Machine Learning |
80-629A

Apprentissage Automatique |
80-629

Parallel computational paradigms for large-scale data processing
— Week #10

Today

o Distributed computing for machine learning
« Background

e Short introduction to MapReduce/Hadoop & Spark

e Note: Most lectures so far used stats concepts. Today we'll
turn to computer science.

Laurent Charlin — 80-629 2

Distributed Computation
for Machine Learning

Data & Computation

Data & Computation

e We generate massive quantities of data

Laurent Charlin — 80-629 4

Data & Computation

e We generate massive quantities of data

1. Google 4K searches/s, Twitter: 6K tweets/s, Amazon: 100s sold products/s
(source: internetlifestats.com)

Laurent Charlin — 80-629 4

http://internetlifestats.com

Data & Computation

e We generate massive quantities of data

1. Google 4K searches/s, Twitter: 6K tweets/s, Amazon: 100s sold products/s
(source: internetlifestats.com)

2. Banks, insurance companies, etc.

Laurent Charlin — 80-629 4

http://internetlifestats.com

Data & Computation

e We generate massive quantities of data

1. Google 4K searches/s, Twitter: 6K tweets/s, Amazon: 100s sold products/s
(source: internetlifestats.com)

2. Banks, insurance companies, etc.

3. Modestly-sized websites

Laurent Charlin — 80-629 4

http://internetlifestats.com

Data & Computation

e We generate massive quantities of data

1. Google 4K searches/s, Twitter: 6K tweets/s, Amazon: 100s sold products/s
(source: internetlifestats.com)

2. Banks, insurance companies, etc.

3. Modestly-sized websites

« Both large n and large p

Laurent Charlin — 80-629 4

http://internetlifestats.com

Data & Computation

e We generate massive quantities of data
1. Google 4K searches/s, Twitter: 6K tweets/s, Amazon: 100s sold products/s

(source: internetlifestats.com)

2. Banks, insurance companies, etc.

3. Modestly-sized websites P
« Both large n and large p i ' H

e In general computation will scale up with the data

Laurent Charlin — 80-629 4

http://internetlifestats.com

Data & Computation

e We generate massive quantities of data
1. Google 4K searches/s, Twitter: 6K tweets/s, Amazon: 100s sold products/s

(source: internetlifestats.com)

2. Banks, insurance companies, etc.

3. Modestly-sized websites P
« Both large n and large p i ' H

e In general computation will scale up with the data

o Often fitting an ML models requires one or multiple operations that looks
at the whole dataset

e.g., Linear regression w = (X'X)7'X'Y

Laurent Charlin — 80-629 4

http://internetlifestats.com

lssues with massive
datasets

1. Storage

2. Computation

Moore's Law

Moore’s Law — The number of transistors on integrated circuit chips (1971-2018)

Moore's law describes the empirical regularity that the number of transistors on integrated circuits doubles approximately every two years.

OurWorld
in Data

This advancement is important as other aspects of technological progress — such as processing speed or the price of electronic products — are

linked to Moore's law.

50,000,000,000

10,000,000,000
5,000,000,000

1,000,000,000

72-core Xeon Phi Centriq 2400

SPARC M7 Qo

$32-core AMD Epyc
IBM z13 Storage Controller. /Apple A12X Bionic
o .- Tegra Xavier SoC
18 C)C()L’)eo))((eoonnel-rlj\;\/r\]/eSIIOI(E;S \g 8 Qu%lcomm Snapdragon 8cx/SCX8180
61-core Xeon Phi \8 8 ™ HiSilicon Kirin 980 + Apple A12 Bionic
Dual-core + GPU Iris Core i7 Broadwell-U

12-core POWER o ‘EHisui?c%n Kirin 710
_ - -core Core i7 Broadwell-
8 core Xeon Nehalem-EX -~ Qualcomm Snapdragon 835
A4 o Quad-core + GPU GT2 Core i7 Skylake K
© Quad-core + GPU Core i7 Haswell
Apple A7 (dual-core ARM64 "mobile SoC")

