
Non-Rigid Structure from Locally-Rigid Motion

Jonathan Taylor Allan D. Jepson Kiriakos N. Kutulakos
Department of Computer Science

University of Toronto
{jtaylor,jepson,kyros}@cs.toronto.edu

Abstract
We introduce locally-rigid motion, a general framework for
solving the M -point, N -view structure-from-motion prob-
lem for unknown bodies deforming under orthography. The
key idea is to first solve many local 3-point, N -view rigid
problems independently, providing a “soup” of specific,
plausibly rigid, 3D triangles. The main advantage here is
that the extraction of 3D triangles requires only very weak
assumptions: (1) deformations can be locally approximated
by near-rigid motion of three points (i.e., stretching not
dominant) and (2) local motions involve some generic ro-
tation in depth. Triangles from this soup are then grouped
into bodies, and their depth flips and instantaneous rela-
tive depths are determined. Results on several sequences,
both our own and from related work, suggest these condi-
tions apply in diverse settings—including very challenging
ones (e.g., multiple deforming bodies). Our starting point
is a novel linear solution to 3-point structure from motion,
a problem for which no general algorithms currently exist.

1. Introduction

The last 30 years have seen tremendous progress on the
structure-from-motion problem. Already, early work on
minimal point configurations (e.g., four points in three
views [1], eight points in two views [2], etc.) has turned
into systems for city-scale reconstruction, with millions of
points and hundreds of thousands of views [3]. A key ingre-
dient in this success is global rigidity, i.e., the assumption
that the entire set of points can be thought of as moving
rigidly from one view to the next. Global rigidity makes
“global” approaches to the structure-from-motion problem
highly effective. These approaches, of which factoriza-
tion [4] is a prime example, take full advantage of this as-
sumption by using all points and all views simultaneously
in a single, 3D shape-and-motion estimation step.

Far less is known about how to solve the structure-from-
motion (SFM) problem when the scene is not rigid. Non-
rigidity is ubiquitous in images and video and covers
a broad spectrum—deforming surfaces, articulated struc-
tures, groups of rigidly-moving bodies, and any combina-
tion thereof, are just a few examples (Figures 1 and 4).

Clearly, if M points move independently across N views,
the SFM problem is under-constrained. This has gener-
ated a lot of interest in reducing the problem’s dimension-
ality so that global SFM algorithms can be extended to the
non-rigid case. Although a wide spectrum of algorithms
now follow this approach, they all rest on assumptions
about the scene’s global spatio-temporal behavior. These
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Figure 1: Example sequences. Left to right: newspaper being
torn apart; silk scarf deforming freely; points on a face (from [5]).

include (1) deformations that span a low-dimensional shape
space [5–10]; (2) trajectories that span a low-dimensional
motion space [11]; (3) textured meshes with a regularized
shape and low-order deformation [12–16], or a known tem-
plate shape [17]; and (4) scenes composed of rigid bodies
moving independently [18–20] or in articulated configura-
tions [21,22]. Unfortunately, global behavior is hard to pre-
dict in all but highly-constrained settings (e.g., faces, ar-
ticulated bodies, etc.). Even then, pre-segmentation, train-
ing data, or information about the solution manifold may be
necessary.

As a first step in overcoming these limitations, we consider
an alternative paradigm where the global non-rigid SFM
problem is decomposed into many local rigid ones. Our ap-
proach is based on a simple intuition: many non-rigid mo-
tions, even very complex ones, can be approximated locally
by a rigid transformation involving three points.

We make this intuition concrete by solving non-rigid SFM
bottom-up, in four steps: (1) given M points in N views,
generate a large collection of triplets of nearby points; (2)
solve an orthographic, 3-point-N -view rigid-SFM problem
independently for each triplet and identify 3D triangles con-
sistent with near-rigid motion; (3) assign the 3D triangles to
one or more deforming bodies; and (4) reconstruct the in-
stantaneous shape of each body by recovering the flips and
the relative depths of the triangles in each view. The key ad-
vantage of this formulation is that the estimation of rigid 3D
triangles in the first two steps requires only weak assump-
tions on the nature of the local deformations and the view
changes. As such, they can be solved by optimizing image
re-projection error, without shape or motion priors.

