
To appearin: Proc.7th Int. Conf. on ComputerVision,Corfu,Greece,September22-25,1999

A Theory of Shapeby SpaceCarving

KiriakosN. Kutulakos
�

Depts.of ComputerScience& Dermatology
Universityof Rochester

Rochester, NY 14627USA

StevenM. Seitz
�

TheRoboticsInstitute
CarnegieMellon University
Pittsburgh,PA 15213USA

Abstract
In this paper we consider the problem of computing

the 3D shapeof an unknown, arbitrarily-shapedscene
from multiplephotographstaken at knownbut arbitrarily-
distributedviewpoints. By studyingthe equivalenceclass
of all 3D shapesthat reproducethe input photographs,we
prove the existenceof a specialmemberof this class,the
photo hull, that (1) can be computeddirectly from pho-
tographsof thescene, and(2) subsumesall othermembers
of this class. We thengive a provably-correct algorithm,
calledSpaceCarving, for computingthisshapeandpresent
experimentalresultsoncomplex real-worldscenes.Theap-
proach is designedto (1) build photorealistic shapesthat
accurately modelsceneappearancefrom a wide range of
viewpoints,and (2) accountfor the complex interactions
betweenocclusion,parallax, shading, and their effectson
arbitrary viewsof a 3D scene.

1. Intr oduction

A fundamentalproblem in computervision is recon-
structingthe shapeof a complex 3D scenefrom multiple
photographs. While current techniqueswork well under
controlledconditions(e.g., small stereobaselines[1], ac-
tiveviewpointcontrol[2], spatialandtemporalsmoothness
[3], or scenescontaininglinearfeaturesor texture-lesssur-
faces[4–6]), very little is known aboutscenereconstruc-
tion undergeneralconditions.In particular, in theabsence
of a priori geometricinformation,whatcanwe infer about
thestructureof anunknown scenefrom � arbitrarilyposi-
tionedcamerasatknown viewpoints?Answeringthisques-
tion hasmany implicationsfor reconstructingreal objects
and environments,which tend to be non-smooth,exhibit
significantocclusions,andmay containboth texturedand
texture-lesssurfaceregions(Figure1).

In this paper, we develop a theory for reconstructing
�
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arbitrarily-shapedscenesfrom arbitrarily-positionedcam-
erasby formulatingshaperecoveryasa constraintsatisfac-
tion problem. We show that any set of photographsof a
rigid scenedefinesa collectionof picture constraints that
aresatisfiedby everysceneprojectingto thosephotographs.
Furthermore,we characterizethe setof all 3D shapesthat
satisfy theseconstraintsand usethe underlyingtheory to
designa practical reconstructionalgorithm, called Space
Carving, that appliesto fully-generalshapesand camera
configurations.In particular, weaddressthreequestions:

� Given � input photographs,canwe characterizethe
setof all photo-consistentshapes, i.e., shapesthat re-
producetheinputphotographs?� Is it possibleto computea shapefrom this setandif
so,whatis thealgorithm?� What is the relationshipof the computedshapeto all
otherphoto-consistentshapes?

Ourgoalis to studythe � -view shaperecoveryproblem
in the generalcasewhereno constraints areplacedupon
thescene’s shapeor abouttheviewpointsof theinput pho-
tographs.In particular, we addresstheabove questionsfor
thecasewhen(1) no constraintsareimposedon scenege-
ometryor topology, (2) no constraintsareimposedon the
positionsof the input cameras,(3) no informationis avail-
able aboutthe existenceof specificimagefeaturesin the
input photographs(e.g.,edges,points,lines,contours,tex-
ture,or color),and(4) noa priori correspondenceinforma-
tion is available. Unfortunately, even thoughseveralalgo-
rithmshave beenproposedfor recoveringshapefrom mul-
tiple views thatwork undersomeof theseconditions(e.g.,
work on stereo[7–9]), very little is currentlyknown about
how to answertheabove questions,andevenlesssoabout
how to answerthemin thisgeneralcase.

