Machine Learning I 80-629A

Apprentissage Automatique I 80-629

Parallel computational paradigms for large-scale data processing — Week #10

- Distributed computing for machine learning
 - Background
 - Short introduction to MapReduce/Hadoop & Spark

turn to computer science.

Today

• Note: Most lectures so far used stats concepts. Today we'll

Distributed Computation for Machine Learning

• We generate massive quantities of data

- We generate massive quantities of data
 - 1.

(source: internetlifestats.com)

Google 4K searches/s, Twitter: 6K tweets/s, Amazon: 100s sold products/s

- We generate massive quantities of data
 - Google 4K searches/s, Twitter: 6K tweets/s, Amazon: 100s sold products/s 1. (source: internetlifestats.com)
 - 2. Banks, insurance companies, etc.

- We generate massive quantities of data
 - Google 4K searches/s, Twitter: 6K tweets/s, Amazon: 100s sold products/s 1. (source: internetlifestats.com)
 - 2. Banks, insurance companies, etc.
 - 3. Modestly-sized websites

- We generate massive quantities of data
 - Google 4K searches/s, Twitter: 6K tweets/s, Amazon: 100s sold products/s (source: internetlifestats.com)
 - 2. Banks, insurance companies, etc.
 - 3. Modestly-sized websites
- Both large n and large p

- We generate massive quantities of data
 - Google 4K searches/s, Twitter: 6K tweets/s, Amazon: 100s sold products/s (source: internetlifestats.com)
 - 2. Banks, insurance companies, etc.
 - 3. Modestly-sized websites
- Both large n and large p
- In general computation will scale up with the data

- We generate massive quantities of data
 - Google 4K searches/s, Twitter: 6K tweets/s, Amazon: 100s sold products/s (source: internetlifestats.com)
 - 2. Banks, insurance companies, etc.
 - 3. Modestly-sized websites
- Both large n and large p
- In general computation will scale up with the data
 - Often fitting an ML models requires one or multiple operations that looks at the whole dataset

e.g., Linear re

egression
$$\mathbf{W} = (\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{X}^{\top}\mathbf{Y}$$

Issues with massive datasets

1. Storage

2. Computation

Moore's Law

Moore's Law – The number of transistors on integrated circuit chips (1971-2018)

Moore's law describes the empirical regularity that the number of transistors on integrated circuits doubles approximately every two years. This advancement is important as other aspects of technological progress – such as processing speed or the price of electronic products – are linked to Moore's law.

Data source: Wikipedia (https://en.wikipedia.org/wiki/Transistor_count) The data visualization is available at OurWorldinData.org. There you find more visualizations and research on this topic.

Licensed under CC-BY-SA by the author Max Roser.

[https://en.wikipedia.org/wiki/Moore%27s_law]

Modern Computation paradigms

Floating point operations per second (Flop) Smart phone ~ 0.6 TFlops 1 Tera: 1,000 Giga

Modern Computation Floating point operations per second (Flop) Daradigms

- Smart phone ~ 0.6 TFlops
- 1 Tera: 1,000 Giga
 - "Single" computers
 - Large Computers
 - 513, 855 TFlops

https://www.top500.org/lists/top500/list/2020/06/

Photo from Riken

Floating point operations per second (Flop) Smart phone ~ 0.6 TFlops

- 1 Tera: 1,000 Giga
 - 1. "Single" computers
 - Large Computers
 - 513, 855 TFlops

https://www.top500.org/lists/top500/list/2020/06/

Photo from Riken

- 2. Distributed computation
 - ~200, 000 TFlops (Folding@home)

Floating point operations per second (Flop) Smart phone ~ 0.6 TFlops

- 1 Tera: 1,000 Giga
 - 1. "Single" computers
 - Large Computers
 - 513, 855 TFlops

https://www.top500.org/lists/top500/list/2020/06/

Photo from Riken

- 2. Distributed computation
 - ~200, 000 TFlops (Folding@home)