Six-core Xeon 7400
4
o808

Dual-core Itanium 2¢p

Pentium D Presler POWE%
[tanium 2 with .
9 MB cache¢y °Core i7 (Quad)

500,000,000 Itanium 2 Mgdison 6M° gémgﬁ%%g\ﬁgﬁ%%@ M3
tan Pentium D Smithfield Gore 2 Duo Conroe
anium 2 McKinley€p Cell € Core 2 Duo Wolfdale 3M
Pentium 4 Prescott-2M<€p \OCore 2 Duo Allendale
Pentium 4 Cedar Mill
100,000,000 AMD K8® B i 4 Prescott
Pentium 4 Northwoo
= 50,000,000 pertium 4 Wikametiogy B & 2 @aor
)] . entium Il Tualatin
-] Pentium Il Mobile Dixon ©ARM Cortex-A9
(@) AMD K7 €@ Pentium Ill Coppermine
S AMD K6-II]
O AMD K6 i i
g 10,000,000 i Qo @EeB A
g 5,000,000 grtat
Pentium AMD K5
S ? 0
= SA*110
1 ,OOO’OOO Intel 80486° °R4000
TI Expl 's 32-bit
500,000 Lisp machine chip® . 2
Intel 80386 Intel .. € ARM 3
Motorola 68020 ¢ ¢ '%Og
4 Muaritian
100,000 Motorola Intel$0286 ARM
68000¢ gTDMI
50 000 @ Intel 80186
Intel 80864y €Y Intel 8088 o, FXAA1RM 2 AF%,, 6
WDC
. Motorola 65C816 o
10,000 TMSjooo ZiogZeg 68D gg%gz NCAGT6
RCA 1802
5!000 Intel 8008° Intel 808?;cel £0%
7 MOS Technology
Matorola g5p2
Intel 4&)4 6800
1,000
L S S L R A R L S S AT MU IS S ARSI SN I IR SR
N N N N N N N N N N N N N N N 2) 2) 2) 2) 2) 2) 2) 2), 2) 3)

Data source: Wikipedia (https://en.wikipedia.org/wiki/Transistor_count)

The data visualization is available at OurWorldinData.org. There you find more visualizations and research on this topic.

Licensed under CC-BY-SA by the author Max Roser.

[https://en.wikipedia.org/wiki/Moore%27s_law]

https://en.wikipedia.org/wiki/Moore's_law

Modern Computation
paradigms

« Smart phone ~ 0.6 TFlops

« 1Tera: 1,000 Giga

Laurent Charlin — 80-629

Modern Computation

« Floating point operations per second (Flop)

daradigms

Modern Computation
o Floating point operations per second (Flop) ~ a ra d ig mS

« Smart phone ~ 0.6 TFlops

« 1Tera: 1,000 Giga
1. “Single” computers
e Large Computers

e 513, 855 TFlops

https://www.top500.org/lists/top500/list/2020/06/

Photo from Riken

Laurent Charlin — 80-629 7

« Floating point operations per second (Flop)
« Smart phone ~ 0.6 TFlops

« 1Tera: 1,000 Giga

Modern Computation
daradigms

1. “Single” computers 2. Distributed computation
e Large Computers e ~200, 000 TFlops
(Folding@home)

e 513, 855 TFlops

https://www.top500.org/lists/top500/list/2020/06/

| 8 I ‘ f P g | | | L -" :
3 i i \ = N}
| b e o
(e il -~ “ i
Photo from Riken D

Laurent Charlin — 80-629 7

« Smart phone ~ 0.6 TFlops

« 1Tera: 1,000 Giga

« Floating point operations per second (Flop)

1. “Single” computers
e Large Computers

e 513, 855 TFlops

https://www.top500.org/lists/top500/list/2020/06/

Photo from Riken

Laurent Charlin — 80-629

2. Distributed computation

e ~200, 000 TFlops
(Folding@home)

