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Abstract

In this paper we considerthe problem of computing
the 3D shapeof an unknown, arbitrarily-shapedscene
from multiple photggraphstaken at knownbut arbitrarily-
distributed viewpoints. By studyingthe equivalenceclass
of all 3D shapeghat reproducetheinput photagraphs,we
prove the existenceof a specialmemberof this class,the
photo hull, that (1) can be computeddirectly from pho-
tographsof the sceneand(2) subsumeall othermembes
of this class. We thengive a provably-corect algorithm,
calledSpaceCarving for computinghis shapeandpresent
experimentatesultson comple real-worldscenesTheap-
proac is designedo (1) build photoealistic shapeghat
accurately modelsceneappeaancefrom a wide range of
viewpoints, and (2) accountfor the comple interactions
betweerocclusion,parallax, shading and their effectson
arbitrary viewsof a 3D scene

1. Intr oduction

A fundamentalproblemin computervision is recon-
structingthe shapeof a complex 3D scenefrom multiple
photographs. While currenttechniqueswork well under
controlledconditions(e.g., small stereobaselineq1], ac-
tive viewpointcontrol[2], spatialandtemporalsmoothness
[3], or scenegontaininglinearfeaturesor texture-lesssur
faces[4-6]), very little is known aboutscenereconstruc-
tion undergeneralconditions.In particular in the absence
of a priori geometridnformation,whatcanwe infer about
the structureof anunknonvn scengrom N arbitrarily posi-
tionedcamerastknown viewpoints?Answeringthis ques-
tion hasmary implicationsfor reconstructingeal objects
and environments,which tend to be non-smooth exhibit
significantocclusions,and may containboth texturedand
texture-lesssurfaceregions(Figurel).

In this paper we develop a theory for reconstructing
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arbitrarily-shapedcenedrom arbitrarily-positionedcam-
erasby formulatingshapeecovery asa constrainsatisac-
tion problem. We shaw that ary setof photographf a
rigid scenedefinesa collection of picture constaints that
aresatisfiedby every scengrojectingto thosephotographs.
Furthermorewe characterizeéhe setof all 3D shapeghat
satisfy theseconstraintsand usethe underlyingtheory to
designa practical reconstructioralgorithm, called Space
Carving, that appliesto fully-generalshapesand camera
configurationsin particular we addresshreequestions:

e Given N input photographsgcanwe characterizehe
setof all photo-consistershapesi.e., shapeghatre-
producetheinput photographs?

¢ Is it possibleto computea shapefrom this setand if
so,whatis thealgorithm?

e Whatis the relationshipof the computedshapeto all
otherphoto-consisterghapes?

Ourgoalis to studythe V-view shapeecosery problem
in the generalcasewhereno constaints are placedupon
the scenes shapeor aboutthe viewpointsof theinput pho-
tographs.In particular we addresghe abose questiongor
the casewhen (1) no constraintareimposedon scenege-
ometryor topology (2) no constraintsareimposedon the
positionsof the input cameras(3) no informationis avail-
able aboutthe existenceof specificimagefeaturesin the
input photographge.g.,edgespoints,lines, contours tex-
ture,or color),and(4) noa priori correspondencaforma-
tion is available. Unfortunately eventhoughseveral algo-
rithms have beenproposedor recoveringshapefrom mul-
tiple views thatwork undersomeof theseconditions(e.qg.,
work on stereq[7-9]), very little is currentlyknown about
how to answerthe above questionsandevenlesssoabout
how to answetthemin this generakase.

At the heartof our work is the obsenation that these
guestiondecomeractablevhensceneadiancebelongsto
a generalclassof radiancefunctionswe call locally com-
putable Thisclasscharacterizescenegor which globalil-
luminationeffectssuchasshadavs, transparengandinter-
reflectionscan be ignored, and is sufiiciently generalto
include sceneswith parameterizedadiancemodels(e.qg.,
Lambertian,Phong, Torrance-Sparm [10]). Using this
obsenation as a startingpoint, we shav how to compute,



from N photographsfanunknavn sceneamaximalshape
called the photo hull that enclosesthe set of all photo-
consistenteconstructionsThe only requirementsare that
(1) the viewpoint of eachphotographis known in a com-
mon 3D world referenceframe (Euclidean,affine, or pro-

jective, and (2) sceneradiancefollows a known, locally-

computableradiancefunction. Experimentalresultsillus-

tratingour methods performancaregivenfor bothrealand
simulatedgeometrically-compbescenes.

