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Abstract
We present a new method for reconstructing the exterior

surface of a complex transparent scene with inhomogeneous
interior (e.g., multiple interfaces, reflective or painted inte-
riors, etc). Our approach involves capturing images of the
scene from one or more viewpoints while moving a proxi-
mal light source to a 2D or 3D set of positions. This gives
a 2D (or 3D) dataset per pixel, called the scatter trace. The
key idea of our approach is that even though light trans-
port within a transparent scene’s interior can be exceed-
ingly complex, the scatter trace of each pixel has a highly-
constrained geometry that (1) reveals the contribution of di-
rect surface reflection, and (2) leads to a simple “scatter-
trace stereo” algorithm for computing the local geometry of
the exterior surface (depth and surface normals). We present
3D reconstruction results for a variety of scenes that exhibit
complex light transport phenomena.

1. Introduction

A major ingredient in the success of recent 3D photog-
raphy algorithms is their ability to deal with surface inho-
mogeneity, i.e., to produce accurate 3D models even when
a scene’s surfaces span a broad range of shape and mate-
rial properties [1–4]. These algorithms apply exclusively
to opaque surfaces that scatter incident light, and cannot
handle scenes that contain transparent or highly-reflective
media. For such scenes, the state of the art in reconstruc-
tion [5–11] is still confined to the simplest possible case—a
surface bounding a single, homogeneous, transparent vol-
ume with no internal structures and no occlusion—and even
this case cannot be solved without further assumptions (e.g.,
partially-known geometry [6, 7], a volume that causes no
more than two refractions [8], or ability to immerse in a
refractive-index-matched liquid [9]). Unfortunately, while
objects with transparent media are very common (Figure 1),
they rarely appear in isolation and rarely have a simple
enough shape to fall within the realm of existing techniques.
For such objects, research has concentrated on capturing
their appearance rather than reconstructing them [12, 13].

The difficulty in reconstructing such scenes stems from
the complex relation between their appearance, their exte-
rior 3D shape, and the structure of their interior. This ap-
pearance can be heavily influenced by several light trans-
port phenomena, including one or more refractions; total
internal reflection; absorption and scattering at an interior
interface; and reflection at an exterior surface. Inverting the

Figure 1: Two objects used in our experiments: A hand-made
solid crystal sculpture with a painted interior (about 30cm tall),
and a partly-full juice bottle. The red arrow highlights the pixel
used in the example of Figure 6, bottom right.

interior light transport process under these conditions has
proved very difficult.

Motivated by these difficulties, this paper develops an
approach for reconstructing the exterior of general, inhomo-
geneous transparent scenes with three basic goals in mind:

• Invariance to scene interior: To the extent possi-
ble, reconstruction performance should depend on the
scene’s exterior surfaces, not the structure and com-
plexity of media in the interior.

• Robustness to spatially-varying reflectance and
transmittance: Reconstruction algorithms should be
able to handle a wide range of surface reflectance and
transmittance properties.

• Compatibility with existing methods: It should be
possible to leverage developments in 3D photography
of opaque scenes to treat issues such as noise, missing
data, and occlusions.

To achieve these goals, we rely on the well-known fact that
transparent scenes reflect some of the incident light, thereby
behaving as partial, non-ideal specular reflectors [14, 15].
Using this as a starting point, we develop a novel technique
based on scatter-trace photography that is specifically de-
signed to analyze these reflections.

Scatter-trace photography involves capturing images of
the scene from one or more viewpoints while moving a
proximal light source to a 2D (or 3D) set of positions. This
produces a 2D (or 3D) set of measurements per pixel, which
we call the pixel’s scatter trace. Intuitively, the scatter trace
of a pixel can be thought of as a “photograph” of the trajec-
tories that light followed before interacting with the scene,



and before arriving at the given pixel (Figure 2).
The key property of the scatter trace is that direct sur-

face reflection leaves a highly-constrained geometric “sig-
nature” in it, even when light transport within the scene’s
interior is very complex. Moreover, this signature is espe-
cially prominent when the direct reflection component in-
cludes a non-negligible contribution from specular reflec-
tion. This observation leads to three main results. First,
it gives rise to a geometry-based method for enhancing the
contrast of the direct reflection component in each scatter
trace, relative to all other modes of light transport. Sec-
ond, it allows us to reduce reconstruction of inhomogeneous
scenes with non-negligible specular reflectance to a gener-
alized form of stereo matching, where we establish corre-
spondences by comparing appropriately-processed scatter
traces rather than raw pixel intensities. Third, we show that
this process provides detailed information about surface ori-
entation, at sub-pixel resolution.