Although not used for SFM in recent decades, the general



paradigm we follow is very old. Indeed, in his original work
on the problem, Ullman [1, 23] suggests grouping points in
quadruplets, testing for rigidity, solving 4-point SFM, and
combining the results. Our work can therefore be thought of
as a modern re-interpretation of Ullman’s original scheme,
applied to general non-rigid SFM and made even more
local—with three points instead of four. Our generate-and-
test procedure also suggests a similarity to robust paramet-
ric estimation methods like RANSAC [24]. This similarity,
however, is superficial: our generation procedure is not ran-
dom, we do not seek consensus among 3D triangles, and
never combine them into larger, parametric structures. In
effect, each 3D triangle approximates a distinct piece of the
scene and exists separately from all the rest.

At the heart of our approach lies a solution to the problem of
computing structure fromN ≥ 4 views of just three rigidly-
moving points. This is a hard problem that briefly attracted
SFM theorists for the case of N = 4 [25–27] but was aban-
doned without algorithmic solutions for large N . In this re-
spect, our solution represents a new result in rigid SFM and
is one of the key theoretical contributions of this paper. This
solution is particularly important in the context of non-rigid
SFM for four reasons. First, the small number of points
makes it much more likely that local rigidity and orthogra-
phy hold through a sequence. Second, since all geometric
computations involve three points and thus are very local,
handling many views offers substantial protection against
noise. Third, it naturally handles sequences with densely-
tracked points, since 3-point configurations are not degener-
ate even in small surface neighborhoods (unlike the case of
four non-coplanar points). Fourth, it makes it very efficient
to identify locally-rigid motions among large point sets.

The output of our non-rigid SFM algorithm is neither a
deforming surface nor a moving 3D point set; it is a
“soup” of independently-moving, rigid triangles whose ap-
parent coherence arises exclusively from satisfying point-
wise re-projection error constraints. As such, it is related
to non-parametric, sample-based representations of geom-
etry [28, 29] and shares many of their features: without
built-in smoothness or connectivity constraints, the repre-
sentation is very flexible; it can fit diverse global shapes
and motions; and enables automatic segmentation and re-
construction of independently-deforming bodies.

2. Three-Point Structure from Motion

What can we infer from an orthographic image sequence
of just three moving points? With such a limited point set,
affine structure [30] is under-constrained and factorization-
based methods [4] do not apply.

The definitive answer was given by Bennett and Hoff-
man [27]. They proved that four views of three points are
necessary and sufficient to decide whether the points’ mo-
tion is rigid. Their work included a non-constructive proof
showing that shape and motion are highly ambiguous in this
case: up to 32 interpretations exist when points do move
rigidly in four views. This work, along with earlier studies

of the 3-point, 3-view problem [25, 26], analyzes the alge-
braic structure of over-constrained systems of polynomial
equations and is mainly of theoretical interest. We are not
aware of algorithmic implementations of these ideas and
it is unclear how to incorporate noise, approximate rigid-
ity [23], and more than four views. Here we develop a
formulation that applies to any number of views of a mov-
ing 3D triangle; can measure the triangle’s degree of non-
rigidity; can recover rigid shape approximations for motions
that are only approximately rigid; and can deal with image
noise within a fairly standard least-squares setting.

Our main observation is that computing the length of edges
on a 3D triangle is much easier than computing the trian-
gle’s pose or 3D coordinates. We exploit this observation by
deriving a novel, coordinate-free relation between lengths
on a 3D triangle and lengths in its projection. This relation,
which we call the Projected-Length Equation, leads to a lin-
ear method for recovering 3D lengths that uses all views si-
multaneously and enforces all available metric constraints.

Using this as a starting point, we solve 3-point SFM in three
steps: (1) estimate 3D lengths by applying the linear method
to N images of a 3D triangle, (2) use these lengths to esti-
mate the triangle’s pose independently for each image, and
(3) jointly refine lengths and poses with a non-linear algo-
rithm that minimizes re-projection error over all images.