At the heartof our work is the observation that these
questionsbecometractablewhensceneradiancebelongsto
a generalclassof radiancefunctionswe call locally com-
putable. Thisclasscharacterizesscenesfor whichglobalil-
luminationeffectssuchasshadows,transparency andinter-
reflectionscan be ignored, and is sufficiently generalto
include sceneswith parameterizedradiancemodels(e.g.,
Lambertian,Phong,Torrance-Sparrow [10]). Using this
observationasa startingpoint, we show how to compute,



from � photographsof anunknownscene,amaximalshape
called the photo hull that enclosesthe set of all photo-
consistentreconstructions.Theonly requirementsarethat
(1) the viewpoint of eachphotographis known in a com-
mon 3D world referenceframe(Euclidean,affine, or pro-
jective, and (2) sceneradiancefollows a known, locally-
computableradiancefunction. Experimentalresultsillus-
tratingourmethod’sperformancearegivenfor bothrealand
simulatedgeometrically-complex scenes.

To our knowledge, no previous theoreticalwork has
studiedtheequivalenceclassof solutionsto thegeneral� -
view reconstructionproblemor provably-correctalgorithms
for computingthem.1 The SpaceCarvingAlgorithm that
resultsfrom our analysis,however, is relatedto other3D
scene-spacestereoalgorithmsthathave beenrecentlypro-
posed[14–21]. Of these,most closely relatedare mesh-
based[14] andlevel-set[22] algorithms,aswell asmeth-
ods that sweepa planeor other manifold througha dis-
cretizedscenespace[15–17,20,23]. While thealgorithms
in [14,22] generatehigh-quality reconstructionsand per-
formwell in thepresenceof occlusions,theiruseof regular-
ization techniquespenalizescomplex surfacesandshapes.
Even more importantly, no formal study hasbeenunder-
taken to establishtheir validity for recovering arbitrarily-
shapedscenesfrom unconstrainedcameraconfigurations
(e.g.,the oneshown in Figure1a). In contrast,our Space
CarvingAlgorithm is provably correctandhasno regular-
izationbiases.Even thoughspace-sweepapproacheshave
many attractive properties,existing algorithms[15–17,20]
arenot fully generali.e., they rely on thepresenceof spe-
cific imagefeaturessuchasedgesandhencegenerateonly
sparsereconstructions[15], or they placestrongconstraints
ontheinputviewpointsrelativeto thescene[16,17]. Unlike
all previous methods,SpaceCarvingguaranteescomplete
reconstructionin thegeneralcase.

Ourapproachoffersfour maincontributionsovertheex-
isting stateof the art. First, it introducesan algorithm-
independentanalysisof the � view shape-recovery prob-
lem, makingexplicit the assumptionsrequiredfor solving
it aswell astheambiguitiesintrinsic to theproblem. Sec-
ond,it establishesthe tightestpossibleboundon theshape
of thetruesceneobtainablefrom � photographswithout a
priori geometricinformation. Third, it describesthe first
provably-correctalgorithm for scenereconstructionfrom
unconstrainedcameraviewpoints. Fourth, the approach
leadsnaturallyto global reconstructionalgorithmsthat re-
cover 3D shapeinformationfrom all photographsat once,
eliminatingtheneedfor complex partialreconstructionand
mergingoperations[19,24].

1Faugeras[11] hasrecentlyproposedthe term metamericto describe
suchshapes,in analogywith the term’s usein the color perception[12]
andstructure-from-motionliterature[13].

(a) (b)

Figure 1. Viewing geometry. Thescenevolumeandcam-
eradistributioncoveredby ouranalysisarebothcompletely
unconstrained. Examplesinclude (a) a 3D environment
viewedfrom acollectionof camerasthatarearbitrarilydis-
persedin freespace,and(b) a3D objectviewedby asingle
cameramoving aroundit.

2. Picture Constraints

Let � bea3D scenedefinedby afinite,opaque,andpos-
sibly disconnectedvolumein space.We assumethat � is
viewed underperspective projectionfrom � known posi-
tions �
	����������� in ������� (Figure1b). The radianceof
a point � on the scene’s surfaceis a function rad������� that
mapsevery orientedray � throughthe point to the color
of light reflectedfrom � along � . We usethe term shape-
radiancescenedescriptionto denotethe scene� together
with an assignmentof a radiancefunction to every point
on its surface.Thisdescriptioncontainsall theinformation
neededto reproduceaphotographof thescenefor any cam-
eraposition.