Modern Computation
daradigms

3. Specialized hardware

e Focusses on subset of
operations

e Graphical Processing
Unit (GPU), Field
Programmable Gated
Array (FPGA)

Modern Computation
o Floating point operations per second (Flop) ~ a ra d ig ms

« Smart phone ~ 0.6 TFlops

« 1Tera: 1,000 Giga

1. “Single” computers 2. Distributed computation 3. Specialized hardware

e Focusses on subset of
operations

e ~200, 000 TFlops
(Folding@home)

e Large Computers

e 513, 855 TFlops

e Graphical Processing
Unit (GPU), Field
Programmable Gated
Array (FPGA)

https://www.top500.org/lists/top500/list/2020/06/

. ~10 TFlops ~_=

Photo from Riken

Laurent Charlin — 80-629 7

Distributed Computing

—L |

Distributed Computing

D
« Faster computers can help

Distributed Computing

« Faster computers can help

« What about a large of “slow” computers working together?

o Divide the computation into small problems

1. All (slow) computers solve a small problem at the
same time

2. Combine the solution of small problems into initial
solution

Laurent Charlin — 80-629 8

Laurent Charlin — 80-629

Distributed Computing

« Faster computers can help

« What about a large of “slow” computers working together?

o Divide the computation into small problems

1. All (slow) computers solve a small problem at the
same time

2. Combine the solution of small problems into initial
solution

Building our intuition
with a simple example

e You are tasked with counting the number of houses in Montreal
1. Centralized (single computer):

« Ask a marathon runner to jog around the city and count D

o Build a system to count houses from satellite imagery

Laurent Charlin — 80-629 9

Laurent Charlin — 80-629

Building our intuition
with a simple example

e You are tasked with counting the number of houses in Montreal
1. Centralized (single computer):
« Ask a marathon runner to jog around the city and count
o Build a system to count houses from satellite imagery
2. Distributed (many computers):

e Ask 1,000 people to each count houses from a small

geographical area

e Once they are done they report their result at your HQ

Tool for distributed computing
(for machine learning)

e Apache Spark (https://spark.apache.org/)

« Builds on MapReduce ideas
e More flexible computation graphs
e High-level APIs

e MLIib

Laurent Charlin — 80-629 10

https://spark.apache.org/

Distributed Computing
using MapReduce

MapReduce

e From Google engineers

“MapReduce: Simplified Data Processing on Large Clusters”,
Jeffrey Dean and Sanjay Ghemawat, 2004

e Now also known as (Apache) Hadoop

e Google built large-scale computation from commodity hardware

o Specific distributed interface

o Useful for algorithms that can be expressed using this interface

Laurent Charlin — 80-629 12

MapReduce

e Two types of tasks:
A. Map: Solve a subproblem (filtering operation)

B. Reduce: Combine the results of map workers (summary operation)

Map

Reduce
Initial :
— Solution

Problem

Laurent Charlin — 80-629 13

TASK: Create a document'’s A. Map

bag-of-word representation

B. Reduce

The black dog
A black cat

o D - D

Laurent Charlin — 80-629

TASK: Create a document'’s A. Map

The black dog
/ B. Reduce

A black cat

bag-of-word representation

The black dog
A black cat

o D

Laurent Charlin — 80-629

TASK: Create a document'’s A. Map

bag-of-word representation

The, 1
black, 1

dog, 1

The black dog

Al
olack, 1 B. Reduce
cat, 1
A black cat
D

The black dog
A black cat

o D

The blue cat

Laurent Charlin — 80-629

TASK: Create a document'’s A. Map

bag-of-word representation

The, 1
black, 1
dog, 1

Partition
by key

The black dog
B. Reduce

Al
black, 1 \
cat, 1
The, 1
The, 1
A black cat black. 1 \
black, 1

The black dog

A black cat

The blue cat The blue cat dog, | =
cat, 1
cat, 1

Laurent Charlin — 80-629

TASK: Create a document'’s A. Map

bag-of-word representation

The, 1
black, 1
dog, 1

Partition
by key

The black dog
B. Reduce

Al
black, 1 \
cat, 1
The, 1
A black cat The, 1
black, 1 \ The. 2
black, 1 ’