2.1. The Projected-Length Equation

The foreshortening of a triangle viewed under orthography
depends on the relative depth of its vertices (Figure 2) :

‖pi − pj‖2 − ‖qi − qj‖2 = (zi − zj)2 , (1)

where qi is the projection of vertex pi and zi is its depth
(i.e., distance from the image plane).

The sum of pairwise relative depths is always equal to zero:

(z2 − z1) + (z3 − z2) + (z1 − z3) = 0 . (2)

Combining Eqs. (1) and (2) and using the notation

Lij = ‖pi − pj‖2 (3)

lij = ‖qi − qj‖2
, (4)

we obtain an expression that eliminates dependence on
depth, is entirely coordinate free, and relates actual and pro-
jected (squared) lengths:√

L21 − l21 ±
√

L32 − l32 = ∓
√

L13 − l13 . (5)

Although seemingly quite complex, Eq. (5) can be simpli-
fied substantially. Observe that we can eliminate the square
root and sign ambiguity on the equation’s right-hand side by
squaring both sides of the equation. Applying this obser-
vation twice, along with some algebraic manipulation, we
arrive at a very simple quadratic constraint linking lengths
in 2D and 3D (see supplementary material for a derivation):
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Figure 2: Viewing geometry. We assume that the viewing direc-
tion is along the z-axis of the camera-centered coordinate system.

Projected-Length Equation

LT
A L − 2LT

A l + lT A l = 0

where

L =

[
L21

L32

L13

]
, l =

[
l21
l32
l13

]
, A =

[
1 −1 −1
−1 1 −1
−1 −1 1

]
.

2.2. Linear Intrinsic Shape from N Views

Now suppose that the triangle moves rigidly across N im-
ages. Since its motion is rigid, the length of each edge, and
hence the vector L, is constant. Applying the Projected-
Length Equation for each image, we obtain a system of N
quadratic equations:

LT
A L − 2LT

A l1 + l1T
A l1 = 0 (6)

. . .

LT
A L − 2LT

A lN + lN T
A lN = 0 (7)

where the vectors l1, . . . , lN collect projected lengths for
images 1 through N , respectively.

Since the only quadratic term in the system is constant for
all equations, we eliminate it by subtracting Eq. (6) from
the rest. This yields a linear system ofN − 1 equations and
three unknowns, i.e., the squared 3D lengths in vector L:
Linear Length Recovery Equation

2

⎡
⎣ l1T − l2T

· · ·
l1T − lN T

⎤
⎦ A L =

⎡
⎣ l1T

Al1 − l2T
Al2

· · ·
l1T

Al1 − lN T
AlN

⎤
⎦ . (8)

To compute these lengths, we simply solve Eq. (8) for L.
Equation (8) implies that although the structure-and-motion
problem has many discrete ambiguities and is hard to ana-
lyze even for four views, the structure problem generically
has a unique, easily-computable solution for any N ≥ 4.
Moreover, the equation decouples the problem of estimating
intrinsic structure from the problem of estimating extrinsic
properties such as pose or 3D coordinates. On the practical
side, we can incorporate all measurements into a single es-
timation step, for improved accuracy over long sequences.

(z2 − z1) ≥ 0, (z1 − z3) ≤ 0 (z2 − z1) ≥ 0, (z1 − z3) ≥ 0

(z2 − z1) ≤ 0, (z1 − z3) ≥ 0 (z2 − z1) ≤ 0, (z1 − z3) ≤ 0

state
0

state
1

Plane z = z1

Figure 3: Reflection ambiguity. The top left triangle is as in Fig-
ure 2. Reflecting vertices p2 and/or p3 about plane z = z1 pro-
duces three more triangles that differ in the sign of relative vertex
depths. Of these, only triangles related by a mirror reflection (i.e.,
same column) have the same edge lengths, and thus are ambigu-
ous. We use 0/1 to denote these “reflection states,” as indicated.

2.3. Pose Ambiguities

A unique solution to the structure problem implies that we
can use Eq. (1) to determine the relative depth of any pair
of vertices up to a sign flip [31]. Geometrically, this makes
each image consistent with two triangles, related by a re-
flection about the image plane (Figure 3).