To our knowledge, no previous theoreticalwork has
studiedthe equivalenceclassof solutionsto thegeneralV-
view reconstructiomproblemor provably-correctlgorithms
for computingthem? The SpaceCarving Algorithm that
resultsfrom our analysis,however, is relatedto other3D
scene-spacstereoalgorithmsthat have beenrecentlypro-
posed[14-21]. Of these,mostclosely relatedare mesh-
based14] andlevel-set[22] algorithms,aswell as meth-
ods that sweepa plane or other manifold througha dis-
cretizedscenespaceg15-17,20,23]. While the algorithms
in [14,22] generatehigh-quality reconstructionsand per
formwell in the presencef occlusionstheiruseof regular
izationtechniquepenalizescomple surfacesand shapes.
Even more importantly no formal study hasbeenunder
taken to establishtheir validity for recovering arbitrarily-
shapedscenesfrom unconstraineccameraconfigurations
(e.g.,the oneshawn in Figurela). In contrast,our Space
CarvingAlgorithm is provably correctandhasno regular
ization biases.Eventhoughspace-sweeppproachesiave
mary attractive propertiesgxisting algorithms[15-17,20]
arenot fully generali.e., they rely on the presencef spe-
cific imagefeaturessuchasedgesandhencegeneratenly
sparseaeconstructionfl5], or they placestrongconstraints
ontheinputviewpointsrelatveto thescend16,17]. Unlike
all previous methods,SpaceCarvingguaranteesomplete
reconstructionn thegenerakase.

Ourapproactoffersfour maincontribtutionsovertheex-
isting stateof the art. First, it introducesan algorithm-
independentinalysisof the V view shape-receery prob-
lem, making explicit the assumptionsequiredfor solving
it aswell asthe ambiguitiesintrinsic to the problem. Sec-
ond, it establisheshetightestpossibleboundon the shape
of thetrue sceneobtainabldrom NV photographsvithout a
priori geometricinformation. Third, it describeghe first
provably-correctalgorithm for scenereconstructiorfrom
unconstraineccameraviewpoints. Fourth, the approach
leadsnaturallyto global reconstructioralgorithmsthat re-
cover 3D shapeinformationfrom all photographst once,
eliminatingthe needfor comple partialreconstructiorand
melging operationg19, 24].

1Faugerag11] hasrecentlyproposedhe term metamericto describe
suchshapesjn analogywith the term’s usein the color perception[12]
andstructure-from-motiotiterature[13].

(b)

Figure 1. Viewing geometry The scenevolumeandcam-
eradistribution coveredby ouranalysisarebothcompletely
unconstrained. Examplesinclude (a) a 3D ernvironment
viewedfrom acollectionof camerashatarearbitrarily dis-
persedn freespaceand(b) a 3D objectviewedby asingle
cameramoving aroundit.

2. Picture Constraints

LetV bea3D scenaefinedby afinite, opaqueandpos-
sibly disconnectedolumein space.We assumeahatV is
viewed underperspectie projectionfrom N known posi-
tionscy,...,cy in B3 — V (Figure 1b). The radianceof
a point p on the scenes surfaceis a functionrad, (§) that
mapsevery orientedray ¢ throughthe point to the color
of light reflectedfrom p alongé. We usethe term shape-
radiancescenedescriptionto denotethe scene) together
with an assignmentf a radiancefunction to every point
onits surface.This descriptioncontainsall theinformation
neededo reproducea photograptof thescendor any cam-
eraposition.