The black dog

A black cat olack. 2
ack,
The blue cat The blue cat dog, 1 =y dog, 1
cat, 1 cat, 2
cat, 1

Laurent Charlin — 80-629

Some detalls

o Typically the number of subproblems is higher than
the number of available machines

e ~linear speed-up wrt to the number of machines
e If a node crashes, nheed to recompute its subproblem
e INnput/Output

« Data is read from disk when beginning

e Data is written to disk at the end

Laurent Charlin — 80-629 15

MapReduce Is quite
versatile

« When | was at Google the saying was (roughly):

“If your problem cannot be framed as MapReduce you
haven’t thought hard enough about your problem.”

e A few examples of “map-reduceable” problems:

e Intuition: Your problem needs to be decomposable into
map functions and reduce functions

e Sorting, filtering, distinct values, basic statistics

« Finding common friends, sql-like queries, sentiment
analysis

Laurent Charlin — 80-629 16

MapReduce for machine
learning

1. Training linear regression

e Reminder: there is a closed-form solution

w=X"X)"'X"Y

MapReduce for machine
learning

1. Training linear regression

e Reminder: there is a closed-form solution

= (X' X)7'X'Y

Z X Xi)~ Z X:"Y;)

MapReduce for machine
learning

1. Training linear regression

e Reminder: there is a closed-form solution

— (XTX)_1XTY «Each term in the sums can be

computer independently
= (2XD% (XY

Laurent Charlin — 80-629 17

MapReduce for machine
learning

1. Training linear regression

e Reminder: there is a closed-form solution

— (XTX)_1XTY «Each term in the sums can be
computer independently

XTX XTY A. Map
R

Laurent Charlin — 80-629 17

MapReduce for machine
learning

1. Training linear regression

e Reminder: there is a closed-form solution

— (XTX)_1XTY «Each term in the sums can be
computer independently

XTX XTY A. Map
IRl

2. Other models we studied have a closed form solution (e.g., Naive Bayes and LDA)

Laurent Charlin — 80-629 17

MapReduce for machine
learning

1. Training linear regression

e Reminder: there is a closed-form solution

W — (XTX)_1XTY «Each term in the sums can be
computer independently

W — (XTX)—'I(XTY) A. Map
zij: 1“7 z,: |

2. Other models we studied have a closed form solution (e.g., Naive Bayes and LDA)
3. Hyper-parameter search

o A neural network with 2 hidden layers and 5 hidden units per layer and another
with 3 hidden layers and 10 hidden units

Laurent Charlin — 80-629 17

Shortcomings of
MapReduce

« Many models are fitted with iterative algorithms
o Gradient descent:
1. Find the gradient for the current set parameters
2. Update the parameters with the gradient
« Not ideal for MapReduce
« Would require several iterations of MapReduce
o Each time the data is read/written from/to the disk

Laurent Charlin — 80-629 18

Distributed
computing using
Apache Spark

(Apache) Spark

« Advantages over MapReduce

R Solution
1. Less restrictive computations graph itia e N
(DAG instead of Map then Reduce) o /

- Doesn’t have to write to disk in-between operations
2. Richer set of transformations

- map, filter, cartesian, union, intersection, distinct,
etc.

3. In-memory processing

Laurent Charlin — 80-629 20

Spark History

o Started in Berkeley's AMPLab (2009)
e Version 1.0 2014
« Based on Resilient Distributed Datasets (RDDs)
e Version 2.0 June 2016
e Version 2.3 February 2018, Version 2.4.4 September 2019
e Our examples will use pySpark
e Good (current) documentation:
1. Advanced Analytics with Spark, 2nd edition (2017).