Our work relies on the existence of a non-negligible
specular reflection component to recover 3D shape and, as
such, it is closely related to specular stereo methods [16–
20]. These methods recover shape by analyzing the dis-
torted appearance of patterns placed near an opaque, mirror-
like scene. Of particular relevance is the work of Bon-
fort, Sturm and Gargallo [21] and Kutulakos and Steger [8],
whose goal is to reconstruct the light path that connects each
pixel in the image with two known 3D points that project
to that pixel. Both approaches rely on an idealized im-
age formation model, where light is transported along an
infinitely-thin, single-bounce path corresponding to direct
specular reflection off an opaque mirror. Our approach can
be thought of as generalizing these methods to the case of
non-ideal, inhomogeneous transparent scenes, i.e., scenes
whose interior contributes significantly to appearance and
whose exterior is not perfectly specular.

Although we do not explicitly decompose photos into di-
rect, indirect, and specular components, a weaker form of
separation—relative contrast enhancement—occurs implic-
itly as part of our generalized stereo matching procedure.
In this respect, our work can also be viewed as a geometry-
driven alternative to existing layer decomposition methods
(direct vs. indirect [22, 23], specular vs. diffuse [25], re-
flected vs. transmitted [15, 26]). These methods employ a
variety of tools, including active illumination [22, 23], po-
larization analysis [24], optical flow estimation [15], and
natural image statistics [27]. Unfortunately, none of them
apply to the case of general, inhomogeneous transparent
scenes. For example, recent algorithms for direct/indirect
separation [22, 23] break down in the presence of strong
specular reflection, and polarization state stops being a ro-
bust separation cue in the presence of refraction, reflection
and scattering in a scene’s unknown interior.

Our work offers four main contributions over the cur-
rent state of the art. First, we derive a simple “scatter-
trace stereo” algorithm for reconstructing the exteriors of
scenes with transparent surfaces and inhomogeneous inte-
riors. Second, we show that scatter-trace photography pro-
vides a natural means for revealing the scattering properties
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Figure 2: Center, back to front: a teapot made of thin glass about
2mm-thick; a solid crystal ornament with an internal air bubble;
a mug with a 2mm-thick enclosure made of clear plastic and an
opaque interior cavity made of a purple specular material (see Fig-
ure 6, bottom right for another view). Sidebars: Scatter traces for
the four pixels indicated by arrows. These pixels receive light (1)
by direct reflection at an opaque point; (2) by direct reflection and
by internal reflection at the back-surface of the thin teapot wall;
(3) by direct reflection and by a secondary internal reflection; and
(4) by direct reflection, internal reflection at the back-surface of
the clear enclosure, and internal reflection off the purple interior.
Note the distinct “traces” associated with each propagation mode.

of complex scenes. Third, by reducing the reconstruction
problem to a simple pairwise pixel-matching criterion, our
work suggests that reconstruction of inhomogeneous trans-
parent scenes may be possible by simply replacing the “data
term” in existing stereo formulations. Fourth, our results
show that scatter trace analysis enables reconstruction in
the presence of complex shapes and spatially-varying sur-
face reflectance and transmittance properties. We are not
aware of other image-based methods capable of reconstruct-
ing scenes of this optical complexity.

2. Scatter-Trace Photography

Scatter-trace photography provides a convenient way to
capture the interaction of a scene with proximal point light
sources and viewpoints. The most general way of “prob-
ing” this interaction is to place a point light source at some
position near the scene, emit radiance only within a dif-
ferential solid angle along some direction, and then mea-
sure incident radiance at some other position and direction
(Figure 3a). The set of all such measurements is a ten-
dimensional function that we call the plenoptic scatter func-
tion. This function describes how the scene scatters inci-
dent light and takes into account distance-dependent effects
(e.g., that objects appear dimmer as the point light source
moves farther away from them). As such, the plenoptic
scatter function generalizes the familiar notions of the 4D
light field [28], the 5D plenoptic function [29], and the 8D
reflectance field [12, 25].