Everyphotographof a 3D scenetakenfrom a known lo-
cationpartitionsthesetof all possibleshape-radiancescene
descriptionsinto two families,thosethatreproducethepho-
tographand thosethat do not. We characterizethis con-
straint for a given shapeanda given radianceassignment
by thenotionof photo-consistency:2

Definition 1 (Point Photo-Consistency)A point  in ! that is
visible from " is photo-consistentwith the photographat " if (1) doesnot project to a backgroundpixel, and(2) thecolor at  ’s
projectionis equalto rad#%$'& ("*) .
Definition 2 (Shape-RadiancePhoto-Consistency)A shape-
radiancescenedescriptionis photo-consistentwith the photo-
graphat " if all points visible from " are photo-consistentand
everynon-backgroundpixel is theprojectionof a point in ! .

Definition 3 (ShapePhoto-Consistency)A shape ! is photo-
consistentwith a setof photographsif there is an assignmentof
radiancefunctionsto the visible points of ! that makes the re-
sultingshape-radiancedescriptionphoto-consistentwith all pho-
tographs.

2In thefollowing,wemakethesimplifyingassumptionthatpixel values
in theimagemeasuresceneradiancedirectly.



Our goal is to providea concretecharacterizationof the
family of all scenesthatarephoto-consistentwith + input
photographs.We achieve this by makingexplicit the two
waysin which photo-consistency with + photographscan
constrainascene’sshape.

2.1. Background Constraints

Photo-consistency requiresthat no point of , projects
to a backgroundpixel. If a photographtakenat position -
containsidentifiablebackgroundpixels, this constraintre-
stricts , to a conedefinedby - andthephotograph’s non-
backgroundpixels.Given + suchphotographs,thesceneis
restrictedto thevisualhull, whichis thevolumeof intersec-
tion of their correspondingcones[5].

When no a priori information is available about the
scene’s radiance,the visual hull definesall the shapecon-
straintsin the input photographs.This is becausethereis
alwaysanassignmentof radiancefunctionsto thepointson
thesurfaceof thevisualhull thatmakestheresultingshape-
radiancedescriptionphoto-consistentwith the + inputpho-
tographs.3 Thevisualhull canthereforebethoughtof asa
“least commitmentreconstruction”of the scene—any fur-
ther refinementof this volume must rely on assumptions
aboutthescene’sshapeor radiance.

While visualhull reconstructionhasoftenbeenusedasa
methodfor recovering3D shapefrom photographs[25,26],
thepictureconstraintscapturedby thevisualhull only ex-
ploit informationfrom thebackgroundpixels in thesepho-
tographs.Unfortunately, theseconstraintsbecomeuseless
whenphotographscontainno backgroundpixels (i.e., the
visualhull degeneratesto .�/ ) or whenbackgroundidenti-
fication cannotbe performedaccurately. Below we study
picture constraintsfrom non-backgroundpixels when the
scene’s radianceis restrictedto a specialclassof radiance
models. The resultingconstraintsleadto photo-consistent
scenereconstructionsthataresubsetsof thevisualhull, and
unlike thevisualhull, cancontainconcavities.

2.2. RadianceConstraints

Surfacesthat are not transparentor mirror-like reflect
light in a coherentmanner, i.e., thecolor of light reflected
fromasinglepointalongdifferentdirectionsisnotarbitrary.
This coherenceprovidesadditionalpictureconstraintsbe-
yond what canbe obtainedfrom backgroundinformation.
In orderto takeadvantageof theseconstraints,we focuson
sceneswhoseradiancesatisfiesthefollowing criterion:

Consistency Check Criterion: An algorithm
consist 02143 is available that takes as input at least57698

colors :�;
<�=*>@?@?@?@>A:�;
<B0 ,
5

vectorsC�=*>@?@?@?@>DC�0 ,
andthe light sourcepositions(non-Lambertiancase),
anddecideswhetherit is possiblefor a singlesurface

3For example,setradE�F%GHJILK equalto thecolorat H ’sprojection.

Figure 2. (a) Illustrationof theVisibility andNon-Photo-
Consistency Lemmas.If M is non-photo-consistentwith the
photographsat :�=*>A:*N�>A:@O , it is non-photo-consistentwith the
entiresetVisP%QR1 MS3 , whichalsoincludes:@T .

point to reflect light of color :�;
< U in direction C�U
simultaneouslyfor all VXWZY
>@?*?@?@> 5 .

