
Parallel computational paradigms for large-scale data processing

— Week #10

Machine Learning I
80-629A

Apprentissage Automatique I
80-629

Laurent Charlin — 80-629

Today

• Distributed computing for machine learning

• Background

• Short introduction to MapReduce/Hadoop & Spark

• Note: Most lectures so far used stats concepts. Today we’ll
turn to computer science.

2

Distributed Computation
for Machine Learning

Laurent Charlin — 80-629

Data & Computation

4

Laurent Charlin — 80-629

Data & Computation
• We generate massive quantities of data

4

Laurent Charlin — 80-629

Data & Computation
• We generate massive quantities of data

1. Google 4K searches/s, Twitter: 6K tweets/s, Amazon: 100s sold products/s

4

(source: internetlifestats.com)

http://internetlifestats.com

Laurent Charlin — 80-629

Data & Computation
• We generate massive quantities of data

1. Google 4K searches/s, Twitter: 6K tweets/s, Amazon: 100s sold products/s

2. Banks, insurance companies, etc.

4

(source: internetlifestats.com)

http://internetlifestats.com

Laurent Charlin — 80-629

Data & Computation
• We generate massive quantities of data

1. Google 4K searches/s, Twitter: 6K tweets/s, Amazon: 100s sold products/s

2. Banks, insurance companies, etc.

3. Modestly-sized websites

4

(source: internetlifestats.com)

http://internetlifestats.com

Laurent Charlin — 80-629

Data & Computation
• We generate massive quantities of data

1. Google 4K searches/s, Twitter: 6K tweets/s, Amazon: 100s sold products/s

2. Banks, insurance companies, etc.

3. Modestly-sized websites

• Both large n and large p

4

(source: internetlifestats.com)

n

p

X Y

http://internetlifestats.com

Laurent Charlin — 80-629

Data & Computation
• We generate massive quantities of data

1. Google 4K searches/s, Twitter: 6K tweets/s, Amazon: 100s sold products/s

2. Banks, insurance companies, etc.

3. Modestly-sized websites

• Both large n and large p

• In general computation will scale up with the data

4

(source: internetlifestats.com)

n

p

X Y

http://internetlifestats.com

Laurent Charlin — 80-629

Data & Computation
• We generate massive quantities of data

1. Google 4K searches/s, Twitter: 6K tweets/s, Amazon: 100s sold products/s

2. Banks, insurance companies, etc.

3. Modestly-sized websites

• Both large n and large p

• In general computation will scale up with the data

• Often fitting an ML models requires one or multiple operations that looks
at the whole dataset

4

(source: internetlifestats.com)

\ = (=�=)��=�>e.g., Linear regression

n

p

X Y

http://internetlifestats.com

Laurent Charlin — 80-629

Issues with massive
datasets

1. Storage

2. Computation

5

Moore’s Law

[https://en.wikipedia.org/wiki/Moore%27s_law]

https://en.wikipedia.org/wiki/Moore's_law

Laurent Charlin — 80-629

Modern Computation
paradigms

7

Laurent Charlin — 80-629

Modern Computation
paradigms

7

• Floating point operations per second (Flop)

• Smart phone ~ 0.6 TFlops

• 1 Tera: 1,000 Giga

Laurent Charlin — 80-629

Modern Computation
paradigms

1. “Single” computers

• Large Computers

• 513, 855 TFlops

7

• Floating point operations per second (Flop)

• Smart phone ~ 0.6 TFlops

• 1 Tera: 1,000 Giga

https://www.top500.org/lists/top500/list/2020/06/

Photo from Riken

Laurent Charlin — 80-629

Modern Computation
paradigms

1. “Single” computers

• Large Computers

• 513, 855 TFlops

7

2. Distributed computation

• ~200, 000 TFlops
(Folding@home)

• Floating point operations per second (Flop)

• Smart phone ~ 0.6 TFlops

• 1 Tera: 1,000 Giga

https://www.top500.org/lists/top500/list/2020/06/

Photo from Riken

Laurent Charlin — 80-629

Modern Computation
paradigms

1. “Single” computers

• Large Computers

• 513, 855 TFlops

7

3. Specialized hardware

• Focusses on subset of
operations

• Graphical Processing
Unit (GPU), Field
Programmable Gated
Array (FPGA)