The plenoptic scatter function has extremely high dimen-
sionality and would be very difficult to capture. Scatter-
trace photography captures a specific 5D (or 4D) “slice” of
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Figure 3: (a) To obtain a sample of the plenoptic scatter function
we must choose a position and orientation for both the light source
and the sensor (five degrees of freedom each). (b) To measure the
scatter trace of pixels from a fixed viewpoint, we move the light
source to every point inside a region of space (shaded).

this function that is both easy to capture and provides strong
information about scene geometry. In particular, suppose
that we observe the scene from a single viewpoint while
illuminating it with an isotropic point light source (Fig-
ure 3b). In this case, every position (x, y, z) of the light
source produces a distinct image. This image represents ra-
diance that leaves the source equally in all directions and
reaches the camera’s image plane after interacting with the
scene.1

Scatter-trace photography involves moving such a light
source to every position within a volume of space, to ob-
tain a 3D set of 2D images. Every pixel q on the camera’s
image plane is then associated with a volume of measure-
ments, one for each light source position. We call these
measurements the scatter trace of pixel q:

Definition 1 (Scatter Trace of pixel q) Tq(L) is the incident ra-
diance at q when the light source is at point L.

Note that if a pixel’s scatter trace is zero for some light
source position, then no light passing through that position
can possibly contribute radiance to that pixel. Therefore,
the non-zero region of a pixel’s scatter trace is the set of all
points that light can pass through to reach that pixel.

2.1. Direct and Indirect Scatter Traces

Since light transport is linear, we can express the scatter
trace as a sum of two components

Tq = T D
q + T I

q , (1)

where T D
q represents the contribution of direct surface re-

flection and T I
q represents the contribution of indirect light

transport (i.e., refraction, total internal reflection, surface
inter-reflection, caustics, etc).

In general, the indirect component will be a significant
fraction of the total scatter trace, and this fraction will vary
from pixel to pixel (Figure 2). Fortunately, the direct and the

1For simplicity, assume that pixels measure radiance directly [30].

indirect components of the scatter trace have a distinct spa-
tial structure. Here we exploit this difference to enhance the
contrast of the direct component and use it for single-view
reconstruction (Section 3.2) and multi-view stereo matching
(Section 4).

Since our analysis relies on the spatial structure of the
scatter trace, we consider below the scatter trace produced
by three basic types of light transport.

Direct reflection without scattering Consider an
infinitesimally-small pixel q that is perfectly focused at a
point on a planar mirror. As the lens aperture shrinks to a
zero, only light sources along one incident ray ξ will con-
tribute to the pixel’s radiance (Figure 4a). This ray is along
the direction of specular reflection. We call the resulting
scatter trace the impulse scatter trace, T ξ

q , of pixel q.
For a given light source position along this ray, the

radiance received at the in-focus surface point obeys a
squared-distance falloff [31]. Since the radiance at q cannot
be larger than this radiance, the impulse scatter trace is a
single “streak,” whose intensity diminishes with distance
from the point of reflection.

Generalized specular reflection If the surface point pro-
jecting to an infinitesimally-small pixel q is not a planar
mirror, the pixel will receive light even from light sources
that are not on a single ray. To account for this behavior, we
model the micro-geometry of exterior and interior surfaces
as a distribution of planar micro-facets that varies arbitrarily
from point to point [32]. Furthermore, we assume that each
micro-facet acts as a mirror reflector, with minimal masking
or shadowing [33]. This model accurately represents the re-
flectance properties of smooth surfaces (e.g., glass, polished
metal) and accounts for high-curvature reflectors.

Consider the surface point Q that projects to pixel q. We
can express the point’s micro-facet distribution as a proba-
bility distribution D(θ, φ) over the unit sphere, with the an-
gles (θ, φ) corresponding to a unique normal. In this case,
the scatter trace is a weighted superposition of impulse scat-
ter traces, one for each incoming ray (Figure 4b):

T D
q (L) =

∫
rays through Q

D(θξ, φξ) T ξ
q(L) dξ , (2)

where the normal (θξ, φξ) is the bisector of ray ξ and the
visual ray through pixel q.

Intuitively, as the surface at the point departs from
a planar mirror, the scatter trace spreads into a “fan”
of converging streaks (Figure 2, pixel 1). The point of
convergence of this fan is always the surface point pro-
jecting to pixel q. Moreover, the fan’s intensity decreases
monotonically in a radial direction away from that point.