Givena shape, , theConsistency CheckCriteriongives
us a way to establishthe photo-consistency of every point
on , ’ssurface.Thiscriteriondefinesageneralclassof radi-
ancemodels,thatwecall locally computable, thatarechar-
acterizedby a locality property:theradianceatany point is
independentof theradianceof all otherpointsin thescene.
Theclassof locally-computableradiancemodelstherefore
restrictsouranalysistosceneswhereglobalilluminationef-
fectssuchastransparency, inter-reflection,andshadowscan
be ignored. This classsubsumesthe Lambertian( []\_^ )
andotherparameterizedradiancemodels.4

Givenana priori locally computableradiancemodelfor
thescene,wecandeterminewhetheror notagivenshape,
is photo-consistentwith a collectionof photographs.Even
moreimportantly, whenthescene’sradianceis describedby
sucha model,thenon-photo-consistency of a shape, tells
usagreatdealabouttheshapeof theunderlyingscene.We
usethe following two lemmasto make explicit the struc-
ture of the family of photo-consistentshapes.Theselem-
masprovide the analytical tools neededto describehow
the non-photo-consistency of a shape, affectsthe photo-
consistency of its subsets(Figure2):

Lemma 1 (Visibility Lemma) Let M be a point on ` ’s surface,
Surf1a`b3 , andlet VisP 1 MS3 bethecollectionof inputphotographsin
which ` doesnot occludeM . If `dcfeg` is a shapethat alsohas M
on its surface, VisP 1 MS3dh VisP%QR1 MS3 .
Proof: Since `dc is asubsetof ` , no pointof `dc canlie betweenM
andthecamerascorrespondingto VisP 1 MS3 . QED

Lemma 2 (Non-Photo-ConsistencyLemma) If M9i Surf1a`b3 is
not photo-consistentwith a subsetof VisP 1 MS3 , it is not photo-
consistentwith VisP 1 MS3 .

4Specificexamplesinclude(1) usinga mobilecameramountedwith a
light sourceto capturephotographsof ascenewhosereflectancecanbeex-
pressedin closedform (e.g.,usingtheTorrance-Sparrow model[10,27]),
and(2) usingmultiplecamerasto capturephotographsof anapproximately
Lambertiansceneunderarbitraryunknown illumination(Figure1).



Figure 3. Trivial shapesolutionsin theabsenceof free-
spaceconstraints.A two-dimensionalobjectconsistingof
a blacksquarewhosesidesarepaintedfour distinctdiffuse
colors(red,blue,orange,andgreen),is viewedby fourcam-
eras. Carvingout a small circle aroundeachcameraand
projectingtheimageontotheinteriorof thatcircleyieldsa
trivial photo-consistentshape.

Intuitively, Lemmas1 and2 suggestthatbothvisibility
andnon-photo-consistency exhibit a form of “monotonic-
ity:” theVisibility Lemmatellsusthatthecollectionof pho-
tographsfrom which a surfacepoint jlk Surfm4n�o is visible
strictly expandsas n getssmaller(Figure2). Analogously,
the Non-Photo-Consistency Lemma, which follows as a
direct consequenceof the definition of photo-consistency,
tells us that eachnew photographcanbe thoughtof asan
additionalconstrainton the photo-consistency of surface
points—themorephotographsareavailable,themorediffi-
cult it is for thosepointsto achievephoto-consistency. Fur-
thermore,oncea surfacepoint fails to bephoto-consistent
no new photographof that point can re-establishphoto-
consistency.

Thekey consequenceof Lemmas1 and2 is givenby the
following theoremwhichshowsthatnon-photo-consistency
atapointrulesoutthephoto-consistency of anentirefamily
of shapes:

Theorem1 (SubsetTheorem) If prq Surfsatbu is not photo-
consistent,nophoto-consistentsubsetof t containsp .

Proof: Let tdv2wxt be a shapethat containsp . Since p lies on
the surfaceof t , it mustalsolie on the surfaceof tdv . From the
Visibility Lemmait followsthatVisyfs pSudz Visy%{ s pSu . Thetheorem
now follows by applying the Non-Photo-Consistency Lemmato
tdv andusingthelocality propertyof locally computableradiance
models.QED

We explore the ramificationsof the SubsetTheoremin
thenext section.