Every photograplof a 3D scenaakenfrom a known lo-
cationpartitionsthe setof all possibleshape-radiancecene
descriptiongnto two families,thosethatreproducehepho-
tographand thosethat do not. We characterizehis con-
straintfor a given shapeand a given radianceassignment
by the notionof photo-consistency

Definition 1 (Point Photo-Consistency)A point p in V that is
visible from ¢ is photo-consistentvith the photographat ¢ if (1)
p doesnot projectto a badkgroundpixel, and(2) thecolor at p's
projectionis equalto rad, (p¢).

Definition 2 (Shape-Radiancé?hoto-Consistency)A  shape-
radiance scenedescriptionis photo-consistentvith the photo-
graphat ¢ if all points visible from ¢ are photo-consistenand
everynon-ba&groundpixelis the projectionof a pointin V.

Definition 3 (ShapePhoto-Consistency)A shapeV is photo-
consistenwith a setof photgraphsif ther is an assignmenof
radiancefunctionsto the visible points of V that malesthe re-
sulting shape-adiancedescriptionphoto-consistenwith all pho-
tographs.

2|n thefollowing, we make thesimplifying assumptiotthatpixel values
in theimagemeasurescengadiancedirectly.



Our goalis to provide a concretecharacterizatiowof the
family of all sceneghatare photo-consistenwith N input
photographs.We achieve this by making explicit the two
waysin which photo-consistencwith N photographgan
constraina scenes shape.

2.1 Background Constraints

Photo-consistencrequiresthat no point of V projects
to a backgroundpixel. If a photograpttaken at positionc
containsidentifiablebackgroundpixels, this constraintre-
strictsV to a conedefinedby ¢ andthe photographs non-
backgroundgixels. Given N suchphotographshescends
restrictedo thevisualhull, whichis thevolumeof intersec-
tion of their correspondingoneq5].

When no a priori information is available about the
scenes radiancethe visual hull definesall the shapecon-
straintsin the input photographs.This is becausehereis
alwaysanassignmenof radiancgunctionsto thepointson
thesurfaceof thevisualhull thatmakestheresultingshape-
radiancelescriptiorphoto-consistenwith the V inputpho-
tographs® Thevisualhull canthereforebe thoughtof asa
“least commitmentreconstructionof the scene—an fur-
ther refinementof this volume mustrely on assumptions
aboutthe scenes shapeor radiance.

While visualhull reconstructioasoftenbeenusedasa
methodfor recovering3D shapdrom photograph$25, 26],
the picture constraintcapturedby the visual hull only ex-
ploit informationfrom the backgroundpixelsin thesepho-
tographs.Unfortunately theseconstraintsbecomeuseless
when photographgontainno backgroundpixels (i.e., the
visual hull degenerateso R3) or whenbackgrounddenti-
fication cannotbe performedaccurately Below we study
picture constraintsfrom non-backgroungixels whenthe
scenes radianceis restrictedto a specialclassof radiance
models. The resultingconstraintdeadto photo-consistent
scengeconstructionthataresubset®f thevisualhull, and
unlike thevisualhull, cancontainconcaities.

2.2 RadianceConstraints

Surfacesthat are not transparenor mirror-like reflect
light in a coherentmanneyi.e., the color of light reflected
fromasinglepointalongdifferentdirectionsis notarbitrary
This coherenceprovides additionalpicture constraintde-
yond what can be obtainedfrom backgroundnformation.
In orderto take advantageof theseconstraintsyve focuson
scenesvhoseradiancesatisfieghefollowing criterion:

Consistency Check Criterion: An algorithm
consi st () is available that takes asinput at least
K < N colorscols,. .., colx, K vectorsés,. .., €k,
andthe light sourcepositions(non-Lambertiarcase),
anddecideswhetherit is possiblefor a singlesurface

3For example,setrad, (pc) equalto thecolor at p's projection.

Figure 2. (a) lllustration of the Visibility andNon-Photo-
Consisteng Lemmas If p is non-photo-consistentith the
photographsitc;, ¢z, cs, it is non-photo-consistemtith the
entiresetMs, (p), whichalsoincludesc,.

point to reflect light of color col; in direction &;
simultaneouslyor all: = 1,..., K.