- 3. Specialized hardware
 - Focusses on subset of operations
 - Graphical Processing Unit (GPU), Field
 Programmable Gated
 Array (FPGA)

Modern Computation per second (Flop) paradigms

- Floating point operations per second (Flop)
- Smart phone ~ 0.6 TFlops
- 1 Tera: 1,000 Giga
 - **1. "Single" computers**
 - Large Computers
 - 513, 855 TFlops

https://www.top500.org/lists/top500/list/2020/06/

Photo from Riken

- 2. Distributed computation
 - ~200, 000 TFlops (Folding@home)

- 3. Specialized hardware
 - Focusses on subset of operations
 - Graphical Processing Unit (GPU), Field
 Programmable Gated
 Array (FPGA)

Distributed Computing

Distributed Computing

• Faster computers can help

- Faster computers can help
- What about a large of "slow" computers working together?
 - Divide the computation into small problems
 - 1. All (slow) computers solve a small problem at the same time
 - 2. Combine the solution of small problems into initial solution

- Faster computers can help
- What about a large of "slow" computers working together?
 - Divide the computation into small problems
 - 1. All (slow) computers solve a small problem at the same time
 - 2. Combine the solution of small problems into initial solution

Building our intuition with a simple example

- You are tasked with counting the number of houses in Montreal
 - 1. Centralized (single computer):
 - Ask a marathon runner to jog around the city and count
 - Build a system to count houses from satellite imagery

Building our intuition with a simple example

- You are tasked with counting the number of houses in Montreal
 - 1. Centralized (single computer):
 - Ask a marathon runner to jog around the city and count
 - Build a system to count houses from satellite imagery
 - 2. Distributed (many computers):
 - Ask 1,000 people to each count houses from a small geographical area
 - Once they are done they report their result at your HQ

Tool for distributed computing (for machine learning)

- Apache Spark (<u>https://spark.apache.org/</u>)
 - Builds on MapReduce ideas
 - More flexible computation graphs
 - High-level APIs
 - MLlib

Distributed Computing using MapReduce

MapReduce

- From Google engineers
 - "MapReduce: Simplified Data Processing on Large Clusters", Jeffrey Dean and Sanjay Ghemawat, 2004
 - Now also known as (Apache) Hadoop
 - Google built large-scale computation from commodity hardware
- Specific distributed interface
 - Useful for algorithms that can be expressed using this interface

MapReduce

• Two types of tasks:

A. Map: Solve a subproblem (filtering operation)

B. Reduce: Combine the results of map workers (summary operation)

TASK: Create a document's bag-of-word representation

The black dog A black cat The blue cat

- •
- •
- •

Some details

- Typically the number of subproblems is higher than the number of available machines
 - ~linear speed-up wrt to the number of machines
- If a node crashes, need to recompute its subproblem
- Input/Output
 - Data is read from disk when beginning
 - Data is written to disk at the end

MapReduce is quite versatile

• When I was at Google the saying was (roughly):

"If your problem cannot be framed as MapReduce you haven't thought hard enough about your problem."

- A few examples of "map-reduceable" problems:
 - Intuition: Your problem needs to be decomposable into map functions and reduce functions
 - Sorting, filtering, distinct values, basic statistics
 - Finding common friends, sql-like queries, sentiment analysis

- 1. Training linear regression
 - Reminder: there is a closed-form solution

$$\mathbf{W} = ($$

- 1. Training linear regression
 - Reminder: there is a closed-form solution

$$\mathbf{W} = ($$

 $(\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{X}^{\top}\mathbf{Y}$

 $\mathbf{W} = (\sum_{ii} \mathbf{X}_i^\top \mathbf{X}_j)^{-1} (\sum_i \mathbf{X}_i^\top \mathbf{Y}_i)$

- Training linear regression 1.
 - Reminder: there is a closed-form solution

$$\mathbf{W} = ($$

 $(\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{X}^{\top}\mathbf{Y}$

 $\mathbf{W} = (\sum_{ii} \mathbf{X}_i^\top \mathbf{X}_j)^{-1} (\sum_i \mathbf{X}_i^\top \mathbf{Y}_i)$