• ~10 TFlops

2. Distributed computation

• ~200, 000 TFlops
(Folding@home)

• Floating point operations per second (Flop)

• Smart phone ~ 0.6 TFlops

• 1 Tera: 1,000 Giga

https://www.top500.org/lists/top500/list/2020/06/

Photo from Riken

Laurent Charlin — 80-629

Modern Computation
paradigms

1. “Single” computers

• Large Computers

• 513, 855 TFlops

7

3. Specialized hardware

• Focusses on subset of
operations

• Graphical Processing
Unit (GPU), Field
Programmable Gated
Array (FPGA)

• ~10 TFlops

2. Distributed computation

• ~200, 000 TFlops
(Folding@home)

• Floating point operations per second (Flop)

• Smart phone ~ 0.6 TFlops

• 1 Tera: 1,000 Giga

https://www.top500.org/lists/top500/list/2020/06/

Photo from Riken

Laurent Charlin — 80-629

Distributed Computing

8

Laurent Charlin — 80-629

Distributed Computing

• Faster computers can help

8

Laurent Charlin — 80-629

Distributed Computing

• Faster computers can help

• What about a large of “slow” computers working together?

• Divide the computation into small problems

1. All (slow) computers solve a small problem at the
same time

2. Combine the solution of small problems into initial
solution

8

Laurent Charlin — 80-629

Distributed Computing

• Faster computers can help

• What about a large of “slow” computers working together?

• Divide the computation into small problems

1. All (slow) computers solve a small problem at the
same time

2. Combine the solution of small problems into initial
solution

8

Laurent Charlin — 80-629

Building our intuition
with a simple example

• You are tasked with counting the number of houses in Montreal

1. Centralized (single computer):

• Ask a marathon runner to jog around the city and count

• Build a system to count houses from satellite imagery

9

Laurent Charlin — 80-629

Building our intuition
with a simple example

• You are tasked with counting the number of houses in Montreal

1. Centralized (single computer):

• Ask a marathon runner to jog around the city and count

• Build a system to count houses from satellite imagery

2. Distributed (many computers):

• Ask 1,000 people to each count houses from a small
geographical area

• Once they are done they report their result at your HQ

9

Laurent Charlin — 80-629

Tool for distributed computing
(for machine learning)

• Apache Spark (https://spark.apache.org/)

• Builds on MapReduce ideas

• More flexible computation graphs

• High-level APIs

• MLlib

10

https://spark.apache.org/

Distributed Computing
using MapReduce

Laurent Charlin — 80-629

MapReduce

• From Google engineers

“MapReduce: Simplified Data Processing on Large Clusters”,
Jeffrey Dean and Sanjay Ghemawat, 2004

• Now also known as (Apache) Hadoop

• Google built large-scale computation from commodity hardware

• Specific distributed interface

• Useful for algorithms that can be expressed using this interface

12

Laurent Charlin — 80-629

MapReduce
• Two types of tasks:

A. Map: Solve a subproblem (filtering operation)

B. Reduce: Combine the results of map workers (summary operation)

13

Map

Reduce

Initial
Problem Solution

.

.

.

.

.

.

.

.

.

Laurent Charlin — 80-629

A. Map

B. Reduce

TASK: Create a document’s
bag-of-word representation

.

.

.

.

.

.

.

.

.

The black dog
A black cat

The blue cat
.
.
.

Laurent Charlin — 80-629

A. Map

B. Reduce

TASK: Create a document’s
bag-of-word representation

.

.

.

.

.

.

.

.

.

The black dog
A black cat

The blue cat
.
.
.

The black dog

The blue cat

A black cat

Laurent Charlin — 80-629

A. Map

B. Reduce

TASK: Create a document’s
bag-of-word representation

.

.

.

.

.

.

.

.

.

The black dog
A black cat

The blue cat
.
.
.

The black dog

The blue cat

A black cat

The, 1
 black, 1
dog, 1

A, 1
black, 1

cat, 1

The, 1
 blue, 1
 cat, 1

Laurent Charlin — 80-629

A. Map

B. Reduce

TASK: Create a document’s
bag-of-word representation

.

