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Parallel computational paradigms for large-scale data processing
— Week #10



Today

o Distributed computing for machine learning
« Background

e Short introduction to MapReduce/Hadoop & Spark

e Note: Most lectures so far used stats concepts. Today we'll
turn to computer science.
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Distributed Computation
for Machine Learning



Data & Computation



Data & Computation

e We generate massive quantities of data
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e We generate massive quantities of data

1. Google 4K searches/s, Twitter: 6K tweets/s, Amazon: 100s sold products/s
(source: internetlifestats.com)
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Data & Computation

e We generate massive quantities of data
1. Google 4K searches/s, Twitter: 6K tweets/s, Amazon: 100s sold products/s

(source: internetlifestats.com)

2. Banks, insurance companies, etc.

3. Modestly-sized websites P
« Both large n and large p i ' H

e In general computation will scale up with the data

o Often fitting an ML models requires one or multiple operations that looks
at the whole dataset

e.g., Linear regression w = (X'X)7'X'Y
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lssues with massive
datasets

1. Storage

2. Computation



Moore's Law

Moore’s Law — The number of transistors on integrated circuit chips (1971-2018)

Moore's law describes the empirical regularity that the number of transistors on integrated circuits doubles approximately every two years.

OurWorld
in Data

This advancement is important as other aspects of technological progress — such as processing speed or the price of electronic products — are

linked to Moore's law.
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Data source: Wikipedia (https://en.wikipedia.org/wiki/Transistor_count)

The data visualization is available at OurWorldinData.org. There you find more visualizations and research on this topic.

Licensed under CC-BY-SA by the author Max Roser.

[https://en.wikipedia.org/wiki/Moore%27s_law]
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Modern Computation
paradigms



« Smart phone ~ 0.6 TFlops

« 1Tera: 1,000 Giga
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Modern Computation
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« Smart phone ~ 0.6 TFlops

« 1Tera: 1,000 Giga
1. “Single” computers
e Large Computers

e 513, 855 TFlops
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Modern Computation
daradigms

1. “Single” computers 2. Distributed computation
e Large Computers e ~200, 000 TFlops
(Folding@home)
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3. Specialized hardware

e Focusses on subset of
operations

e Graphical Processing
Unit (GPU), Field
Programmable Gated
Array (FPGA)




Modern Computation
o Floating point operations per second (Flop) ~ a ra d ig ms

« Smart phone ~ 0.6 TFlops

« 1Tera: 1,000 Giga

1. “Single” computers 2. Distributed computation 3. Specialized hardware

e Focusses on subset of
operations

e ~200, 000 TFlops
(Folding@home)

e Large Computers

e 513, 855 TFlops

e Graphical Processing
Unit (GPU), Field
Programmable Gated
Array (FPGA)

https://www.top500.org/lists/top500/list/2020/06/
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Distributed Computing

« Faster computers can help

« What about a large of “slow” computers working together?

o Divide the computation into small problems

1. All (slow) computers solve a small problem at the
same time

2. Combine the solution of small problems into initial
solution
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« Faster computers can help

« What about a large of “slow” computers working together?

o Divide the computation into small problems

1. All (slow) computers solve a small problem at the
same time

2. Combine the solution of small problems into initial
solution




Building our intuition
with a simple example

e You are tasked with counting the number of houses in Montreal
1. Centralized (single computer):

« Ask a marathon runner to jog around the city and count D

o Build a system to count houses from satellite imagery
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Building our intuition
with a simple example

e You are tasked with counting the number of houses in Montreal
1. Centralized (single computer):
« Ask a marathon runner to jog around the city and count
o Build a system to count houses from satellite imagery
2. Distributed (many computers):

e Ask 1,000 people to each count houses from a small

geographical area

e Once they are done they report their result at your HQ




Tool for distributed computing
(for machine learning)

e Apache Spark (https://spark.apache.org/)

« Builds on MapReduce ideas
e More flexible computation graphs
e High-level APIs

e MLIib
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Distributed Computing
using MapReduce




MapReduce

e From Google engineers

“MapReduce: Simplified Data Processing on Large Clusters”,
Jeffrey Dean and Sanjay Ghemawat, 2004

e Now also known as (Apache) Hadoop

e Google built large-scale computation from commodity hardware

o Specific distributed interface

o Useful for algorithms that can be expressed using this interface
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MapReduce

e Two types of tasks:
A. Map: Solve a subproblem (filtering operation)

B. Reduce: Combine the results of map workers (summary operation)

Map

Reduce
Initial :
— Solution

Problem
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TASK: Create a document'’s A. Map

bag-of-word representation

B. Reduce

The black dog
A black cat

o D - D
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TASK: Create a document'’s A. Map

The black dog
/ B. Reduce

A black cat

bag-of-word representation

The black dog
A black cat

o D
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TASK: Create a document'’s A. Map

bag-of-word representation

The, 1
black, 1

dog, 1

The black dog

Al
olack, 1 B. Reduce
cat, 1
A black cat
D

The black dog
A black cat

o D

The blue cat
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Some detalls

o Typically the number of subproblems is higher than
the number of available machines

e ~linear speed-up wrt to the number of machines
e If a node crashes, nheed to recompute its subproblem
e INnput/Output

« Data is read from disk when beginning

e Data is written to disk at the end
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MapReduce Is quite
versatile

« When | was at Google the saying was (roughly):

“If your problem cannot be framed as MapReduce you
haven’t thought hard enough about your problem.”

e A few examples of “map-reduceable” problems:

e Intuition: Your problem needs to be decomposable into
map functions and reduce functions

e Sorting, filtering, distinct values, basic statistics

« Finding common friends, sql-like queries, sentiment
analysis
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MapReduce for machine
learning