Neither this reflection ambiguity nor the triangle’s absolute
depth, always lost under orthography, can be resolved when
the triangle is viewed in isolation. Rather than make an ar-
bitrary and potentially-erroneous choice, we do not resolve
them during local, three-point SFM computations. Below
we focus on pose estimation modulo these ambiguities.

2.4. Non-Linear Pose Estimation from One View

In theory, once we know a triangle’s edge lengths, we can
recover its pose in a given image by solving Eq. (1) in terms
of (unsigned) relative depths. In practice, however, solving
this equation directly can lead to inaccurate results because
the edge lengths, both in 3D and in 2D, may not be known
with high accuracy.

To get more reliable pose estimates, we solve the well-
known problem of three-point exterior orientation [32] un-
der orthography: given the length vector L from Eq. (8) and
an image n, we estimate 2D position and 3D orientation by
minimizing average squared re-projection error:

En(θ, t,L) =
1
3

3∑
i=1

∥∥∥[ 1 0 0
0 1 0 ] R(θ)p̂i(L) + t − qin

∥∥∥2

θn, tn = arg min
θ,t

En(θ, t,L) , (9)

where qin is the projection of vertex i in image n; θ is a
vector that represents three rotational degrees of freedom
which define the 3×3 rotation matrix,R(θ); t is a 2D trans-
lation vector; and p̂i(L) are 3D vertex coordinates when the



triangle is in an a priori-specified “reference” pose.1

We rely on Levenberg-Marquardt minimization in Eq. (9),
using the exponential map to represent orientations and θ =
[0.1 0.1 0.1] for the initial rotation estimate.

2.5. Multi-View Shape & Pose Refinement

Although the linear system in Eq. (8) gives a very simple
and efficient way to estimate 3D lengths from a potentially
large number of images, it relies on minimizing an alge-
braic error functional. This functional measures consistency
with a system of Projected-Length Equations and produces
sub-optimal length estimates in the presence of localization
noise (e.g., from feature tracking) or modeling errors (e.g.,
from slightly non-rigid motions). To ensure the best pos-
sible estimates of both pose and length, we use a final re-
finement stage that optimizes them jointly by minimizing
average squared re-projection error across all images:

E(L,θ1, . . . ,θN , t1, . . . , tN ) =
N∑

n=1

En(θn, tn,L)
N

. (10)

We optimize this error iteratively with conjugate gradients,2

from initial lengths and per-image poses (Algorithm 1).

3. 3-SFM for Non-Rigid Scenes

Suppose we are given a sequence of M features tracked
over N images. We assume that these features may be dis-

1This pose can be arbitrary; here we place the triangle on the xy-plane,
with a vertex at the origin and one edge along the x-axis. In particular,
we define p̂1(L) = [0 0 0], p̂2(L) = [0

√
L21 0] and set p̂3(L) to be

the positive-y intersection of two circles on the xy-plane—one with radius√
L13 centered at p̂1(L) and one with radius

√
L32 centered at p̂2(L).

2Since the optimization occurs in a space of 6N + 3 dimensions, with
N > 1000 for long sequences, methods that do not maintain an explicit
representation of the Hessian, such as conjugate gradients, are preferable.

Algorithm 1: 3-Point Structure from Motion (3-SFM)
Input: feature positions q1n,q2n,q3n, n = 1, . . . , N
Output: squared pairwise distance vector L;

per-frame poses θn, tn & per-frame unsigned
relative depths, |z2n − z1n|, |z1n − z3n|;
root-mean-squared re-projection error ε

for each frame n, compute the squared pairwise1

distances of q1n,q2n,q3n & place them in vector ln;
solve Eq. (8) in terms of L to get initial estimate of2

pairwise squared distances in 3D;
for each frame n, conduct the minimization in Eq. (9)3

to obtain initial estimates of θn and tn;
minimize the functional in Eq. (10) to obtain final4

estimates of θn, tn for all n, and of L;
set ε =

√E(L,θ1, . . . ,θN , t1, . . . , tN );5

for each frame n, compute unsigned relative depths6

from Eq. (1), with qi = qin and pi = R(θn)p̂i(L).

tributed over several independently-moving bodies, each of
which undergoes unknown and possibly non-rigid motion.
To handle sequences of this generality, we treat each body
as a collection of “loosely-coupled” rigid triangles and use
3-SFM as our basic computational step.