General indirect reflection/transmission Now suppose
that all light received at pixel q is due to one or more in-
direct reflection and/or transmission events. Again, we can
express the scatter trace as a weighted combination of im-
pulse scatter traces, although the set of scatter traces par-
ticipating in this combination is much more general: each
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Figure 4: (a) Scatter trace due to reflection off a planar mirror. The radiance contributing to a finite-sized pixel q is transported along
a bundle of rays that originate at q; pass through the lens aperture; are specularly reflected at a small in-focus planar facet Q; and
converge at the light source position. The radiance at pixel q is therefore bounded from above by the total radiance incident at Q, i.e.,
the radiance transported along the blue-shaded region. In the limit, as the size of q,Q and the aperture goes to zero, the scatter trace
becomes concentrated on a single ray ξ and defines the impulse scatter trace along ξ. (b) Generalized specular reflection produces a “fan”
of impulse scatter traces (only 3 are shown, for clarity). (c) The indirect scatter trace produced by light transport along 3 paths ending at q.

impulse scatter trace in this set represents the contribution
of light that travels along an arbitrary ray ξ until it hits the
object, and then follows a general piecewise-linear path to
pixel q (Figure 4c):

T I
q(L) =

∫
all rays

τq(ξ) T ξ
q(L) dξ . (3)

Here, the weight τq(ξ) is the fraction of radiance trans-
ported to pixel q from the point of first contact of ray ξ
with the object.

Unlike the case of direct reflection, the scatter trace
produced by indirect reflection is much less constrained
(Figure 2, pixels 2-4). In general, the “streaks” it contains
will not converge to a single point and, even if they do
(which is a non-generic event), their point of convergence
is not constrained to lie on the visual ray through pixel q.

2D scatter traces So far, we have assumed that the point
light source moves to a 3D set of positions. This is rather
inefficient. In practice, we obtain an equivalent set of mea-
surements by illuminating the scene with a linear light
source (e.g., aligned with the z-axis) and moving it to a 2D
set of positions (e.g., on the xy-plane). This procedure gives
us a reduced, 2D scatter trace per pixel that has exactly the
same properties as its 3D counterpart (see Appendix). Our
analysis below applies both to 3D and 2D scatter traces.

3. 3D Shape from Scatter-Trace Constraints

The previous section showed that the direct component
of a pixel’s scatter trace is a superposition of impulse scatter
traces (i.e., “streaks”) that satisfy three basic constraints:

• Viewing-ray intersection: They must all intersect the
pixel’s viewing ray.

• Convergence: They must converge to a single point
on the viewing ray, and this point must coincide with
the surface point that caused the direct reflection.

• Monotonicity: Their intensity must decrease mono-
tonically in a radial direction away from the conver-
gence point.

Given a hypothesized depth for a pixel q, it is possible
to use these constraints to decompose its scatter trace into
two components—an estimated direct component, T D

qd, that
is fully-consistent with both the hypothesized depth d and
the above constraints, and a component that is not:

Tq = T D
qd + T I

qd . (4)

This observation, which forms the key idea of our shape re-
covery approach, allows us to assign a “consistency mea-
sure” to each depth hypothesis. In the single-view case,
we use a measure that evaluates the consistency of the es-
timated direct component with pixel’s entire scatter trace.
When multiple views are available, our measure evaluates
the mutual consistency of the estimated direct component
at corresponding pixels in the input views. Since both mea-
sures depend on the problem of estimating the direct scatter
trace, we consider this problem first.

3.1. Estimating the Direct Scatter Trace

In the absence of additional information about the scene,
the decomposition of Eq. (4) is not unique.2 In light of this
ambiguity, we compute the most conservative estimate of
the direct component, i.e., an estimate that is guaranteed to
be at least as large as that of the “true” direct scatter trace
when the hypothesis corresponds to the correct depth d∗:

T D
qd∗(L) ≥ T D

q (L) for all L . (5)

We do this by enforcing the convergence and monotonicity
constraints in succession.