.

.

.

.

.

.

.

.

The black dog
A black cat

The blue cat
.
.
.

The black dog

The blue cat

A black cat

The, 1
 black, 1
dog, 1

A, 1
black, 1

cat, 1

The, 1
 blue, 1
 cat, 1

Partition
by key

The, 1
The, 1

 black, 1
black, 1
dog, 1
cat, 1
cat, 1

Laurent Charlin — 80-629

A. Map

B. Reduce

TASK: Create a document’s
bag-of-word representation

.

.

.

.

.

.

.

.

.

The black dog
A black cat

The blue cat
.
.
.

The black dog

The blue cat

A black cat

The, 1
 black, 1
dog, 1

A, 1
black, 1

cat, 1

The, 1
 blue, 1
 cat, 1

Partition
by key

The, 1
The, 1

 black, 1
black, 1
dog, 1
cat, 1
cat, 1

The, 2
black, 2
dog, 1
cat, 2

.

.

.

Laurent Charlin — 80-629

Some details
• Typically the number of subproblems is higher than

the number of available machines

• ~linear speed-up wrt to the number of machines

• If a node crashes, need to recompute its subproblem

• Input/Output

• Data is read from disk when beginning

• Data is written to disk at the end

15

Laurent Charlin — 80-629

MapReduce is quite
versatile

• When I was at Google the saying was (roughly):

“If your problem cannot be framed as MapReduce you
haven’t thought hard enough about your problem.”

• A few examples of “map-reduceable” problems:

• Intuition: Your problem needs to be decomposable into
map functions and reduce functions

• Sorting, filtering, distinct values, basic statistics

• Finding common friends, sql-like queries, sentiment
analysis

16

Laurent Charlin — 80-629

MapReduce for machine
learning

1. Training linear regression

• Reminder: there is a closed-form solution

17

\ = (=�=)��=�>

Laurent Charlin — 80-629

MapReduce for machine
learning

1. Training linear regression

• Reminder: there is a closed-form solution

17

\ = (=�=)��=�>

\ = (
�

NO

=�
N =O)

��(
�

N

=�
N >N)

Laurent Charlin — 80-629

MapReduce for machine
learning

1. Training linear regression

• Reminder: there is a closed-form solution

17

\ = (=�=)��=�>

\ = (
�

NO

=�
N =O)

��(
�

N

=�
N >N)

•Each term in the sums can be
 computer independently

Laurent Charlin — 80-629

MapReduce for machine
learning

1. Training linear regression

• Reminder: there is a closed-form solution

17

\ = (=�=)��=�>

\ = (
�

NO

=�
N =O)

��(
�

N

=�
N >N)

•Each term in the sums can be
 computer independently

A. Map

=�
� =�

Laurent Charlin — 80-629

MapReduce for machine
learning

1. Training linear regression

• Reminder: there is a closed-form solution

2. Other models we studied have a closed form solution (e.g., Naive Bayes and LDA)

17

\ = (=�=)��=�>

\ = (
�

NO

=�
N =O)

��(
�

N

=�
N >N)

•Each term in the sums can be
 computer independently

A. Map

=�
� =�

Laurent Charlin — 80-629

MapReduce for machine
learning

1. Training linear regression

• Reminder: there is a closed-form solution

2. Other models we studied have a closed form solution (e.g., Naive Bayes and LDA)

3. Hyper-parameter search

• A neural network with 2 hidden layers and 5 hidden units per layer and another
with 3 hidden layers and 10 hidden units

17

\ = (=�=)��=�>

\ = (
�

NO

=�
N =O)

��(
�

N

=�
N >N)

•Each term in the sums can be
 computer independently

A. Map

=�
� =�

Laurent Charlin — 80-629

Shortcomings of
MapReduce

• Many models are fitted with iterative algorithms

• Gradient descent:

1. Find the gradient for the current set parameters

2. Update the parameters with the gradient

• Not ideal for MapReduce

• Would require several iterations of MapReduce

• Each time the data is read/written from/to the disk

18

Distributed
computing using

Apache Spark

Laurent Charlin — 80-629

(Apache) Spark
• Advantages over MapReduce

1. Less restrictive computations graph
(DAG instead of Map then Reduce)

• Doesn’t have to write to disk in-between operations

2. Richer set of transformations

• map, filter, cartesian, union, intersection, distinct,
etc.

