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Abstract
We investigate the feasibility of reconstructing an

arbitrarily-shaped specular scene (refractive or mirror-like)
from one or more viewpoints. By reducing shape recovery
to the problem of reconstructing individual 3D light paths
that cross the image plane, we obtain three key results. First,
we show how to compute the depth map of a specular scene
from a single viewpoint, when the scene redirects incoming
light just once. Second, for scenes where incoming light
undergoes two refractions or reflections, we show that three
viewpoints are sufficient to enable reconstruction in the gen-
eral case. Third, we show that it is impossible to recon-
struct individual light paths when light is redirected more
than twice. Our analysis assumes that, for every point on
the image plane, we know at least one 3D point on its light
path. This leads to reconstruction algorithms that rely on an
“environment matting” procedure to establish pixel-to-point
correspondences along a light path. Preliminary results for
a variety of scenes (mirror, glass, etc) are also presented.

1. Introduction

The reconstruction of general specular scenes, either re-
fractive or mirror-like, is one of the few remaining open
problems in visual reconstruction. Examples include scenes
that contain glass objects, mirrors, or liquids, where refrac-
tion and specular reflection dominate the image formation
process. Such scenes cannot be reconstructed by laser scan-
ners or by 3D reconstruction algorithms designed for ob-
jects that scatter incident light (e.g., [1–3]). Reconstructing
such scenes, on the other hand, could have implications in
many disciplines, including graphics [4, 5], optics [6, 7], 3-
D scanning [8, 9], and fluid modeling [10].

Specular objects do not have an “appearance” of their
own—they simply distort the appearance of other objects
nearby, creating an indirect view of the original objects.
Unlike perspective images, where 3D points project along
straight lines, indirect views are created by light that travels
along a piecewise-linear light path (Figure 1). The com-
plexity of this projection process and the difficulty of in-
verting it has brought about new image-based techniques,
such as environment matting [4, 5, 11], that side-step 3D re-
construction altogether. Instead of computing shape, they
compute the shape’s effect on appearance—all they recover
is a function that maps points on a pattern placed near the
scene to pixels in the pattern’s distorted, indirect view.

In this paper, we investigate the reconstruction of such
scenes with an approach that seeks to invert the indirect pro-
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Figure 1. Viewing a known reference point indirectly via (a)
an opaque specular scene (a mirror) and (b) a transparent
specular scene (a volume of water).

jection process. Despite the problem’s apparent intractabil-
ity in the general case, it is possible to characterize the class
of reconstructible scenes and to develop simple reconstruc-
tion algorithms for some important cases. In particular, our
work considers three questions:

• suppose we are given a function that maps each point
in the image to a 3D “reference point” that indirectly
projects to it; can we recover the point’s light path?

• if so, under what conditions?
• how do we design reconstruction algorithms that do

not impose any a priori constraints on the shape of
the unknown specular scene?

Little is known about how to address these questions in
the general case, although specialized reconstruction algo-
rithms for a few cases have been developed. The earliest al-
gorithms come from multi-media photogrammetry [12, 13],
where the scene is assumed to have a known parametric
form. These approaches solve a generalized structure-from-
motion problem that takes into account refractions and re-
flections caused by parametric surfaces with a few known
degrees of freedom (e.g., underwater objects viewed from
above a planar sea surface). An algorithm along these
lines was recently proposed by Ben Ezra and Nayar [14]
for reconstructing glass objects modeled as super-ellipsoids.
Knowledge of a scene’s low-order parametric form implies
that these techniques cannot be used for reconstructing ob-
jects with fine detail or with a complicated, unknown shape.

Most computer vision research on the topic has followed
a “shape-from-distortion” approach for reconstructing ei-
ther mirrors [9, 15] or liquids [16–18]. In this approach, 3D
shape is recovered by analyzing the distortion of a known
pattern placed near the specular surface. Unfortunately it
is impossible, in general, to reconstruct the 3D shape of
an unknown specular scene from just one image. This
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has prompted a variety of assumptions, including approxi-
mate planarity [17–19], surface smoothness [15], integrabil-
ity [9], and special optics [10, 16, 20]. These approaches are
restricted to the simplest forms of indirect viewing, where
light bounces at most once before reaching the camera (e.g.,
by reflecting off a mirror or refracting once through the
air-water boundary). Moreover, research on reconstruct-
ing glass objects has relied on either a silhouette-based ap-
proach [4], where an object’s specular properties are not ex-
ploited for reconstruction, or on analyzing the polarization
of light specularly reflected from their surface [21]. Un-
fortunately, silhouette-based approaches are limited to re-
covering a visual hull approximation and polarization-based
analysis is difficult when transmission, rather than specular
reflection, dominates image formation.

Our goal is to develop a general framework for analyzing
specular scenes that does not impose a priori assumptions
on the shape of their surfaces or the nature of their media
(e.g., opaque or transparent). To achieve this, we formulate
the reconstruction of individual light paths as a geometric
constraint satisfaction problem that generalizes the familiar
notion of triangulation to the case of indirect projection.