3.1. Discovering Near-Rigid Triangles

An exhaustive search for near-rigid triangles would require
running 3-SFM on all possible three-feature combinations
among M features. Not all combinations, however, are
equally likely to yield near-rigid motion. For instance, three
points that lie far apart on a deforming body (or on separate
bodies), are unlikely to move rigidly. By ignoring feature
combinations that involve such points, it is possible reduce
the size of the search space fromO(M3) to roughly O(M).

To take this heuristic into account, we apply 3-SFM only to
triplets of nearby features [1]. We use a topological crite-
rion to choose them in a scene- and image-independent way
(Figure 4, left): the features must belong to a triangle in
the 2D Delaunay triangulation of one of the input images.
Although this criterion can select O(NM) triangles in the
worst case, triangulations of nearby frames are usually sim-
ilar and do not contribute many new ones.3

Testing for near-rigidity If a 3D triangle undergoes
generic non-rigid motion across four images, its projection
will have no rigid interpretation for all but a measure-zero
set of motions [27]. Therefore 3-SFM can be expected to re-
turn a non-negligible re-projection error. We consider errors
above a fixed tolerance ε∗ to be from non-rigid triangles.4

Re-projection errors below ε∗ are either due to near-rigid
triangles, or triangles that appear to be near-rigid but are
not (i.e., non-generic deformation). Specifically, if (1) two
features in a triplet have constant distance in all images and
(2) the third feature always falls on an ellipse that is axis-
aligned with the other two, the triplet always has a rigid
interpretation. For example, a 2D feature point translating
perpendicular to the line between two other points can be in-
terpreted as the foreshortening of a rigid triangle. Although
this is unlikely to happen in long sequences of real-world
surface deformation, in practice it does occur for triplets
with an “outlier” feature, i.e., matched erroneously across
images or lying on a different object (Figure 4(left)). Nev-
ertheless, triangles reconstructed from such triplets have a
characteristic geometry: they are typically very oblique in
3D and have large 3D lengths in order to account for the
relative motion of the outlier feature. Here, we discard as
potentially non-rigid any 3D triangle that passes one of two
tests: (1) the angle between two 3D edges is less than 10◦,
and (2) the 3D length of an edge is at least 2.5× the median
length across all reconstructed triangles.

3It is possible to expand the search space by selecting features that lie δ
edges apart on the Delaunay triangulation graph. We found, however, that
such an expansion (e.g., with δ = 1) did not improve results and added a
significant computational overhead.

4In practice, localization noise also contributes to re-projection error
and ε∗ needs to allow for this as well.



Figure 4: Near-rigid triangle discovery and segmentation results for three sequences—the person sequence from [22], the tear sequence
from Figure 1, and a two-cloth sequence, with two independently-deforming bodies (a thick tablecloth and a thin scarf). In all cases,
unfilled triangles denote the Delaunay triangulation of tracked feature points. Filled triangles are the subset identified as near-rigid; orange
triangles denote triangles identified as non-generic and discarded. Other colors indicate object membership. In the leftmost sequence, most
features tracked on the head were lost or occluded due to head rotation.

3.2. Flexible Triangle Pairs

When two feature triplets have two features in common, the
rigid triangles produced by 3-SFM are highly constrained
(Figure 5a). We call these triangles a flexible triangle pair.
Intuitively, triangles in a flexible pair behave like a “loose
hinge:” even though each is rigid, their relative pose can
change freely from image to image along an implicit hinge
axis, to account for deformations (e.g., bending). Addi-
tional degrees of freedom come from the tolerance ε∗ on
re-projection error: by allowing independent minor adjust-
ments to the triangles’ other pose parameters, this tolerance
makes them fit small shape distortions that do not have a
simple parametric form. In this respect, a flexible pair can
be thought of as an implicit, non-parametric model of local
deformation. We make extensive use of this model below,
to analyze non-rigid deformation at a global level.