•Each term in the sums can be computer independently

- Training linear regression 1.
 - Reminder: there is a closed-form solution

$$\mathbf{W} = ($$

 $(\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{X}^{\top}\mathbf{Y}$

 $\mathbf{W} = (\sum_{ii} \mathbf{X}_i^\top \mathbf{X}_j)^{-1} (\sum_i \mathbf{X}_i^\top \mathbf{Y}_i)$

•Each term in the sums can be computer independently

A. Map

- Training linear regression 1.
 - Reminder: there is a closed-form solution

$$\mathbf{W} = ($$

$$\mathbf{W} = ($$

2. Other models we studied have a closed form solution (e.g., Naive Bayes and LDA)

 $(\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{X}^{\top}\mathbf{Y}$

 $(\sum_{ii} \mathbf{X}_i^\top \mathbf{X}_j)^{-1} (\sum_{i} \mathbf{X}_i^\top \mathbf{Y}_i)$

•Each term in the sums can be computer independently

A. Map

- Training linear regression 1.
 - Reminder: there is a closed-form solution

- 3. Hyper-parameter search
 - with 3 hidden layers and 10 hidden units

 $\mathbf{W} = (\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{X}^{\top}\mathbf{Y}$ •Each term in the sums can be computer independently $\mathbf{W} = (\sum_{\mathbf{i}\mathbf{i}} \mathbf{X}_{\mathbf{i}}^{\top} \mathbf{X}_{\mathbf{j}})^{-1} (\sum_{\mathbf{i}} \mathbf{X}_{\mathbf{i}}^{\top} \mathbf{Y}_{\mathbf{i}})$ A. Map

2. Other models we studied have a closed form solution (e.g., Naive Bayes and LDA)

A neural network with 2 hidden layers and 5 hidden units per layer and another

Shortcomings of MapReduce

- Many models are fitted with iterative algorithms
 - Gradient descent:
 - 1. Find the gradient for the current set parameters
 - 2. Update the parameters with the gradient
- Not ideal for MapReduce
 - Would require several iterations of MapReduce
 - Each time the data is read/written from/to the disk

Distributed computing using Apache Spark

(Apache) Spark

- Advantages over MapReduce
 - 1. Less restrictive computations graph (DAG instead of Map then Reduce)
 - Doesn't have to write to disk in-between operations
 - 2. Richer set of transformations
 - map, filter, cartesian, union, intersection, distinct, etc.
 - 3. In-memory processing

Spark History

- Started in Berkeley's AMPLab (2009)
- Version 1.0 2014
 - Based on Resilient Distributed Datasets (RDDs)
- Version 2.0 June 2016
- Version 2.3 February 2018, Version 2.4.4 September 2019
- Our examples will use pySpark
- Good (current) documentation:
 - 1. Advanced Analytics with Spark, 2nd edition (2017).
 - 2. Project docs: <u>https://spark.apache.org/docs/latest/</u>

Resilient Distributed Datasets (RDDs)

- A data abstraction
 - Collection of partitions. Partitions are the distribution unit.
 - Operations on RDDs are (automatically) distributed.
- RDDs support two types of operations:
 - Transformations
 - Transform a dataset and return it
 - 2. Actions
 - Compute a result based on an RDD

• These operations can then be "chained" into complex execution flows

DataFrames

- An extra abstraction on top of RDDs
 - Encodes rows as a set of columns
 - Each column has a defined type
 - Useful for (pre-processed) machine learning datasets
- Same name as data.frame (R) or pandas.DataFrame
 - Similar type of abstraction but for distributed datasets
- Two types of operations (for our needs): transformers, estimators.

data = spark.read.format("libsvm").load("hdfs://...")

model = LogisticRegression(regParam=0.01).fit(data)

Spark's "Hello World"

DataFrame

data = spark.read.format("libsvm").load("hdfs://...")