In particular, each depth d defines a unique 3D con-
vergence point, Qd, for all “streaks” of the direct compo-
nent. These streaks must therefore lie on the pencil of rays
through Qd. To enforce the convergence constraint, we rec-
tify the pixel’s scatter trace so that all these rays become
parallel to the x axis of the coordinate system. This is a
linear projective warp that maps point Qd to the point at

2For example, an estimated direct component that is zero everywhere
trivially satisfies the three constraints, for any depth.
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infinity along x. In two dimensions, it corresponds to stan-
dard epipolar image rectification [34] with the epipole at Qd

(Figure 5-1).
Every line parallel to the x axis in this rectified scat-

ter trace corresponds to a distinct ray through Qd. Ge-
ometrically, the rectification operation converts the scatter
trace’s original spatial (x, y, z) coordinates into coordinates
(x′, y′, z′) that encode ray direction (coordinates y′ and z′)
and position along the ray (coordinate x′). In this coordi-
nate system, the monotonicity constraint tells us that the
intensity of the direct component must be non-increasing
along the x′-axis. Since we are dealing with discrete mea-
surements, we enforce the constraint recursively by simply
computing a “running minimum” across points of the recti-
fied scatter trace in the x′-direction (Figure 5-2):

T D
qd( L′) = min

(
Tq( L′) , T D

qd( L′ − X′ )
)

, (6)

where L′ denotes a scatter trace point in rectified coordi-
nates and X′ is the unit vector along the x′-axis.

Note that the computation in Eq. (6) leaves unaffected
any signal that decreases monotonically along the x′-axis.
As such, it will not attenuate the pixel’s “true” direct scatter
trace when rectification occurs at the correct depth. Intu-
itively, this maximally-conservative, depth-based estimate
of the direct scatter trace can be thought of as a scatter trace
whose direct component is contrast-enhanced at the correct
depth. This is because the “true” indirect scatter trace will
typically not satisfy all three constraints (ray intersection,
convergence, monotonicity) and, hence, will be attenuated
for every depth hypothesis.

3.2. Single-View Shape from the Scatter Trace

If we know in advance that a pixel’s indirect scatter trace
is negligible (e.g., we know that the point projecting to the
pixel is opaque and receives few inter-reflections), the above
estimation procedure leads to a very simple single-view
depth estimation algorithm—we just search for the depth
along each pixel’s viewing ray that best explains the scatter
trace as a pure direct component.

In practice, we discretize the depths and evaluate the
consistency between Tq and T D

qd for each pixel q and depth

d. To do this, we first measure the point-wise consistency
between these two scatter traces under the assumption of
additive Gaussian noise with standard deviation σ,

W (d, L′) = exp− 1
σ2

[
Tq(L′) − T D

qd(L
′)

]2
, (7)

and then use this consistency to enhance the direct compo-
nent in the original scatter trace measurements (Figure 5-3):

Tqd(L′) = W (d, L′) Tq(L′) . (8)

In effect, this enhancement operation weighs each orig-
inal scatter trace measurement by an upper-bound estimate
of the likelihood that it was due to direct reflection. Our fi-
nal metric aggregates the weighted measurements in Eq. (8)
across all positions:

C1(d) =
∑
L′

Tqd(L′) . (9)

The metric computes the total mass of measurements ex-
plained by a given depth d, under the condition that they are
due to direct reflection. To assign depth, we maximize it.

4. Scatter-Trace Stereo

The indirect component of the scatter trace cannot be ig-
nored when reconstructing scenes with transparent surfaces.
This means that we cannot use the criterion in Eq. (9) to as-
sess the validity of a given depth hypothesis. We therefore
generalize our single-view analysis by evaluating the mu-
tual consistency of scatter traces at corresponding pixels in
two or more views.

In particular, let q1,q2 be a hypothesized correspon-
dence between two pixels in a pair of views, let d be the
depth implied by this correspondence, and let Tq1d and
Tq2d be their rectified and depth-enhanced scatter traces
(Eqs. (6)-(8)). To compare these two scatter traces, we
first warp them in a way that makes point-wise compar-
isons meaningful and then simply compute their cross-
correlation:

C2(d) =
∑
L′′

Tq1d(L′′) Tq2d(L′′) , (10)



where L′′ denotes positions in warped coordinates and

Tq1d , Tq2d denote the “aligned” versions of Tq1d , Tq2d .
At a superficial level, the metric in Eq. (10) can be thought
of as a direct extension of traditional correlation-based
stereo matching to multi-view scatter-trace photography.

The two outstanding questions are how to define the
alignment warps in the two views, and under what condi-
tions is the cross-correlation in Eq. (10) physically mean-
ingful? We answer both questions by observing that the
depth-enhanced scatter traces strongly constrain the nor-
mal(s) of the surface point Qd, projecting to the two pixels.