3.3. Grouping Triangles into Non-Rigid Bodies

Flexible triangle pairs occur only when four scene points
preserve at least five of their pairwise distances across the
entire sequence. As such, the existence of a flexible pair is
a strong cue for local connectivity, i.e., that all four scene
points belong to the same rigid or non-rigid body. We use
this cue in a simple three-step algorithm that groups recon-
structed triangles into objects: (1) define a graph that has a
node for every reconstructed triangle and an edge for every
flexible pair; (2) find the graph’s connected components;
and (3) treat each component as a separate, independently-
moving body. Figure 4 shows some examples.

4. Full 3D Reconstruction
Sections 2 and 3 suggest that one can go a long way with
strictly local geometric processing: measuring distances
between nearby scene points, estimating instantaneous lo-
cal surface orientation (up to reflection), and motion-based
grouping are all possible without reasoning about global 3D
geometry. Local processing, however, hits its limit for tasks
where the outstanding triangle ambiguities—reflection state
and depth translation—must be resolved. To do this, we
consider all near-rigid triangles on a body simultaneously.
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2
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3
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1
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2 pb
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state 0 state 0

(a)
state 0 state 1
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Figure 5: (a) A flexible triangle pair computed by running 3-SFM
independently on features q1,q2,q3 and q2,q3,q4. Since q2 and
q3 participate in both computations, they act as a “hinge” con-
straint on the flexible pair’s triangles, pa

1 ,pa
2 ,pa

3 and pb
1,p

b
2,p

b
3:

the triangles’ pose in any given image must keep two vertices and
the edge between them (shown in green) aligned. This alignment
will be approximate for re-projection tolerances ε∗ > 0. (b) Flip-
ping the reflection state of the rightmost 3D triangle in (a) causes
a misalignment of the flexible pair’s hinge edges (green).

4.1. Recovering Instantaneous Depths

Recovering the depth of a connected component of trian-
gles is easy once we know their reflection states. We as-
sume below that all these states are known and revisit their
computation in Section 4.2.

If two feature triplets on the same body have a feature in
common, the triangles produced by 3-SFM must agree on
the depth of the common feature in every image (Figure 5a).
For a specific image n, this gives an equality constraint that
links the absolute depth of a vertex i on one triangle and a



vertex j on the other:

za
1n + (za

in − za
1n) = zb

1n + (zb
jn − zb

1n) ⇔ (11)

za
1n − zb

1n = sb
nj |zb

jn − zb
1n| − sa

ni |za
in − za

1n| ,

where a, b denote the two triangles; |za
in − za

1n|, |zb
jn − zb

1n|
are the unsigned relative depths returned by 3-SFM; and
sa

ni, s
b
nj are their signs. Since reflection states are known,

these signs are known as well. Equation (11) is therefore
linear in the unknown absolute depths, za

1n and zb
1n.

By applying Eq. (11) to all triplets with common features on
the same body, we get a linear system of equations that typ-
ically contains many more equations than unknowns. We
solve the system independently for each image and each
body to get the instantaneous depth of every triangle up to a
global depth translation.5

4.2. Determining Reflection States
A set of T triangles defines T×N binary variables—one re-
flection state per triangle per image. We seek an assignment
to these variables that conforms to two basic geometric con-
straints: (1) the angle between hinge edges in a flexible pair
should be the smallest possible in every image (Figure 5b)
and (2) the pose of each triangle should change as little as
possible from one video frame to the next. These constraints
are sufficient to constrain reflection state assignments in all
but two special cases involving fronto-parallelism.6

Both constraints can be encoded in a constraint graph whose
nodes are the T × N reflection state variables and whose
edges represent the geometric constraints between them.
Since triangle poses are noisy and constraints vary with ori-
entation, this assignment is most appropriately expressed
as an energy minimization problem over a binary Markov
random field. Unfortunately, the energies involved are not
sub-modular [33], making optimization difficult. Moreover,
current methods [34] either provide just a partial solution
(QPBO) or improve an existing one (QPBOI). As optimiza-
tion is not our focus, we use a simpler (but inferior) ap-
proach: we greedily assign values to all reflection state vari-
ables in the graph using a constraint propagation scheme.