Givenashape), the Consisteng CheckCriteriongives
us a way to establishthe photo-consistencof every point
onV’'ssurface.Thiscriteriondefinesageneratlassof radi-
ancemodelsthatwe call locally computablethatarechar
acterizedy alocality property:theradianceatary pointis
independenof theradianceof all otherpointsin thescene.
The classof locally-computablgadiancemodelstherefore
restrictsouranalysiso scenesvhereglobalillumination ef-
fectssuchastranspareny; inter-reflectionandshadevscan
beignored. This classsubsumeshe Lambertian(K = 2)
andotherparameterizedadiancemodels?

Givenana priori locally computableadiancenodelfor
thescenewe candeterminevhetheror nota givenshape)
is photo-consistenwith a collectionof photographsEven
moreimportantly whenthescenesradiances describedy
sucha model,the non-photo-consistencof a shapey tells
usagreatdealaboutthe shapeof theunderlyingsceneWe
usethe following two lemmasto make explicit the struc-
ture of the family of photo-consistenshapes.Theselem-
mas provide the analyticaltools neededto describehow
the non-photo-consisteyoof a shape) affectsthe photo-
consisteng of its subsetgFigure?):

Lemmal (Visibility Lemma) Letp be a pointon V's surface
Surf(V), andlet Visy (p) bethecollectionof input photaraphsin
which V doesnotoccludep. If V' C V is a shapethatalsohasp
onits surface Visy (p) C Visy: (p).

Proof: Since)’ is asubsebf V, no pointof V' canlie betweerp
andthecameragorrespondingo Visy (p). QED

Lemma 2 (Non-Photo-Consistency-emma) If p € Surf(V) is
not photo-consistenwith a subsetof Visy (p), it is not photo-
consistentvith Visy (p).

4Specificexamplesinclude(1) usinga mobile cameramountedwith a
light sourceto capturephotographsf ascenevhosereflectanceanbeex-
pressedn closedform (e.g.,usingthe Torrance-Sparm model[10,27]),
and(2) usingmultiple cameraso capturgohotographsf anapproximately
Lambertianscenaunderarbitraryunknavn illumination (Figure1).



Figure 3. Trivial shapesolutionsin the absencef free-
spaceconstraints.A two-dimensionabbjectconsistingof
ablacksquarenvhosesidesarepaintedfour distinctdiffuse
colors(red,blue,orangeandgreen)js viewedby four cam-
eras. Carvingout a small circle aroundeachcameraand
projectingtheimageontotheinterior of thatcircle yieldsa
trivial photo-consisterghape.

Intuitively, Lemmasl and2 suggesthatboth visibility
and non-photo-consisteycexhibit a form of “monotonic-
ity:” theVisibility Lemmatellsusthatthecollectionof pho-
tographdrom which a surfacepointp € SurfV) is visible
strictly expandsas) getssmaller(Figure2). Analogously
the Non-Photo-ConsistegcLemma, which follows as a
direct consequencef the definition of photo-consisteng
tells us thateachnew photographcanbe thoughtof asan
additional constrainton the photo-consistencof surface
points—themorephotographsreavailable,the morediffi-
cultit is for thosepointsto achiese photo-consistenc Fur-
thermore,oncea surfacepoint fails to be photo-consistent
no newv photographof that point can re-establishphoto-
consisteng.

Thekey consequencef Lemmasl and2 is givenby the
following theorenwhichshavsthatnonphoto-consistenc
atapointrulesoutthephoto-consistencof anentirefamily
of shapes:

Theorem1 (SubsetTheorem) If p € Surf(V) is not photo-
consistentno photo-consistergubsebf V containsp.

Proof: Let V' C V be a shapethat containsp. Sincep lies on
the surfaceof V, it mustalsolie on the surfaceof V. Fromthe
Visibility Lemmait followsthat\isy (p) C Msy. (p). Thetheorem
now follows by applyingthe Non-Photo-Consistegd_.emmato
V' andusingthelocality propertyof locally computableadiance
models.QED

We explore the ramificationsof the SubsefTheoremin
thenext section.