3. The PhotoHull

The family of all shapesthat arephoto-consistentwith|
photographsdefinestheambiguityinherentin theprob-

lemof recovering3D shapefrom thosephotographs.When

thereis morethanonephoto-consistentshapeit is impos-
sible to decide,basedon thosephotographsalone,which
photo-consistentshapecorrespondsto thetruescene.This
ambiguityraisestwo importantquestionsregardingthefea-
sibility of scenereconstructionfrom photographs:

} Is it possible to compute a shape that is photo-
consistentwith

|
photographsand,if so,what is the

algorithm?
} If a photo-consistentshapecanbecomputed,how can

we relatethat shapeto all otherphoto-consistent3D
interpretationsof thescene?

Beforeproviding ageneralanswerto thesequestionswe
observethatwhenthenumberof inputphotographsis finite,
thefirst questioncanbeansweredwith a trivial shape(Fig-
ure 3). In general,trivial shapesolutionssuchasthis one
canonly beeliminatedwith theincorporationof freespace
constraints,i.e.,regionsof spacethatareknown not to con-
tainscenepoints.Ouranalysisenablesthe(optional)inclu-
sionof suchconstraintsby specifyinganarbitraryshapen
within whicha photo-consistentsceneis known to lie.5

In particular, our answersto both questionsreston the
following theorem. Theorem2 shows that for any shape
n thereis a uniquephoto-consistentshapethat subsumes,
i.e., containswithin its volume,all otherphoto-consistent
shapesin n (Figure4):

Theorem2 (PhotoHull Theorem) Let t be an arbitrary setof
pointsandlet t�~ betheunionof all photo-consistentsubsetsof t .
Theshapet ~ is photo-consistentandis calledthephotohull.6

Proof: (By contradiction)Supposet�~ is not photo-consistentand
let p beanon-photo-consistentpointon its surface.Sincep�q�t ~ ,
thereexists a photo-consistentshape,tdv�w�t ~ , that alsohas p
on its surface. It follows from theSubsetTheoremthat t v is not
photo-consistent.QED

Theorem2 provides an explicit relation betweenthe
photohull andall otherpossible3D interpretationsof the
scene:thetheoremguaranteesthateverysuchinterpretation
is a subsetof thephotohull. Thephotohull thereforerep-
resentsa least-commitmentreconstructionof thescene.We
describeavolumetricalgorithmfor computingthisshapein
thenext section.

4. Reconstructionby SpaceCarving

An importantfeatureof the photohull is that it canbe
computedusinga simple,discretealgorithmthat “carves”
spacein a well-definedmanner. Given an initial volume

5Note that if ���g�f� , theproblemreducesto thecasewhenno con-
straintson freespaceareavailable.

6Our use of the term �J�J����������� � to denotethe “maximal” photo-
consistentshapedefinedby a collectionof photographsis due to a sug-
gestionby LeonardMcMillan.



Figure 4. Illustration of the PhotoHull Theorem. The
gray-shadedregion correspondsto an arbitrary shape �
containingthe object of Figure 3. ��� is a polygonalre-
gion thatextendsbeyond thetruesceneandwhosebound-
ary is definedby the polygonalsegments �d�A���D� , and � .
When thesesegmentsarecoloredasshown, ��� ’s projec-
tionsareindistinguishablefrom thatof the trueobjectand
no photo-consistentshapein the gray-shadedregion can
containpointsoutside� � .

�
that containsthe scene,the algorithmproceedsby iter-

atively removing (i.e. “carving”) portionsof that volume
until it convergesto thephotohull,

���
. Thealgorithmcan

thereforebe fully specifiedby answeringfour questions:
(1) how do we selectthe initial volume

�
, (2) how should

we representthat volumeto facilitatecarving,(3) how do
we carve at eachiterationto guaranteeconvergenceto the
photohull, and(4) whendoweterminatecarving?

Thechoiceof the initial volumehasa considerableim-
pacton the outcomeof the reconstructionprocess(Figure
3). Nevertheless,selectionof this volume is beyond the
scopeof this paper;it will dependon thespecific3D shape
recovery applicationandon informationaboutthemanner
in which theinput photographswereacquired.7 Below we
considerageneralalgorithmthat,given � photographsand
any initial volumethatcontainsthescene,is guaranteedto
find the(unique)photohull containedin thatvolume.

In particular, let
�

be an arbitrary finite volume that
containsthe sceneasan unknown sub-volume. Also, as-
sumethat the surfaceof the true sceneconformsto a ra-
diancemodel definedby a consistency check algorithm
consist ����� . Werepresent

�
asafinite collectionof vox-

els �% �¡�¢�¢�¢�¡L��£ . Using this representation,eachcarvingit-
erationremovesa singlevoxel from

�
.