Our approach can be thought of as complementing two
lines of recent work. Research on environment matting
and generalized imaging models [5, 22, 23] represents an
arrangement of cameras, mirrors and lenses as an abstract
function that maps 3D points or 3D rays to points on the im-
age plane. These techniques focus on computing this func-
tion and treat the arrangement itself as an unknown “black
box.” In contrast, here we assume that this function is
known and study the problem of reconstructing the arrange-
ment. Work on specular stereo [24–27] relies on a two-
camera configuration or a moving observer to reconstruct a
mirror-like object. These algorithms solve the light path re-
construction problem for one specific case; our framework
leads to several generalizations, including a stronger two-
view result [28] that enables reconstruction of a refractive
scene even when its refractive index is unknown.

On the theoretical side, our work has five key contri-
butions. First, we provide a unified analysis of refractive
and mirror-like scenes, leading to algorithms that work for
both problems. Second, we characterize the set of recon-
structible scenes in a way that depends only on the num-
ber of vertices along a light path. As such, our results ap-
ply to any specific scene geometry that produces paths of
a given length. Third, we identify a very simple algorithm
for computing the depth map of a mirror surface from one
viewpoint. The algorithm relies on knowledge of a function
that maps each image point to two known reference points
along its light path and places no restrictions on shape, ex-
cept that light must bounce exactly once before reaching
the camera. Fourth, we establish the most general class of
scenes that can be reconstructed using an efficient, stereo-
like algorithm: these are scenes where light bounces twice
before reaching the camera. To our knowledge, this prob-
lem, which requires three viewpoints to solve it, has not
been previously analyzed. Fifth, we show that, while effi-
cient algorithms may not exist for scenes with light paths

of length K ≥ 3, there is enough information in 3(K − 1)
viewpoints to reduce shape ambiguities to a discrete set.

While our emphasis here is on the underlying theory, we
present preliminary results on real scenes, both refractive
and mirror-like. These results have several implications.
First, they show that we can reconstruct mirror surfaces
with a technique whose accuracy is bounded by the cali-
bration accuracy of a single stationary camera and by the
accuracy of environment matting (which can be very high
using well-known techniques [5, 29]). Second, it is possible
to reconstruct each point on a specular 3D scene (mirror,
liquid, glass) independently of all other points. This allows
reconstruction of scenes with fine surface detail and/or dis-
continuities. Third, we can compute a separate depth and a
separate normal for each surface point; this is unlike typical
stereo or laser-scanning techniques (which compute a point-
set that must be differentiated to get normals) or photomet-
ric stereo (which computes a normal map that must be inte-
grated to obtain depth). As such, our algorithms yield richer
3D data for inferring an object’s unknown shape [3, 30].

2. Light-Path Triangulation

Perspective projection requires that every 3D point
projects to an image along a straight line. When the scene
is composed of refractive or mirror-like objects, this linear
projection model is not valid anymore. Here we extend this
model by studying indirect projections of 3D points. Infor-
mally, indirect projection occurs anytime a point is viewed
indirectly, via one or more specular surfaces.

Consider a scene that is viewed from one or more known
viewpoints and contains one or more objects of unknown
shape. We assume that each object is a volume composed of
a homogeneous medium (opaque or transparent) and whose
surface is smooth, i.e., it does not contain surface irregular-
ities that scatter the incident light. In this case, the propa-
gation of light through the scene is characterized by three
basic processes [31, 32]—specular reflection at an object’s
surface, specular transmission (i.e., refraction) at the sur-
face of a transparent object, and linear propagation within
an object’s interior and through empty space.

Given an arbitrary 3D point p, a known viewpoint c, and
a known image plane, the point’s projection is determined
by the 3D path(s) that light would trace in order to reach that
viewpoint (Figure 2). We use the term light path to refer to
such a path. If a light path exists, it will be a piecewise-
linear curve between p and c whose vertices, if any, will
always lie on the surface of some object in the scene. The
number of vertices along a path is therefore equal to the
number of surfaces it intersects. In general, there may be
more than one light path connecting a 3D point to a view-
point, or there may be none at all.1 We say that point q is
an indirect projection of p if there is a light path between p
and c that crosses the image plane at q.

1See [33] for a camera-mirror arrangement that forces scene points to
indirectly project twice onto the image plane.
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Figure 2. An example light path. The dark gray region de-
notes a mirror-like object and the light gray region a trans-
parent object. Here, the light path from p intersects three
surfaces before reaching point q on the image plane, and
therefore has three vertices, v1,v2 and v3, and four rays.
In light-path triangulation, the coordinates of c,q and p are
known and the goal is to determine the coordinates and nor-
mals of the vertices. By convention, we order vertices and
rays along a path according to the direction of light travel.