3. In-memory processing

20

Initial
Problem

Solution

Laurent Charlin — 80-629

Spark History
• Started in Berkeley’s AMPLab (2009)

• Version 1.0 2014

• Based on Resilient Distributed Datasets (RDDs)

• Version 2.0 June 2016

• Version 2.3 February 2018, Version 2.4.4 September 2019

• Our examples will use pySpark

• Good (current) documentation:

1. Advanced Analytics with Spark, 2nd edition (2017).

2. Project docs: https://spark.apache.org/docs/latest/

21

https://spark.apache.org/docs/latest/

Laurent Charlin — 80-629

Resilient Distributed
Datasets (RDDs)

• A data abstraction

• Collection of partitions. Partitions are the distribution unit.

• Operations on RDDs are (automatically) distributed.

• RDDs support two types of operations:

1. Transformations

• Transform a dataset and return it

2. Actions

• Compute a result based on an RDD

• These operations can then be “chained” into complex execution flows

22

Laurent Charlin — 80-629

DataFrames

• An extra abstraction on top of RDDs

• Encodes rows as a set of columns

• Each column has a defined type

• Useful for (pre-processed) machine learning datasets

• Same name as data.frame (R) or pandas.DataFrame

• Similar type of abstraction but for distributed datasets

• Two types of operations (for our needs): transformers,
estimators.

23

Spark’s “Hello World”

data = spark.read.format("libsvm").load("hdfs://...")

model = LogisticRegression(regParam=0.01).fit(data)

Spark’s “Hello World”

data = spark.read.format("libsvm").load("hdfs://...")

model = LogisticRegression(regParam=0.01).fit(data)

DataFrame

Spark’s “Hello World”

data = spark.read.format("libsvm").load("hdfs://...")

model = LogisticRegression(regParam=0.01).fit(data)

DataFrame

Estimator

Laurent Charlin — 80-629

Parallel gradient descent

• Logistic Regression

25

^ =
�

�+ exp(�\� �\�]� �\�]� � . . . �\U]U)

Laurent Charlin — 80-629

Parallel gradient descent

• Logistic Regression

• No closed-form solution, can use gradients

25

^ =
�

�+ exp(�\� �\�]� �\�]� � . . . �\U]U)

∂ 1TXX(>,=,\)

∂\N

Laurent Charlin — 80-629

Parallel gradient descent

• Logistic Regression

• No closed-form solution, can use gradients

• Loss functions are often decomposable

25

^ =
�

�+ exp(�\� �\�]� �\�]� � . . . �\U]U)

∂
∑

O 1TXX(>O,=O,\)

∂\N

∂ 1TXX(>,=,\)

∂\N

Laurent Charlin — 80-629

Parallel gradient descent

• Logistic Regression

• No closed-form solution, can use gradients

• Loss functions are often decomposable

25

^ =
�

�+ exp(�\� �\�]� �\�]� � . . . �\U]U)

∂
∑

O 1TXX(>O,=O,\)

∂\N

∂ 1TXX(>,=,\)

∂\N

.

.

.

.

.

.

.

.

.

∂ 1TXX(>�,=�,\)

∂\N

∂ 1TXX(>S,=S,\)

∂\N

∂ 1TXX(>�,=�,\)

∂\N

∂ 1TXX(>�,=�,\)

∂\N

ML setup

https://spark.apache.org/docs/latest/ml-guide.html

Load your data as an RDD

1. 2.

https://spark.apache.org/docs/latest/ml-guide.html

Laurent Charlin — 80-629

Takeaways
• Distributed computing is useful:

• for large-scale data

• for faster computing

• Current frameworks (e.g., spark) offer easy access to
popular ML models + algorithms

• Useful speedups by decomposing the computation
into a number of identical smaller pieces

• Still requires some engineering/coding

27