3. The Photo Hull

The family of all shapeghat are photo-consistentvith
N photographslefinesthe ambiguityinherentin the prob-
lem of recovering3D shaperom thosephotographsWhen

thereis morethanone photo-consistenshapeit is impos-
sible to decide,basedon thosephotographsalone,which
photo-consisterdhapecorrespondso thetrue scene.This
ambiguityraiseswo importantquestionsegardingthefea-
sibility of scenereconstructiorirom photographs:

e Is it possibleto compute a shapethat is photo-
consistenwith N photographsnd,if so,whatis the
algorithm?

¢ If aphoto-consisterghapecanbe computedhow can
we relatethat shapeto all other photo-consisten8D
interpretation®f thescene?

Beforeproviding agenerabnswelto thesequestionave
obsenethatwhenthenumberof inputphotographss finite,
thefirst questioncanbeansweredvith atrivial shapgFig-
ure 3). In generaltrivial shapesolutionssuchasthis one
canonly be eliminatedwith the incorporationof freespace
constraintsi.e., regionsof spacehatareknown notto con-
tain scengpoints. Ouranalysisenableghe (optional)inclu-
sion of suchconstraintdy specifyinganarbitraryshapey
within which a photo-consistergcends known to lie.®

In particular our answergo both questiongreston the
following theorem. Theorem2 shaws that for any shape
V thereis a uniquephoto-consisterghapethat subsumes,
i.e., containswithin its volume, all other photo-consistent
shapesn V (Figure4):

Theorem 2 (PhotoHull Theorem) LetV be an arbitrary setof
pointsandlet V* betheunionof all photo-consistergubset®f V.
TheshapeV* is photo-consisterdandis calledthe photohull.®

Proof: (By contradiction)Supposé&’* is not photo-consisterand
let p beanon-photo-consistempintonits surface.Sincep € V™,
thereexists a photo-consistenshape,V’ C V*, thatalsohasp
onits surface. It follows from the SubsefTheoremthat)”’ is not
photo-consistenQED

Theorem?2 provides an explicit relation betweenthe
photohull andall otherpossible3D interpretationsf the
scenethetheorenguaranteethatevery suchinterpretation
is a subsebf the photohull. The photohull thereforerep-
resentaleast-commitmemeconstructiorof thesceneWe
describeavolumetricalgorithmfor computingthis shapen
thenext section.

4. Reconstructionby SpaceCarving

An importantfeatureof the photohull is thatit canbe
computedusinga simple, discretealgorithmthat “carves”
spacein a well-definedmanner Given an initial volume

5Notethatif V = R3, the problemreduceso the casewhenno con-
straintson free spaceareavailable.

80ur use of the term photo hull to denotethe “maximal” photo-
consistenshapedefinedby a collection of photographss dueto a sug-
gestionby LeonardMcMillan.



& A

Figure 4. lllustration of the PhotoHull Theorem. The
gray-shadedegion corresponddo an arbitrary shapeV
containingthe objectof Figure3. V" is a polygonalre-
gion thatextendsbeyond the true sceneandwhosebound-
ary is definedby the polygonalsggmentsq, 3, v, and 4.
Whenthesesegmentsare coloredas shavn, V*'s projec-
tions areindistinguishabldrom that of the true objectand
no photo-consistenshapein the gray-shadedegion can
containpointsoutsidey™.

V that containsthe scene the algorithm proceedsy iter-
atively removing (i.e. “carving”) portionsof that volume
until it corvergesto the photohull, V*. Thealgorithmcan

thereforebe fully specifiedby answeringfour questions:

(1) how do we selecttheinitial volumeV, (2) how should
we representhatvolumeto facilitate carving, (3) how do
we cane at eachiterationto guaranteeorvergenceto the
photohull, and(4) whendo we terminatecarving?

The choiceof theinitial volumehasa considerablém-
pacton the outcomeof the reconstructiorprocesqFigure
3). Neverthelessselectionof this volumeis beyond the
scopeof this paper;it will dependon the specific3D shape
recovery applicationand on informationaboutthe manner
in which theinput photographsvereacquired’ Below we
consideragenerahlgorithmthat,given N photographand
anyinitial volumethatcontainsthe scenejs guaranteedo
find the (unique)photohull containedn thatvolume.