The SubsetTheoremleadsdirectly to a methodfor se-
lecting a voxel to carve away from

�
at eachiteration.

Specifically, thetheoremtellsusthatif avoxel � onthesur-
faceof

�
is notphoto-consistent,thevolume

�Z¤¥�9¦¨§ ��©
must still contain the photo hull. Hence, if only non-
photo-consistentvoxels are removed at eachiteration, the
carvedvolumeis guaranteedto convergeto thephotohull.

7Examplesincludedefining ª to be equalto the visualhull or, in the
caseof acameramoving throughanenvironment, «f¬ minusa tubealong
thecamera’s path.

Theorderin which non-photo-consistentvoxelsareexam-
inedandremovedis not importantfor guaranteeingcorrect-
ness.Convergenceto thisshapeoccurswhennonon-photo-
consistentvoxel canbe foundon thesurfaceof thecarved
volume. Theseconsiderationsleadto the following algo-
rithm for computingthephotohull:8

SpaceCarving Algorithm

Step1: Initialize � to avolumecontainingthetruescene.

Step2: Repeatthefollowing stepsfor voxels ¯® Surf°a�b± until a
non-photo-consistentvoxel is found:

a. Project  to all photographs in Vis²f°a�± . Let³�´
µ�¶ �*·@·@·@� ³�´
µ ¸ be thepixel colorsto which  projects
andlet ¹ ¶ �@·@·@·@�D¹ ¸ be the optical raysconnecting to
thecorrespondingopticalcenters.

b. Determine the photo-consistency of  using
consist º2° ³�´
µ4¶ �@·@·@·*� ³�´
µ ¸ �D¹ ¶ �@·*·@·@�D¹ ¸ ± .

Step3: If no non-photo-consistentvoxel is found, set ���¼»½�
andterminate.Otherwise,set ��»g�¿¾ÁÀ*%Â andrepeatStep
2.

The key step in the algorithm is the searchand voxel
consistency checkingof Step2. The following proposi-
tion givesan upperboundon the numberof voxel photo-
consistency checks:9

Proposition1 The total numberof required photo-consistency
checks is boundedby Ã_ÄÆÅ where Ã is the numberof input
photographsand Å is thenumberof voxelsin theinitial (i.e., un-
carved)volume.

To performvisibility computationsefficiently, we usea
multi-sweepimplementationof spacecarving.In whatfol-
lows, we briefly summarizethe technique,but full details
of theapproachareomitteddueto spacelimitations. Each
passconsistsof sweepingaplanethroughthescenevolume
andtestingthe photo-consistency of voxels on that plane.
Theadvantageof this methodis thatvoxelsarealwaysvis-
itedin anorderthatcapturesall occlusionrelationsbetween
theentiresetof voxelsandanappropriately-chosensubsetÇ

of the cameras:eachsweepguaranteesthat if a voxel È
occludesanothervoxel É when viewed from a camerainÇ

, È will necessarilybe visited before É . This is achieved
by choosing

Ç
to be the setof all camerasthat lie on one

sideof the sweepplane. Sinceeachplanesweepconsid-
ersonly a subsetof the camerasfrom which a voxel may
be visible, multiple sweepsare neededto ensurephoto-
consistency of voxels with all input views. Our imple-
mentationcycles throughsix directionsin eachpass,i.e.,
in increasing/decreasingÊ , Ë , and Ì directions,andapplies
repeatedpassesuntil the carvingprocedureconverges. In
practice,this typically occursafter2 or 3 passes.

8Convergenceto thisshapeis provablyguaranteedonly for scenesrep-
resentableby adiscretesetof voxels.

9Proofis omitteddueto lackof space.



5. Experimental Results

To demonstratetheapplicabilityof ourapproach,weper-
formedseveralexperimentson realandsyntheticimagese-
quences.In all examples,aLambertianmodelwasusedfor
theConsistency CheckCriterion,i.e., it wasassumedthata
voxel projectsto pixelsof approximatelythesamecolor in
every image.Weuseda thresholdon thestandarddeviation
of thesepixelsto decidewhetheror not to carvea voxel.