More specifically, each edge in the graph couples the re-
flection states of two triangles. This coupling is “strong”
when a flip in one triangle’s reflection state causes a signif-
icant misalignment (e.g., Figure 5) and is “weak” when all
combinations of reflection states for the two triangles yield
nearly-identical alignment (e.g., due to fronto-parallelism).
We model this by assigning to each edge a weight that de-
scribes how strongly two triangles mutually constrain their
reflection state. We then propagate reflection states in four
steps: (1) compute a minimum spanning forest; (2) choose

5Since this final depth ambiguity cannot be resolved under orthography,
we arbitrarily set to zero the average depth of each object.

6Specifically, if a hinge edge in a flexible pair becomes fronto-parallel
in some image, all combinations of reflection states produce identical an-
gles for that flexible pair in that image. Similarly, if a moving triangle
becomes fronto-parallel, its pose relative to the next frame will be identi-
cal for both reflection states.

a node, make it the root and assign it an arbitrary reflec-
tion state; (3) traverse the spanning tree starting from the
root, assigning to each child the reflection state that max-
imizes geometric alignment with its parent; and (4) repeat
these steps until all nodes are visited. Our optimization is
implemented exactly as stated (i.e., no missing steps) and
determined by two functionals—edge weights and pairwise
alignment costs. See the supplementary materials and [35]
for details.

The result of this procedure is a complete assignment of re-
flection states to all triangles in all images. It is important
to note, however, that this assignment will be ambiguous if
the graph is not connected. The most common example in-
volves different bodies, as computed in Section 3.3. A more
subtle case involves connectivity breaks within a body. For
example, if a surface deforms into a fronto-parallel plane
somewhere in the sequence, it is impossible to tell whether
the surface crosses the image plane after that event or stays
on one side of it. Here we follow a principle of least com-
mitment: we recover triangle depths independently for each
component (Section 4.1) and never attempt to combine the
resulting triangle “soups”—even if they belong to the same
body. We believe that this is most appropriately handled at
a higher-level of processing, not within the realm of purely
geometric, prior-free SFM computations.

5. Experimental Results
We applied locally-rigid SFM to a variety of challenging
video and motion-capture (mocap) sequences, ranging
from 37 to 1000 images. We discuss some of them below;
see supplementary materials and [35] for videos, code and
more results. To get feature trajectories from video, we
initialized a standard tracker [36] at 150 randomly-chosen
corners in one frame of each sequence. For mocap, we
simply projected 3D feature trajectories along the z-axis to
obtain an orthographic sequence. We applied our algorithm
to raw trajectory data in all cases, completely automatically,
and with identical parameters except for the tolerance ε∗
(it took one of three values as noted below). The result is
a collection of triangle “soups” (Section 4.2), with body
labels attached (Section 3.3).
Baseline accuracy of 3-SFM We synthetically generated
N random orthographic views of an equilateral triangle
with 3D edge length L and added Gaussian noise of
standard deviation σ. The top table in Figure 6 shows that
3D error varies linearly with σ: with 20% noise added to
each point in each frame, the RMS error is just 19% of L.
Ground-truth evaluation Sequences corresponding to
random 3D orientations represent the best-case scenario for
3D reconstruction; to assess the accuracy of reconstructed
triangle soups under more realistic conditions, we used two
mocap-derived sequences: a sheet of paper held in front of
a blowing fan, captured with a Vicon system (Wind); and
a face sequence from [5] (Jacky). Following the approach
in [8], we added Gaussian noise of standard deviation
σ = ρ