model = LogisticRegression(regParam=0.01).fit(data)

Spark's "Hello World"

DataFrame

data = spark.read.format("libsvm").load("hdfs://...")

model = LogisticRegression(regParam=0.01).fit(data)

Estimator

Spark's "Hello World"

• Logistic Regression

$$\mathbf{y} = \frac{1}{1 + \exp(-\mathbf{w}_0 - \mathbf{w}_0)}$$

 $\mathbf{W_1X_1} - \mathbf{W_2X_2} - \ldots - \mathbf{W_pX_p})$

Logistic Regression

$$\mathbf{y} = \frac{\mathbf{u}}{\mathbf{1} + \exp(-\mathbf{w}_0 - \mathbf{w}_1\mathbf{x}_1 - \mathbf{w}_2\mathbf{x}_2 - \dots - \mathbf{w}_p\mathbf{x}_p)}$$

٦

No closed-form solution, can use gradients

 ∂ Los

$$\frac{\mathsf{ss}(\mathsf{Y},\mathsf{X},\mathsf{w})}{\partial \mathsf{w}_{\mathsf{i}}}$$

• Logistic Regression

$$\mathbf{y} = \frac{\mathbf{u}}{\mathbf{1} + \exp(-\mathbf{w}_0 - \mathbf{w}_1\mathbf{x}_1 - \mathbf{w}_2\mathbf{x}_2 - \dots - \mathbf{w}_p\mathbf{x}_p)}$$

٦

- No closed-form solution, can use gradients
 - ∂ Los
- Loss functions are often decomposable
 - $\partial \sum_{j} L_{j}$

$$\frac{\mathsf{ss}(\mathsf{Y},\mathsf{X},\mathsf{w})}{\partial \mathsf{w}_{\mathsf{i}}}$$

$$oss(Y_j, X_j, w)$$

 ∂W_i

Logistic Regression

$$\mathbf{y} = \frac{\mathbf{u}}{\mathbf{l} + \exp(-\mathbf{w}_0 - \mathbf{w}_1 \mathbf{x}_1 - \mathbf{w}_2 \mathbf{x}_2 - \dots - \mathbf{w}_p \mathbf{x}_p)}$$

٦

- No closed-form solution, can use gradients
 - ∂ Los
- Loss functions are often decomposable

$$\frac{\mathsf{ss}(\mathsf{Y},\mathsf{X},\mathsf{w})}{\partial \mathsf{W}_{\mathsf{i}}}$$

$$oss(Y_j, X_j, w)$$

 $\partial \mathbf{W};$

Load your data as an RDD

Machine Learning Library (MLlib) Guide

MLlib is Spark's machine learning (ML) library. Its goal is to make practical machine learning scalable and easy. At a high level, it provides tools such as:

- Featurization: feature extraction, transformation, dimensionality reduction, and selection
- Pipelines: tools for constructing, evaluating, and tuning ML Pipelines
- Persistence: saving and load algorithms, models, and Pipelines
- Utilities: linear algebra, statistics, data handling, etc.

Classification and Regression - RDD-based API

The spark.mllib package supports various methods for binary classification, multiclass classification, and regression analysis. The table below outlines the supported algorithms for each type of problem.

Problem Type	Supported Methods
Binary Classification	linear SVMs, logistic reg
Multiclass Classification	logistic regression, decis
Regression	linear least squares, Lass isotonic regression

ML setup

• ML Algorithms: common learning algorithms such as classification, regression, clustering, and collaborative filtering

ression, decision trees, random forests, gradient-boosted trees, naive Bayes

sion trees, random forests, naive Bayes

so, ridge regression, decision trees, random forests, gradient-boosted trees,

https://spark.apache.org/docs/latest/ml-guide.html

Takeaways

- Distributed computing is useful:
 - for large-scale data
 - for faster computing
- popular ML models + algorithms
 - into a number of identical smaller pieces
 - Still requires some engineering/coding

Current frameworks (e.g., spark) offer easy access to

Useful speedups by decomposing the computation