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Today

• Distributed computing for machine learning 

• Background 

• Short introduction to MapReduce/Hadoop & Spark 

• Note: Most lectures so far used stats concepts. Today we’ll 
turn to computer science.
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Data & Computation
• We generate massive quantities of data

1. Google 4K searches/s, Twitter: 6K tweets/s, Amazon: 100s sold products/s

2. Banks, insurance companies, etc.

3. Modestly-sized websites

• Both large n and large p

• In general computation will scale up with the data

• Often fitting an ML models requires one or multiple operations that looks 
at the whole dataset
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Issues with massive 
datasets

1. Storage 

2. Computation
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Moore’s Law

[https://en.wikipedia.org/wiki/Moore%27s_law]

https://en.wikipedia.org/wiki/Moore's_law
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Building our intuition 
with a simple example

• You are tasked with counting the number of houses in Montreal

1. Centralized (single computer):

• Ask a marathon runner to jog around the city and count

• Build a system to count houses from satellite imagery

2. Distributed (many computers):

• Ask 1,000 people to each count houses from a  small 
geographical area

• Once they are done they report their result at your HQ

9
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Tool for distributed computing 
(for machine learning)

• Apache Spark (https://spark.apache.org/) 

• Builds on MapReduce ideas 

• More flexible computation graphs 

• High-level APIs 

• MLlib 

10
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MapReduce

• From Google engineers 

“MapReduce: Simplified Data Processing on Large Clusters”, 
Jeffrey Dean and Sanjay Ghemawat, 2004 

• Now also known as (Apache) Hadoop 

• Google built large-scale computation from commodity hardware 

• Specific distributed interface 

• Useful for algorithms that can be expressed using this interface
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MapReduce
• Two types of tasks:  

A. Map: Solve a subproblem (filtering operation) 

B. Reduce: Combine the results of map workers (summary operation)
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Some details
• Typically the number of subproblems is higher than 

the number of available machines 

• ~linear speed-up wrt to the number of machines 

• If a node crashes, need to recompute its subproblem 

• Input/Output 

• Data is read from disk when beginning 

• Data is written to disk at the end

15
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MapReduce is quite 
versatile 

• When I was at Google the saying was (roughly): 

“If your problem cannot be framed as MapReduce you 
haven’t thought hard enough about your problem.” 

• A few examples of “map-reduceable” problems: 

• Intuition: Your problem needs to be decomposable into 
map functions and reduce functions 

• Sorting, filtering, distinct values, basic statistics 

• Finding common friends, sql-like queries, sentiment 
analysis

16
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MapReduce for machine 
learning

1. Training linear regression 

• Reminder: there is a closed-form solution 
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MapReduce for machine 
learning

1. Training linear regression 

• Reminder: there is a closed-form solution 

2. Other models we studied have a closed form solution (e.g., Naive Bayes and LDA)

3. Hyper-parameter search 

• A neural network with 2 hidden layers and 5 hidden units per layer and another 
with 3 hidden layers and 10 hidden units
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Shortcomings of 
MapReduce

• Many models are fitted with iterative algorithms 

• Gradient descent:  

1. Find the gradient for the current set parameters 

2. Update the parameters with the gradient 

• Not ideal for MapReduce  

• Would require several iterations of MapReduce 

• Each time the data is read/written from/to the disk
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(Apache) Spark
• Advantages over MapReduce 

1. Less restrictive computations graph                                    
(DAG instead of Map then Reduce)  

• Doesn’t have to write to disk in-between operations 

2. Richer set of transformations 

• map, filter, cartesian, union, intersection, distinct, 
etc. 

3. In-memory processing

20
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Spark History
• Started in Berkeley’s AMPLab (2009)  

• Version 1.0 2014 

• Based on Resilient Distributed Datasets (RDDs) 

• Version 2.0 June 2016 

• Version 2.3 February 2018, Version 2.4.4 September 2019 

• Our examples will use pySpark 

• Good (current) documentation:  

1. Advanced Analytics with Spark, 2nd edition (2017). 

2. Project docs: https://spark.apache.org/docs/latest/ 

21
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Resilient Distributed 
Datasets (RDDs)

• A data abstraction 

• Collection of partitions. Partitions are the distribution unit. 

• Operations on RDDs are (automatically) distributed. 

• RDDs support two types of operations:  

1. Transformations 

• Transform a dataset and return it 

2. Actions 

• Compute a result based on an RDD 

• These operations can then be “chained” into complex execution flows
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DataFrames

• An extra abstraction on top of RDDs 

• Encodes rows as a set of columns  

• Each column has a defined type 

• Useful for (pre-processed) machine learning datasets 

• Same name as data.frame (R) or pandas.DataFrame 

• Similar type of abstraction but for distributed datasets 

• Two types of operations (for our needs): transformers, 
estimators.
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Spark’s “Hello World”
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model = LogisticRegression(regParam=0.01).fit(data)
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data = spark.read.format("libsvm").load("hdfs://...") 

model = LogisticRegression(regParam=0.01).fit(data)
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Parallel gradient descent

• Logistic Regression
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ML setup

https://spark.apache.org/docs/latest/ml-guide.html

Load your data as an RDD

1. 2.

https://spark.apache.org/docs/latest/ml-guide.html
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Takeaways
• Distributed computing is useful:  

• for large-scale data 

• for faster computing 

• Current frameworks (e.g., spark) offer easy access to 
popular ML models + algorithms 

• Useful speedups by decomposing the computation 
into a number of identical smaller pieces 

• Still requires some engineering/coding
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