In particular let V be an arbitrary finite volume that
containsthe sceneas an unknavn sub-wlume. Also, as-
sumethat the surfaceof the true sceneconformsto a ra-
diance model definedby a consisteng check algorithm
consi st (). WerepresenV asafinite collectionof vox-
elsvy,...,vy. Usingthis representatiorgachcarvingit-
erationremovesa singlevoxel from V.

The SubsetTheoremleadsdirectly to a methodfor se-
lecting a voxel to carve away from V' at eachiteration.
Specifically thetheorentells usthatif avoxelv onthesur
faceof V is notphoto-consistenthevolumeV =V — {v}
must still contain the photo hull. Hence, if only non-
photo-consistentoxels are removed at eachiteration, the
canedvolumeis guaranteedio corvergeto the photohull.

“ExamplesincludedefiningV to be equalto the visual hull or, in the
caseof acameramoving throughanervironment, *3 minusatubealong
thecameras path.

The orderin which non-photo-consistenoxels are exam-
inedandremovedis notimportantfor guaranteeingorrect-
ness.Convergenceo this shapeoccursvhenno non-photo-
consistentoxel canbe found on the surfaceof the caned
volume. Theseconsiderationseadto the following algo-
rithm for computingthe photohull:

SpaceCarving Algorithm

Stepl: Initialize V to avolumecontainingthetruescene.

Step2: Repeathefollowing stepsfor voxelsv € SurfV) until a
non-photo-consistenbxel is found:

a. Project v to all photographsin Msy(v). Let
coly, ..., col; bethepixel colorsto which v projects
andlet¢y, ..., ¢; betheoptical raysconnectingv to

thecorresponding@pticalcenters.

b. Determine the photo-consistenc of v
COﬂSiStK(Coll,...,COlj,fl,...,gj).

Step3: If no non-photo-consistentoxel is found, setV* = V
andterminate OtherwisesetY = V — {v} andrepeatStep
2.

The key stepin the algorithmis the searchand voxel
consisteng checkingof Step2. The following proposi-
tion givesan upperboundon the numberof voxel photo-
consisteng checks’

using

Proposition1 The total numberof required photo-consistency
chedks is boundedby N * M whee N is the numberof input
photagraphsand M is the numberof voxelsin theinitial (i.e., un-
carved)volume

To performvisibility computationsfficiently, we usea
multi-sweepimplementatiorof spacecarving.In whatfol-
lows, we briefly summarizethe technique but full details
of the approachareomitteddueto spacdimitations. Each
passconsistof sweepinga planethroughthe scenevolume
andtestingthe photo-consistencof voxels on that plane.
The adwantageof this methodis thatvoxelsarealwaysvis-
itedin anorderthatcapturesll occlusiorrelationsbetween
the entiresetof voxelsandan appropriately-chosesubset
C of the cameras:eachsweepguaranteethatif a voxel p
occludesanothervoxel ¢ when viewed from a camerain
C, p will necessarilybe visited beforeq. This is achiered
by choosingC to be the setof all cameraghatlie on one
side of the sweepplane. Sinceeachplanesweepconsid-
ersonly a subsetof the cameragrom which a voxel may
be visible, multiple sweepsare neededto ensurephoto-
consisteng of voxels with all input views. Our imple-
mentationcycles throughsix directionsin eachpass,i.e.,
in increasing/decreasing y, andz directions,andapplies
repeatedhasseauntil the carving procedurecorverges. In
practice thistypically occursafter2 or 3 passes.

8Cornvergenceto this shapds provably guaranteednly for scenesep-
resentabldy a discretesetof voxels.
9Proofis omitteddueto lack of space.