100μ to every point in every frame, where μ is the
maximum distance of image points from their centroid
across all frames (i.e., ρ represents % image error). We
measure accuracy by computing the absolute RMS 3D error



between the reconstruction and the mocap “ground truth”
over all points and all frames. Since 2D points correspond-
ing to more than one triangle in the reconstructed soup are
assigned one 3D coordinate per triangle, we average these
coordinates before computing RMS error.
The second table in Figure 6 shows accuracy comparisons
for four methods (ours, ours+QPBOI, and [5, 8]). Our ap-
proach has comparable performance on the Jacky sequence
and significantly outperforms the state-of-the-art [5, 8] on
the Wind sequence. Jacky, one of the few ground-truth
evaluation datasets for non-rigid SFM, is in fact nearly
rigid: singular value analysis on the centered measurement
matrix shows that 96% of the variance is explained by rigid
motion. In contrast, only 84% of the variance is explained
this way on Wind—i.e., locally-rigid SFM can handle
more significant non-rigidity. Taken together, these results
suggest that locally-rigid SFM is effective in reconstructing
accurate 3D shape even under noisy conditions and strong
deformation; that local minima are generally not a problem
for 3-SFM; and that QPBOI, although arguably more
principled, offers minor improvement.
Video sequences We applied our algorithm to a variety
of 30Hz video sequences from the literature [20, 22, 37];
Figure 6 shows results from one of them, Paper. Unlike
previous attempts to reconstruct this scene, ours assumes
orthography and does not need a user-defined mesh, surface
texture, manual alignment [16], or a reference pose [37].
We also used our algorithm to reconstruct a set of very
challenging deformations (tearing, flapping), never before
reconstructed monocularly. The motions themselves very
brief—lasting about 0.2s each—and could only be captured
with a high-speed video camera. We used a MEMRECAM
to do this at 500Hz. The captured sequences were charac-
terized by rapid deformation, changes in surface topology,
lost or mismatched features, and occlusion.
Discussion Four observations can be made about our re-
sults. First, we are aware of no methods for non-rigid
SFM that have demonstrated 3D reconstructions on a simi-
lar range of sequences (e.g., raw tracks, significant deforma-
tions, more than one body, etc.). Second, existing methods
assume that features belong to one deforming object and
thus implicitly assume pre-segmentation. In contrast, since
locally-rigid motion computations are local, they have no
trouble handling multiple bodies and topological changes.
Third, while many methods can handle missing features,
they implicitly assume that there no outliers or bad tracks
(e.g., [5,8]). Here we identify and remove them, via 3-SFM.
The price we pay for this flexibility is reliance on tracking
individual points: if a track gets lost, so will some triangles.
Fourth, despite the difficulty of the sequences we tested,
the recovered soups are plausible and the deformations are
highly detailed (see videos). This suggests that local rigid-
ity is applicable to a broad spectrum of deformations.

6. Concluding Remarks
We consider locally-rigid SFM to be a first—but not
last—word on bottom-up structure from motion for general
non-rigid settings. Although we relied on fairly unso-
phisticated methods for processing triangle soups, more

advanced techniques are surely possible. We are currently
investigating several such directions, including (1) com-
bining 3-SFM with RANSAC for increased robustness, (2)
using spectral methods for triangle grouping, (3) building
spatiotemporally-coherent surface models from triangle
soups, and (4) taking surface texture into account.
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Figure 6: Experimental results. Top table: Relative 3D error as a function of σ, averaged over 25 runs per σ-value. We used RMSE =
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in are reconstructed and ground-truth vertices, respectively, in frame n. Bottom table:
Ground-truth accuracy results for (1) locally-rigid SFM using the greedy approach of Section 4.2; (2) after refining reflection states with
QPBOI; and (3) using the methods of [5] and [8]. For these, we used author-supplied code and report RMSE for the number of basis
shapes minimizing it. Reconstruction results: Please zoom in to the electronic images for a detailed view of each reconstruction. All
renderings in each sequence are from the same viewpoint. For Wind and Jacky, blue dots represent ground-truth 3D points while red dots
are reconstructed triangle vertices. These vertices align very well with the ground-truth—in contrast, [5] and [8] yield shapes that are
clearly incorrect forWind. This also occurs in the Paper sequence, where the method of [5] fails to recover the paper’s bent shape.
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