Every line along the x′-axis of the rectified coordinate
system corresponds to a unique ray of incidence at point
Qd. Given a pixel qi and such a ray, there is a unique sur-
face normal that specularly reflects light to pixel qi from
light sources on that ray (Figure 5, far left). This normal
is the bisector of the ray of incidence and the visual ray
through pixel qi, and can be represented by two angles,
θi(y′, z′) and φi(y′, z′).

A high value of the direct scatter trace for a position
(x′, y′, z′) along a specific ray of incidence can be inter-
preted as a “vote” for its corresponding normal. More gen-
erally, the depth-enhanced scatter trace along view i can be
thought of as voting for the micro-facet distribution at point
Qd. To compare two such scatter traces point by point,
we align them so that points in two different scatter traces
correspond to the same normal. This alignment operation
transforms rectified coordinates (x′, y′, z′) into a surface-
centered, x′θφ-coordinate system that is defined in terms of
the surface normal at the hypothesized depth (Figure 5-4):

Tqid(x
′, θi(y′, z′), φi(y′, z′)) = Tqid(x

′, y′, z′) . (11)

In this coordinate system, the cross-correlation of
Eq. (10) can be thought of as measuring the intersection
of two micro-facet distributions. It will be maximized at
the depth where there is maximal overlap between them,
i.e., where their intersection maximally accounts for the es-
timated direct scatter traces in both views. The distribution
itself can be computed by aggregating the votes for each
normal at the depth d that maximizes Eq. (10), i.e.,

D(θ, φ) =
∑
x′

Tq1d(x′, θ, φ) Tq2d(x′, θ, φ) . (12)

Therefore, maximizing Eq. (10) leads to a highly-
detailed description of the local surface projecting to each
pixel—both a depth d and its micro-facet distribution.

5. Experimental Results

We acquired 2D scatter traces using the acquisition setup
in Figure 6, bottom right, with the camera about 1m away
from the objects. A 2-pixel-wide vertical stripe on the LCD
monitor acted as our light source, giving us 797 distinct po-
sitions that spanned a range of 41cm in the y-direction. The
monitor was physically translated in the x-direction to 6 po-
sitions, spanning a range of 6cm depending on the scene.

Instead of displaying vertical stripes individually, we dis-
played Hadamard patterns according to Schechner et al.’s il-
lumination multiplexing method [35]. Objects were placed
on a turntable and rotated by 10◦ from their initial position
to obtain a stereo pair. Neither the camera nor the LCD
were calibrated radiometrically. For geometric calibration,
we used a procedure similar to [21].

Since depth can be computed only for pixels that re-
ceive some light, pixels whose entire scatter trace was below
an intensity threshold were pruned prior to reconstruction.
We used a threshold equal to K times the median intensity
across all scatter traces and all pixels. This “global” median
can be thought of as providing an estimate of the noise level
in the dataset—since each pixel receives light from only a
small subset of light source positions, intensities below this
median are effectively due to noise. We used K = 10 for
all experiments.

We assigned depth independently to each pixel in the first
view by first evaluating metric C2(d) in Eq. (10) at every
possible integer disparity, and then “naively” choosing the
disparity that maximized this metric. Since we relied on
integer disparities, depth resolution was about 2mm. To
assign a surface normal, we used the peak of the pixel’s
normal distribution, D, computed for that disparity. We did
not apply any post-processing to the computed points and
normals (e.g., smoothing, outlier rejection, etc). Our recon-
struction procedure did not involve any tunable parameters.
Fish sculpture This scene represents an “easy” case for
our method: its shape allowed a reasonably complete re-
construction because most pixels in its footprint received
some illumination via direct specular reflection (Figures 1
and 6). Despite the fact that all pixels were reconstructed
independently, both the depth map and the normal map are
highly uniform and capture fine surface details, including
high-curvature regions near the beak and the eye. To assess
ground-truth reconstruction accuracy, we attached corner-
like markers at nine positions spanning the object’s sur-
face and used a hand-held 3D point probe to digitize their
ground-truth 3D coordinates. RMS reconstruction error for
these points was 1.4mm.