1. Training linear regression

e Reminder: there is a closed-form solution

w=X"X)"'X"Y
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MapReduce for machine
learning

1. Training linear regression

e Reminder: there is a closed-form solution

— (XTX)_1XTY «Each term in the sums can be

computer independently
= (2XD% (XY
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MapReduce for machine
learning

1. Training linear regression

e Reminder: there is a closed-form solution

— (XTX)_1XTY «Each term in the sums can be
computer independently

XTX XTY A. Map
IRl

2. Other models we studied have a closed form solution (e.g., Naive Bayes and LDA)
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MapReduce for machine
learning

1. Training linear regression

e Reminder: there is a closed-form solution

W — (XTX)_1XTY «Each term in the sums can be
computer independently

W — ( XTX)—'I( XTY) A. Map
zij: 1“7 z,: |

2. Other models we studied have a closed form solution (e.g., Naive Bayes and LDA)
3. Hyper-parameter search

o A neural network with 2 hidden layers and 5 hidden units per layer and another
with 3 hidden layers and 10 hidden units
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Shortcomings of
MapReduce

« Many models are fitted with iterative algorithms
o Gradient descent:
1. Find the gradient for the current set parameters
2. Update the parameters with the gradient
« Not ideal for MapReduce
« Would require several iterations of MapReduce
o Each time the data is read/written from/to the disk
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Distributed
computing using
Apache Spark




(Apache) Spark

« Advantages over MapReduce

R Solution
1. Less restrictive computations graph itia e N
(DAG instead of Map then Reduce) o /

- Doesn’t have to write to disk in-between operations
2. Richer set of transformations

- map, filter, cartesian, union, intersection, distinct,
etc.

3. In-memory processing
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Spark History

o Started in Berkeley's AMPLab (2009)
e Version 1.0 2014
« Based on Resilient Distributed Datasets (RDDs)
e Version 2.0 June 2016
e Version 2.3 February 2018, Version 2.4.4 September 2019
e Our examples will use pySpark
e Good (current) documentation:
1. Advanced Analytics with Spark, 2nd edition (2017).

2. Project docs: https://spark.apache.org/docs/latest/

Laurent Charlin — 80-629 21


https://spark.apache.org/docs/latest/

Resilient Distributed
Datasets (RDDs)

e A data abstraction

o Collection of partitions. Partitions are the distribution unit.
e Operations on RDDs are (automatically) distributed.
e RDDs support two types of operations:
1. Transformations
« Transform a dataset and return it
2. Actions
e Compute a result based on an RDD

e These operations can then be “chained” into complex execution flows
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DataFrames

e An extra abstraction on top of RDDs
e Encodes rows as a set of columns
e Each column has a defined type
o Useful for (pre-processed) machine learning datasets
e Same name as data. frame (R) or pandas.DataFrame
o Similar type of abstraction but for distributed datasets

e Two types of operations (for our needs): transformers,
estimators.
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Spark’s “Hello World”

data = spark.read.format("libsvm").load("hdfs://...")

model = LogisticRegression(regParam=0.01).fit(data)
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oareme]  — data = spark.read.format("libsvm").load("hdfs://...")

model = LogisticRegression(regParam=0.01).fit(data)
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e« Logistic Regression

1
T+ exp(—Wo — WXy — WXz — ... — WpXp)

e No closed-form solution, can use gradients

0 Loss(Y, X, w)
8wi
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e« Logistic Regression

1
T+ exp(—Wo — WXy — WXz — ... — WpXp)

e No closed-form solution, can use gradients

0 Loss(Y, X, w)
8wi

e Loss functions are often decomposable
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Parallel gradient descent

e« Logistic Regression

1
T+ exp(—Wo — WXy — WXz — ... — WpXp)

e No closed-form solution, can use gradients

0 Loss(Y, X, w)

@Wi 0 Loss (Yo, Xo, W)
OW;
e Loss functions are often decomposable 9 Loss(Yy, X1, W)
8Wi
0 Loss(Y2, Xa, vﬁ

0 Loss(Yn, Xn, W)
8wi

8Wi |
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ML setup

1. 2.
Machine Learning Library (MLlIib) Guide

MLIib is Spark’s machine learning (ML) library. Its goal is to make practical machine learning scalable and easy. At a high level,
it provides tools such as:

« ML Algorithms: common learning algorithms such as classification, regression, clustering, and collaborative filtering
« Featurization: feature extraction, transformation, dimensionality reduction, and selection

» Pipelines: tools for constructing, evaluating, and tuning ML Pipelines

» Persistence: saving and load algorithms, models, and Pipelines

« Utilities: linear algebra, statistics, data handling, etc.

Load your data as an RDD

Classification and Regression - RDD-based API

The spark.mllib package supports various methods for binary classification, multiclass classification, and regression analysis.
The table below outlines the supported algorithms for each type of problem.

Problem Type Supported Methods

Binary linear SVMs, logistic regression, decision trees, random forests, gradient-boosted trees, naive Bayes
Classification

Multiclass logistic regression, decision trees, random forests, naive Bayes
Classification

Regression linear least squares, Lasso, ridge regression, decision trees, random forests, gradient-boosted trees,
isotonic regression

https://spark.apache.org/docs/latest/ml-guide.html
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Takeaways

o Distributed computing is useful:
o for large-scale data
o for faster computing

e Current frameworks (e.g., spark) offer easy access to
popular ML models + algorithms

o Useful speedups by decomposing the computation
Into a number of identical smaller pieces

 Still requires some engineering/coding
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