2. Project docs: https://spark.apache.org/docs/latest/

Laurent Charlin — 80-629 21

https://spark.apache.org/docs/latest/

Resilient Distributed
Datasets (RDDs)

e A data abstraction

o Collection of partitions. Partitions are the distribution unit.
e Operations on RDDs are (automatically) distributed.
e RDDs support two types of operations:
1. Transformations
« Transform a dataset and return it
2. Actions
e Compute a result based on an RDD

e These operations can then be “chained” into complex execution flows

Laurent Charlin — 80-629 22

DataFrames

e An extra abstraction on top of RDDs
e Encodes rows as a set of columns
e Each column has a defined type
o Useful for (pre-processed) machine learning datasets
e Same name as data. frame (R) or pandas.DataFrame
o Similar type of abstraction but for distributed datasets

e Two types of operations (for our needs): transformers,
estimators.

Laurent Charlin — 80-629 23

Spark’s “Hello World”

data = spark.read.format("libsvm").load("hdfs://...")

model = LogisticRegression(regParam=0.01).fit(data)

Spark’s “Hello World”

oareme] — data = spark.read.format("libsvm").load("hdfs://...")

model = LogisticRegression(regParam=0.01).fit(data)

Spark’s “Hello World”

oareme] — data = spark.read.format("libsvm").load("hdfs://...")

model = LogisticRegression(regParam=0.01).fit(data)

Parallel gradient descent

e« Logistic Regression

1
T+ exp(—Wo — WXy — WXz — ... — WpXp)

Parallel gradient descent

e« Logistic Regression

1
T+ exp(—Wo — WXy — WXz — ... — WpXp)

e No closed-form solution, can use gradients

0 Loss(Y, X, w)
8wi

Laurent Charlin — 80-629 25

Parallel gradient descent

e« Logistic Regression

1
T+ exp(—Wo — WXy — WXz — ... — WpXp)

e No closed-form solution, can use gradients

0 Loss(Y, X, w)
8wi

e Loss functions are often decomposable

0)_jLoss(Yj, Xj, w)
8Wi

Laurent Charlin — 80-629 25

Parallel gradient descent

e« Logistic Regression

1
T+ exp(—Wo — WXy — WXz — ... — WpXp)

e No closed-form solution, can use gradients

0 Loss(Y, X, w)

@Wi 0 Loss (Yo, Xo, W)
OW;
e Loss functions are often decomposable 9 Loss(Yy, X1, W)
8Wi
0 Loss(Y2, Xa, vﬁ

0 Loss(Yn, Xn, W)
8wi

8Wi |

Laurent Charlin — 80-629 25

ML setup

1. 2.
Machine Learning Library (MLlIib) Guide

MLIib is Spark’s machine learning (ML) library. Its goal is to make practical machine learning scalable and easy. At a high level,
it provides tools such as:

« ML Algorithms: common learning algorithms such as classification, regression, clustering, and collaborative filtering
« Featurization: feature extraction, transformation, dimensionality reduction, and selection

» Pipelines: tools for constructing, evaluating, and tuning ML Pipelines

» Persistence: saving and load algorithms, models, and Pipelines

« Utilities: linear algebra, statistics, data handling, etc.

Load your data as an RDD

Classification and Regression - RDD-based API

The spark.mllib package supports various methods for binary classification, multiclass classification, and regression analysis.
The table below outlines the supported algorithms for each type of problem.

Problem Type Supported Methods

Binary linear SVMs, logistic regression, decision trees, random forests, gradient-boosted trees, naive Bayes
Classification

Multiclass logistic regression, decision trees, random forests, naive Bayes
Classification

Regression linear least squares, Lasso, ridge regression, decision trees, random forests, gradient-boosted trees,
isotonic regression

https://spark.apache.org/docs/latest/ml-guide.html

https://spark.apache.org/docs/latest/ml-guide.html

Takeaways

o Distributed computing is useful:
o for large-scale data
o for faster computing

e Current frameworks (e.g., spark) offer easy access to
popular ML models + algorithms

o Useful speedups by decomposing the computation
Into a number of identical smaller pieces

 Still requires some engineering/coding

Laurent Charlin — 80-629 27

