Machine 60629A

Summary Neural Networks – Week #5

Machine Learning I

What if data is not linearly separable?

Exclusive OR (XOR)

What if data is not linearly separable?

Exclusive OR (XOR)

Use the joint decision of several linear classifier?

What if data is not linearly separable?

Exclusive OR (XOR)

Use the joint decision of several linear classifier?

- $\begin{cases} f(\mathbf{x}): & (\mathbf{w}^{\top}\mathbf{x} + \mathbf{w}_{\mathbf{0}}) > \mathbf{0} \implies \mathbf{0} \\ (\mathbf{w}^{\top}\mathbf{x} + \mathbf{w}_{\mathbf{0}}) < \mathbf{0} \implies \mathbf{0} \end{cases}$
- $f'(\mathbf{x}): \begin{pmatrix} \mathbf{w}'^{\top}\mathbf{x} + \mathbf{w}'_{\mathbf{0}} \end{pmatrix} > \mathbf{0} \implies \mathbf{0} \\ (\mathbf{w}'^{\top}\mathbf{x} + \mathbf{w}'_{\mathbf{0}}) < \mathbf{0} \implies \mathbf{0} \end{pmatrix}$

 $\mathbf{f}'(\mathbf{x}): \begin{pmatrix} \mathbf{w}'^{\top}\mathbf{x} + \mathbf{w}'_{\mathbf{0}} \end{pmatrix} > \mathbf{0} \implies \mathbf{0} \\ (\mathbf{w}'^{\top}\mathbf{x} + \mathbf{w}'_{\mathbf{0}}) < \mathbf{0} \implies \mathbf{0} \end{pmatrix}$

 $\begin{aligned} &| \mathbf{f}'(\mathbf{x}) : \\ & (\mathbf{w}'^{\top} \mathbf{x} + \mathbf{w}'_{\mathbf{0}}) > \mathbf{0} \implies \mathbf{0} \\ & (\mathbf{w}'^{\top} \mathbf{x} + \mathbf{w}'_{\mathbf{0}}) < \mathbf{0} \implies \mathbf{0} \end{aligned}$

1. Evaluate each model

 $\begin{aligned} f(\mathbf{x}) \colon & (\mathbf{w}^{\top}\mathbf{x} + \mathbf{w}_0) > \mathbf{0} \implies \mathbf{0} \\ (\mathbf{w}^{\top}\mathbf{x} + \mathbf{w}_0) < \mathbf{0} \implies \mathbf{0} \\ f(\mathbf{x}) = \mathbf{0} \text{ and } f'(\mathbf{x}) = \mathbf{0} \implies \mathbf{0} \\ f(\mathbf{x}) = \mathbf{0} \text{ and } f'(\mathbf{x}) = \mathbf{0} \implies \mathbf{0} \\ f(\mathbf{x}) = \mathbf{0} \text{ and } f'(\mathbf{x}) = \mathbf{0} \implies \mathbf{0} \end{aligned}$

2. Combine the output of models

 $\begin{cases} f(\mathbf{x}): & (\mathbf{w}^{\top}\mathbf{x} + \mathbf{w}_{\mathbf{0}}) > \mathbf{0} \implies \mathbf{0} \\ & (\mathbf{w}^{\top}\mathbf{x} + \mathbf{w}_{\mathbf{0}}) < \mathbf{0} \implies \mathbf{0} \end{cases}$

1. Evaluate each model

$$f(\mathbf{x}) = \mathbf{O} \text{ and } f'(\mathbf{x}) = \mathbf{O} \Longrightarrow$$
$$f(\mathbf{x}) = \mathbf{O} \text{ and } f'(\mathbf{x}) = \mathbf{O} \Longrightarrow$$
$$f(\mathbf{x}) = \mathbf{O} \text{ and } f'(\mathbf{x}) = \mathbf{O} \Longrightarrow$$

2. Combine the output of models

Feed-forward neural network

Input Layer

Hidden Layer(s) Output Layer

- Each arrow denotes a connection
 - A signal associated with a weight
- Each node is the weighted sum of its input followed by a nonlinear activation
- Connections go left to right
 - No connections within a layer
 - No backward connections (recurrent)

Gradient descent

- No closed-form formula
- Repeat the following steps (for t=0,1,2,... until convergence):
 - 1. Calculate a gradient $\nabla \mathbf{v}$
 - 2. Apply the update
- W_{ii}^{t-}
- Stochastic gradient descent
 - One example at a time
- Batch gradient descent
 - All examples at a time

$$\mathbf{w}_{ij}^{\mathsf{t}}$$

 $^{+1} = \mathbf{w}_{ij}^{\mathsf{t}} - lpha
abla \mathbf{w}_{ij}^{\mathsf{t}}$

From Neural Networks to Deep Neural Networks

A neural Network

From Neural Networks to Deep Neural Networks

A neural Network

A deep neural Network

From Neural Networks to Deep Neural Networks

A neural Network

Modern deep learning provides a powerful framework for supervised learning. By adding more layers and more units within a layer, a deep network can represent functions of increasing complexity.

Deep Learning — Part II, p.163 http://www.deeplearningbook.org/contents/part_practical.html

A deep neural Network

Another View of deep learning

• Representations are important

Hyperparameters

- 1. Model specific
- 2. Optimisation Objective
 - Regularization, Early-stopping, Dropout
- 3. Optimization procedure
 - Momentum, Adaptive learning rates

Activation functions (output & hidden), Network size

Wide or Deep?

Laurent Charlin — 60629

[Figure 6.6, <u>Deep Learning</u>, book]

Wide or Deep?

[Figure 6.7, <u>Deep Learning</u>, book]