Machine Learning I MATH60629

Machine Learning fundamentals – Summary – Week #2

Three main components

- 1. Task (T). The question you are answering.
 - Model. How to parametrize?
- 2. Performance measure (P). How good is the model?
- 3. Experience (E). What type of data do you have access to?

Les types d'expériences

- estimation

Supervised {(x,y)}. e.g., regression, classification. f: X -> Y •

Unsupervised {(x)}. e.g., clustering, dim. reduction, density

Reinforcement learning. Agent takes actions in an environment.

Model Evaluation

- Given:
 - A performance measure
 - A train dataset
 - A model
- Can calculate:
 - Train error: used to learn (to train).
 - Train error cannot be used to evaluate your model
 - Must use a separate dataset for evaluation

Capacity

Synthetic data is generated using a degree 5 polynomial

Laurent Charlin — MATH60629

 $y = w_5 x^5 + w_4 x^4 + w_3 x^3 + w_2 x^2 + w_1 x^1$

Number of training examples

[Figure 5.4, Chapter 5, Deep Learning]

Regularization

• Loss := $MSE^{train} + \lambda W^{\top}W$

Laurent Charlin — MATH60629

• Can be thought of as way to limit a model's capacity

Validation set

- How do we choose the right model and set its hyper parameters (e.g. λ)?
 - Use a validation set
 - Split the original data into two:
 - Train set 1.
 - 2. Validation set
 - Proxy to the test set
 - Train different models/hyperparameter settings on the train set
 - Pick the best according to their performance on the validation set

Bias / Variance

- The goal is to hit the bull's eye
- Each blue dot represents the "performance" of a fixed model on different data from the same distribution

http://scott.fortmann-roe.com/docs/BiasVariance.html

Bias / Variance

Low Bias

- The goal is to hit the bull's eye
- Each blue dot represents the "performance" of a fixed model on different data from the same distribution

http://scott.fortmann-roe.com/docs/BiasVariance.html