5. Experimental Results

To demonstratéheapplicabilityof ourapproachwe per
formedseveralexperimentson realandsyntheticimagese-
guencesin all examplesalLambertiarmodelwasusedfor
the Consisteng CheckCriterion,i.e., it wasassumedhata
voxel projectsto pixels of approximatelythe samecolorin
everyimage.We usedathresholdon the standardleviation
of thesepixelsto decidewhetheror notto care avoxel.

We first ranthe SpaceCarvingAlgorithm on 16 images
of agamoyle sculpture(Figs. 5a-e). The sub-pixel calibra-
tion errorin this sequencenabledusinga small threshold
of 6% for the RGB componenerror. Thisthresholdalong
with the voxel size andthe 3D coordinatesof a bounding
box containingthe objectweretheonly parametergivenas
input to our implementation.Someerrorsarestill present
in the reconstructionnotably holesthat occuras a result
of shadevs andotherillumination changesausedy mov-
ing the objectratherthan camera. Theseeffectswere not
accountedor by theradiancemodel,causingsomevoxels
to be erroneouslycaned. The finite voxel size,calibration
error, andimagediscretizationeffectsresultedin a loss of
somefine surfacedetail. Voxel sizecouldbefurtherreduced
with bettercalibration but only upto thepointwhereimage
discretizatioreffects(i.e., finite pixel size)becomeasignif-
icantsourceof error. Figs. 5f-i shav resultsfrom applying
our algorithmto imagesof ahumanhand.

In a final experiment,we appliedour algorithmto im-
agesof a syntheticbuilding scenerenderedrom both its
interior and exterior (Figure 6). This placementof cam-
erasyieldsanextremelydifficult sterecoproblem,dueto the
drasticchangesn visibility betweeninterior and exterior
cameras? Figure 6 compareghe original modelandthe
reconstructiorfrom differentviewpoints. The model’s ap-
pearancés very goodneartheinputviewpoints,asdemon-
stratedin Figs. 6b-c. Note thatthe reconstructioriendsto
“bulge” outandthatthewalls arenot perfectlyplanar(Fig-
ure 6e). This behaior is exactly aspredictedoy Theorem
2—the algorithm corvergesto the largest possibleshape
that is consistentwith the input images. In low-contrast
regionswhereshapds visually ambiguousthis causesig-
nificantdeviationsbetweerthecomputechotohull andthe
true scene.While thesedeviationsdo not adwerselyaffect
sceneappearancaeartheinputviewpoints,they canresult
in noticeableartifactsfor faraway views. Thesedeviations
andthe visual artifactsthey causeare easily remediedby
includingimagesfrom awider rangeof cameraviewpoints
to further constrainthe scenes shapeasshawvn in Figure
6f.

Ourexperimentsighlightanumberof advantagesf our
approactover previoustechniquesExistingmulti-baseline
stereaechnique$l] work bestfor denselytexturedscenes

10For example, the algorithmsin [16,17] fail catastrophicallyfor this
scenebecausehe distribution of the input views andthe resultingocclu-
sionrelationshipsiolatethe assumptionsisedby thosealgorithms.

andsuffer in the presencef large occlusions.In contrast,
thegalgoyle andhandsequencesontainmary low-textured
regionsanddramaticchangesn visibility. While contour

basedtechniquedike volume intersection[25] work well

for similar scenesthey requiredetectingsilhouettesor oc-

cluding contours. For the gamgoyle sequencethe back-
groundwasunknowvn andheterogeneousnakingthe con-
tour detectionproblemextremely difficult. Note alsothat
Seitzand Dyer’s voxel coloring technique[16] would not
work for ary of the above sequencebecausef the con-
straintsit imposeon camerglacementOurapproactsuc-
ceedsbecausat integratesboth texture and contourinfor-

mationasappropriatewithout the needto explicitly detect
featuresor contours,or constrainviewpoints. Our results
indicatethe approachis highly effective for both densely
texturedanduntexturedobjectsandscenes.