We first rantheSpaceCarvingAlgorithm on 16 images
of a gargoyle sculpture(Figs. 5a-e).Thesub-pixel calibra-
tion error in this sequenceenabledusinga small threshold
of 6% for theRGB componenterror. This threshold,along
with the voxel sizeandthe 3D coordinatesof a bounding
boxcontainingtheobjectweretheonly parametersgivenas
input to our implementation.Someerrorsarestill present
in the reconstruction,notablyholesthat occuras a result
of shadowsandotherilluminationchangescausedby mov-
ing the objectratherthancamera.Theseeffectswerenot
accountedfor by theradiancemodel,causingsomevoxels
to beerroneouslycarved. Thefinite voxel size,calibration
error, andimagediscretizationeffectsresultedin a lossof
somefinesurfacedetail.Voxelsizecouldbefurtherreduced
with bettercalibration,but only upto thepointwhereimage
discretizationeffects(i.e.,finite pixel size)becomeasignif-
icantsourceof error. Figs. 5f-i show resultsfrom applying
ouralgorithmto imagesof ahumanhand.

In a final experiment,we appliedour algorithmto im-
agesof a syntheticbuilding scenerenderedfrom both its
interior and exterior (Figure 6). This placementof cam-
erasyieldsanextremelydifficult stereoproblem,dueto the
drasticchangesin visibility betweeninterior and exterior
cameras.10 Figure6 comparesthe original modelandthe
reconstructionfrom differentviewpoints. Themodel’s ap-
pearanceis verygoodneartheinputviewpoints,asdemon-
stratedin Figs. 6b-c. Note that thereconstructiontendsto
“bulge” outandthatthewallsarenotperfectlyplanar(Fig-
ure6e). This behavior is exactly aspredictedby Theorem
2—the algorithm convergesto the largest possibleshape
that is consistentwith the input images. In low-contrast
regionswhereshapeis visuallyambiguous,thiscausessig-
nificantdeviationsbetweenthecomputedphotohull andthe
truescene.While thesedeviationsdo not adverselyaffect
sceneappearanceneartheinputviewpoints,they canresult
in noticeableartifactsfor far-awayviews. Thesedeviations
andthe visual artifactsthey causeareeasily remediedby
includingimagesfrom a wider rangeof cameraviewpoints
to further constrainthe scene’s shape,asshown in Figure
6f.

Ourexperimentshighlightanumberof advantagesof our
approachoverprevioustechniques.Existingmulti-baseline
stereotechniques[1] work bestfor denselytexturedscenes

10For example,the algorithmsin [16,17] fail catastrophicallyfor this
scenebecausethedistribution of the input views andthe resultingocclu-
sionrelationshipsviolatetheassumptionsusedby thosealgorithms.

andsuffer in thepresenceof largeocclusions.In contrast,
thegargoyleandhandsequencescontainmany low-textured
regionsanddramaticchangesin visibility. While contour-
basedtechniqueslike volume intersection[25] work well
for similar scenes,they requiredetectingsilhouettesor oc-
cluding contours. For the gargoyle sequence,the back-
groundwasunknown andheterogeneous,makingthecon-
tour detectionproblemextremelydifficult. Note alsothat
SeitzandDyer’s voxel coloring technique[16] would not
work for any of the above sequencesbecauseof the con-
straintsit imposesoncameraplacement.Ourapproachsuc-
ceedsbecauseit integratesboth texture andcontourinfor-
mationasappropriate,without theneedto explicitly detect
featuresor contours,or constrainviewpoints. Our results
indicatethe approachis highly effective for both densely
texturedanduntexturedobjectsandscenes.

6. Concluding Remarks

While theSpaceCarvingAlgorithm’s effectivenesswas
demonstratedin the presenceof imagenoise, the photo-
consistency theoryitself is basedon an idealizedmodelof
imageformation. Extendingthetheoryto explicitly model
imagenoise,quantizationandcalibrationerrors,andtheir
effectson thephotohull is anopenresearchproblem.Ex-
tendingthe formulationto handlenon-locallycomputable
radiancemodels(e.g.,shadows) is anotherimportanttopic
of future work. Other researchdirectionsinclude (1) de-
velopingspacecarvingalgorithmsfor noisyimages,(2) in-
vestigatingtheuseof surface-basedratherthanvoxel-based
techniquesfor finding the photo hull, (3) incorporatinga
priori shapeconstraints(e.g.,smoothness),and(4) analyz-
ing the topologicalstructureof the setof photo-consistent
shapes.
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