian Cash)
Subject: Re: free moral agency
Nntp-Posting-Host: crchh410
Organization: BNR, Inc.
Lines: 17
In article 735295730.25282@minster.york.ac.uk, cjhs@minster.york.ac.uk writes:
|> : Are you saying that their was a physical Adam and Eve, and that all
| : humans are direct decendents of only these two human beings.? Then who
| : were Cain and Able's wives? Couldn't be their sisters, because A\&E
> : didn't have daughters. Were they non-humans?
|
Genesis 5:4
> and the days of Adam after he begat Seth were eight hundred years, and
|> he begat sons and daughters:
|
|> Felicitations -- Chris Ho-Stuart
Yeah, but these were not the wives. The wives came from Nod, apparently
a land being developed by another set of gods.
Brian /-|-\
Brian /-|-\

```


Vocabulary: 61,168 words

\section*{- Bag-of-word encoding encodes the frequency of} words (forgets word order, syntax, etc.)

Document 40
```

From: bcash@crchh410.NoSubdomain.NoDomain (Brian Cash)
Subject: Re: free moral agency
Nntp-Posting-Host: crchh410
Organization: BNR, Inc.
Lines: 17
In article <735295730.25282aminster.york.ac.uk>, cjhs@minster.york.ac.uk writes:
|> : Are you saying that their vas a physical Adam and Eve, and that all
| : humans are direct decendents of only these two human beings.? Then who
> : were Cain and Able's wives? Couldn't b\& their sisters, because A\&\&r
> : didn't have daughters. Were they non-humans?
|
Genesis 5:4
> and the days of Adam after he begat Seth were eight hundred years, and
> he begat sons and daughters:
|
|> Felicitations -- Chris Ho-Stuart
Yeah, but these were not the wives. The wives came from Nod, apparently
a land being developed by another set of gods.
Brian /-|-\

```

Vocabulary: 61,168 words
- Bag-of-word encoding encodes the frequency of words (forgets word order, syntax, etc.)

Document 40
```

From: bcash@crchh410.NoSubdomain.NoDomain (Brian Cash)
Subject: Re: free moral agency
Nntp-Posting-Host: crchh410
Organization: BNR, Inc.
Lines: 17
In article 735295730.25282@minster.york.ac.uk, cjhs@minster.york.ac.uk writes:
|> : Are you saying that their was a physical Adam and Eve, and that all
| : humans are direct decendents of only these two human beings.? Then who
| : were Cain and Able's wives? Couldn't be their sisters, because A\&E
> : didn't have daughters. Were they non-humans?
|
Genesis 5:4
> and the days of Adam after he begat Seth were eight hundred years, and
|> he begat sons and daughters:
|
|> Felicitations -- Chris Ho-Stuart
Yeah, but these were not the wives. The wives came from Nod, apparently
a land being developed by another set of gods.
Brian /-|-\

```
\begin{tabular}{|c|c|}
\hline 2 & humans \\
\hline 3 & wives \\
\hline 1 & years \\
\hline 2 & their \\
\hline & : \\
\hline & \\
\hline & \\
\hline & \\
\hline
\end{tabular}

Vocabulary: 61,168 words


Model
- Naive Bayes
- Fit using MAP
\[
\text { Documents }=\left[\begin{array}{cccc}
3 & 4 & \cdots & 0 \\
1 & 0 & \cdots & 9 \\
\vdots & & \ddots & \cdots \\
0 & 2 & \cdots & 0
\end{array}\right]_{20,000 \times 61,168}
\]
\[
\text { Classes }=\left[\begin{array}{c}
10 \\
5 \\
\vdots \\
2
\end{array}\right]_{20,000 \times 1}
\]
\[
\begin{aligned}
\mathbf{P}\left(\mathbf{x} \mid \mathbf{y}=\mathbf{k}, \mathbf{p}_{\mathbf{k}}\right) & =\text { Multinomial }\left(\mathbf{x} \mid \mathbf{p}_{\mathbf{k}}\right) \\
\mathbf{P}(\mathbf{y}) & =\operatorname{Categorical}(\boldsymbol{\pi}) \\
\boldsymbol{\pi} & \sim \operatorname{Dirichlet}(\alpha)
\end{aligned}
\]

\section*{Code}
https://github.com/lcharlin/80-629/blob/master/inClass/
NaiveBayes\%2Bexample.ipynb

\section*{Beyond Naive}
- The assumption behind NB is that features are independent of one another conditioned on the class
\[
\mathbf{P}(\mathbf{x} \mid \mathbf{y}=\mathbf{k})=\mathcal{N}\left(\theta_{\mathbf{k}}, \sigma^{2} \mathbf{I}\right)
\]
- Unrealistic. e.g., "nasa" and "space"
- There are alternatives specific to continuous \(X\)

\section*{Quick word on covariance matrices}


\title{
Gaussian Discriminant Analysis (GDA)
}
\[
\mathbf{P}(\mathbf{x} \mid \mathbf{y}=\mathbf{k})=\mathcal{N}\left(\theta_{\mathbf{k}}, \Sigma_{\mathbf{k}}\right)
\]


\section*{Linear Discriminant Analysis (LDA)}
- GDA has many parameters (MxM per class)
- More prone to overfit
- An alternative is to model identical class covariance:
\[
\begin{aligned}
\mathbf{P}(\mathbf{x} \mid \mathbf{y}=\mathbf{k}) & =\mathcal{N}\left(\theta_{\mathbf{k}}, \Sigma_{\mathbf{k}}\right) \\
\Sigma_{\mathbf{k}} & =\Sigma_{\mathbf{k}^{\prime}} \quad \forall \mathbf{k}, \mathbf{k}^{\prime}
\end{aligned}
\]
- In the two class case the posterior over classes is similar to logistic regression:
\[
\mathbf{P}(\mathbf{y}=\mathbf{1} \mid \mathbf{x}, \theta)=\frac{\mathbf{1}}{\mathbf{1 + \operatorname { e x p } ( \mathbf { f } ( \mathbf { x } ) )}}
\]

\section*{Decision boundaries}

Linear Discriminant Analys


Gaussian (Quadratic) Discriminant Analys


\section*{Fisher Discriminant Analysis (FLDA)}
- Reduce the dimensionality of the data (Wx) to obtain a linearly separable problem


FLDA


\section*{Readings}
- References
- Sections 4.1-4.3, 4.5 of The Elements of Statistical Learning (available online)
- Sections 3.5 \& 4.2 of Machine Learning (K. Murphy)```


[^0]:    \# Scikit-learn library
    clf = neighbors.KNeighborsClassifier(n_neighbors, weights='uniform')
    clf.fit (X, y)