6. Concluding Remarks

While the SpaceCarvingAlgorithm’s effectivenessvas
demonstratedn the presenceof image noise, the photo-
consisteng theoryitself is basedon anidealizedmodel of
imageformation. Extendingthe theoryto explicitly model
imagenoise,quantizationand calibrationerrors,andtheir
effectson the photohull is an openresearctproblem. Ex-
tendingthe formulationto handlenon-locally computable
radiancemodels(e.g.,shadavs) is anotherimportanttopic
of future work. Otherresearctdirectionsinclude (1) de-
velopingspacecarvingalgorithmsfor noisyimages(2) in-
vestigatingheuseof surface-basedatherthanvoxel-based
techniquedor finding the photo hull, (3) incorporatinga
priori shapeconstraintge.g.,smoothnessrnd(4) analyz-
ing the topologicalstructureof the setof photo-consistent
shapes.
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Figure 6. Reconstructiomf a syntheticbuilding scene.(a) 24 Camerasvereplacedin boththeinterior andexterior of a building
to enablesimultaneousgompletereconstructiorof its exterior andinterior surfaces. The reconstructiorcontains370,000voxels,
caned out of a 200 x 170 x 200 voxel block. (b) A renderedmageof the building for a viewpoint nearthe input cameras
(shawvn as“virtual view” in (a)) is comparedo the view of thereconstructior{c). (d-f) Views of the reconstructiorfrom far away
cameraviewpoints. (d) shavs arenderedop view of the original building, (e) the sameview of the reconstructionand(f) a new
reconstructiorresultingfrom addingimage (d) to the setof input views. Note that addingjust a single top view dramatically

improvesthe quality of thereconstruction.

[12] R. L. Alfvin andM. D. Fairchild, “Obsener variability in

metamericcolor matchesusing color reproductionmedia;
Color Reseath & Application v.22,n.3,pp.174-1781997.

[13] J. A. J. C. van Veenand P. Werkhoren, “Metamerismsin

structure-from-motiorperceptiori, Vision Reseath, v.36,
pp.2197-22101996.

P. Fua and Y. G. Leclerc, “Object-centeredsurface re-
construction: Combiningmulti-image stereoand shading,
1JCV, v.16, pp. 35-56,1995.

R.T. Collins, “A space-sweeppproacho true multi-image
matching;, Proc. CVPR pp.358-363,1996.

S.M. SeitzandC. R. Dyer, “Photorealisticsceneeconstruc-
tion by voxel coloring, Proc. CVPR pp.1067-10731997.

S. M. SeitzandK. N. Kutulalos, “Plenopticimageediting;
Proc.ICCV, pp.17-24,1998.

C. L. Zitnick andJ. A. Webb,“Multi-baseline stereousing
surfaceextraction; Tech.Rep.CMU-CS-96-196 Carngjie
Mellon University, Pittskurgh, PA, November1996.

P. J.NarayananP. W. RanderandT. Kanade,'Constructing
virtual worlds using densestered, Proc. ICCV, pp. 3-10,
1998.

R. Szeliskiand P. Golland, “Stereo matchingwith trans-
pareng andmatting’; Proc.ICCV, pp.517-5241998.

[21]

[22]
(23]

[24]

[25]

[26]

[27]

S.Roy andl. J. Cox, “A maximum-flav formulationof the
N-camerastereacorrespondencgroblent; Proc.ICCV, pp.
492-499,1998.

0. FaugerasandR. Keriven, “Completedensesterewision
usinglevel setmethods, Proc. ECCV, pp.379-393,1998.
M. S.LangerandS. W. Zucker, “Shape-from-shadingn a
cloudyday”’ JOSA-Av.11,n.2,pp.467-478,1994.

W. B. Sealesand O. Faugeras;Building three-dimensional
objectmodelsfrom imagesequences CVIU, v.61,n.3, pp.
308-324,1995.

R. Szeliski, “Rapid octree constructionfrom image se-
quence$, CVGIP: Image Undesstanding v.58,n.1, pp. 23—
32,1993.

K. N. Kutulakos, “Shape from the light field boundary
Proc.CVPR pp.53-59,1997.

Y. Sato,M. D. Wheeler andK. Ikeuchi,“Object shapeand
reflectancenodelingfrom obseration; Proc. SIGGRAPH
pp.379-387,1997.