Failures of the method correspond to (1) “missing” pix-
els, that were not reconstructed at all because they did not
receive any light from the light source, and (2) reconstructed
points that deviated significantly from their “true” positions.
The latter type of failure occurs at pixels near the object’s
silhouette, where the surface is viewed very obliquely, and
at pixels where the direct reflection component has small
magnitude. These pixels are readily identifiable because the
magnitude of the matching criterion at the optimal depth,
maxd C2(d), is very low (Figure 6). Although we did not
attempt to do so, it should be possible to use this magnitude
as a confidence measure for outlier rejection.
Juice bottle The primary challenges in this scene were the
rather complex geometry of the bottle’s upper section and
the presence of an opaque label on the surface. Our method
was able to reconstruct the label’s surface quite well, al-
beit with more noise compared to the regions of exposed
glass. While depths and normals in those regions were re-



constructed well, the presence of self-occlusions and high
curvatures meant that relatively few visible surface points
reflected light toward the camera. This caused significant
gaps in the reconstruction, which would require additional
viewpoints to complete. In this respect, our approach is sig-
nificantly less efficient than techniques for reconstructing
opaque non-specular scenes, where almost all surface points
visible to a pair of views can be reconstructed in one step.
Multiple objects This was by far the most challenging
scene, with a variety of complex light transport phenomena
and occlusions. Three observations can be made about our
results. First, despite this complexity, we obtained detailed
reconstructions for significant parts of the scene, including
small high-curvature structures (e.g., a portion of the teapot
lid). RMS reconstruction error in this scene was 1.45mm,
evaluated for five points with known ground truth on the
three surfaces. Second, the specular reflectance properties
of the scene’s opaque regions were not sufficient to enable
their reconstruction in this case, because of the low magni-
tude of their scatter trace. Third, the high curvature of the
interior bubble and the lack of direct reflection at pixels in
its footprint led to the reconstruction of a “phantom” sur-
face. This artifact can be mitigated by collecting additional
views that cause more points on the exterior surface to re-
flect light directly toward the camera. More generally, how-
ever, we believe that correct treatment of interior structures
should involve reasoning analogous to occlusion handling
in multi-view stereo, where depth hypotheses are analyzed
globally, and reconstructed front-to-back (or outside-in).

6. Concluding Remarks

A key contribution of our work is to show that, despite
the highly-complex optical properties of inhomogeneous
transparent scenes, accurate reconstruction is indeed possi-
ble with simple algorithms. Looking forward, we believe
that even more general reconstruction problems are now
coming within reach. We are currently investigating the
reconstruction of complete surface models in the presence
of occlusions, and the reconstruction of scene interiors,
along with their surface.

Acknowledgements This work was supported in part by
the Natural Sciences and Engineering Research Council of
Canada under the RGPIN program, by the U.S. National
Science Foundation under Grant No. IIS-0413198, and by
the Province of Ontario under the OGSST and PREA pro-
grams.

Appendix: 2D scatter traces Suppose we illuminate the
scene with a linear light source that is oriented along the z
axis and can move on the xy-plane. The radiance incident
at pixel q for light source position (x, y) is just the integral
of the pixel’s 3D scatter traces along z:

Tq(x, y) =
∫

Tq(x, y, z)dz . (13)

Now consider each of the three types of light transport dis-
cussed in Section 2.1 for the 3D case. If the point projecting

to q is a planar mirror, the above integral is just the 2D ana-
log of the 3D impulse scatter trace: it is equal to the ortho-
graphic projection of q’s 3D impulse scatter trace onto the
xy-plane. As such, (1) its value decreases monotonically
with increasing distance from the point of reflection, and (2)
it is non-zero along a single 2D ray that corresponds to the
direction of specular reflection, projected onto the xy-plane.
Analysis of the other cases follows as a direct consequence
of these two observations.
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Figure 6: Top rows and bottom-left: Reconstruction results for the scenes in Figures 1 and 2. Bottom right: Scatter traces and intermediate
results of applying the scatter trace stereo algorithm to the highlighted pixel in Figure 1(left). Scatter trace resolution was 6 × 797 and
coordinate axes are as in Figure 5. Note the double streaks, corresponding to a direct reflection component and a secondary component due
to indirect reflection (this occurs for almost all pixels in this scene). Also shown are the values of the matching criterion across disparities
and the recovered normal distribution (only one angle is shown). Note the unambiguous peak at the true disparity, δ = 18, despite the
presence of strong secondary illumination.
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