2.1. The Light-Path Triangulation Problem

Suppose the specular scene is viewed from N known
viewpoints. We assume that for every point on the associ-
ated image planes there is a unique light path that describes
light propagation toward that point.2 Furthermore, suppose
we are given a function which tells us, for every such point,
the 3D coordinates of M “reference points” that project to
that point indirectly (Figure 3). Now, suppose we choose a
point q on one of the image planes and assign it a “depth”
value, i.e., a hypothetical distance to the last vertex along its
light path. Under what conditions can we decide unambigu-
ously the correctness of this depth? Our goal is to answer
this question in the general case, i.e., for smooth scenes of
arbitrary shape, N ≥ 1 viewpoints, M ≥ 1 known refer-
ence points, and light paths with K ≥ 1 vertices. To sim-
plify our exposition, we assume without loss of generality
that all light paths have the same number, K, of vertices and
that this number is known.

When we assign a depth d to a point on the image plane,
we define the 3D position of one specular point, vd, along
the ray through the selected image point. If that depth is cor-
rect, vd would redirect light toward all N viewpoints in a
way that is consistent with the laws of refraction and reflec-
tion, as well as the known function that maps image points
to reference points. Specifically, light would travel along N
distinct light paths whose last vertex is vd (Figure 3). These
paths define a graph, that we call the light network for depth
d. The network connects the N perspective projections of
vd to their corresponding reference points.

Definition 1 (Consistent Light Network) The light network for
depth d is consistent if we can assign a normal to vd and 3D coor-
dinates and normals to its other vertices so that the resulting light
paths are consistent with the laws of reflection and refraction.

Definition 2 (〈N,K,M〉-Triangulation) Assigns a depth d to a
given image point so that the resulting light network is consistent.

Definition 3 (Tractability) A triangulation problem is tractable
for a given image point if its solution space is a 0-dimensional
manifold, i.e., it is a collection of isolated depth values.

2More generally, our theory applies when the mapping from image
points to light paths is one-to-L with L finite and bounded; for simplic-
ity of presentation, however, we assume L = 1 in this paper.
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Figure 3. Basic geometry of 〈N, K, M〉-triangulation.

Intuitively, the minimum M and N needed to make tri-
angulation tractable for a given path length K indicate the
problem’s intrinsic difficulty. We use the term light-path
triangulation to refer to the entire family of 〈N,K,M〉-
triangulation problems.

Light-path triangulation differs from traditional stereo
triangulation in three important ways. First, unlike stereo
where at least two viewpoints are needed for reconstruction,
tractable light-path triangulation is possible even with just
one viewpoint (Section 3.1). Second, unlike stereo where
a single point is reconstructed from a pair of intersecting
3D rays, here we must reconstruct the 3D coordinates of all
N(K − 1) + 1 points in a light network, to guarantee con-
sistency. Third, while stereo triangulation does not provide
surface normal information, light-path triangulation recon-
structs normals as well. Hence, even though it is harder to
solve, light-path triangulation yields richer scene descrip-
tions than stereo both in terms of density (i.e., number of
reconstructed points) and content (i.e., points and normals).

2.2. Basic Properties of a Light Path

In principle, it is always possible to express a light-path
triangulation problem as a system of non-linear equations
that govern light propagation through the scene. Rather than
study the analytical form of those equations, which can be
quite complex, we take a geometric approach. In particular,
we express 〈N,K,M〉-triangulation as a geometric con-
straint satisfaction problem whose solution space depends
on just three properties (Figure 4):

• Planarity Property: Light propagation at a vertex always
occurs on a single plane that contains the surface normal.
That is, the vectors n,din and dout are always coplanar.

• Deflection Property: If we know the refractive index and
know any two of vectors n,din,dout, we can determine
uniquely the third vector. Moreover, this relation is a local
diffeomorphism.3

• Double-Correspondence Property: If we are given two
distinct reference points that project indirectly to the same
image point, the first ray on the image point’s light path must
be the line that passes through both reference points.

Note that all three properties hold for reflected and for re-
fracted light. As a result, our analysis does not distinguish
between these two different types of light propagation, mak-
ing our theoretical results applicable to scenes with mirror-
like or refractive objects, or both.

3Recall that a smooth map, f , between two manifolds is a local diffeo-
morphism at a point p if its derivative, dfp, is one-to-one and onto [34].
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Figure 4. Visualizing the three properties of a light path.
Vectors n,din,dout are always coplanar. In specular re-
flection, shown above, the angle between n and din is al-
ways equal to that of n and dout. In specular transmission,
Snell’s law states that the ratio of sines of these angles is
equal to the relative index of refraction [31]. Hence, know-
ing one angle allows us to determine the other in both cases.

While not previously used for reconstruction, the
Double-Correspondence Property has been noted in the
context of environment matting [5] and camera calibra-
tion [22]. Here, it highlights a fundamental difference be-
tween light-path triangulations where two or more reference
points are known per image point (M ≥ 2) versus just one
(M = 1): two or more reference points provide complete
information about the 3D ray along which light propagates
before it enters the scene, which is impossible to get from
just one reference point. This distinction is especially im-
portant in interpreting the results of our analysis.

3. Tractable Light-Path Triangulations

Our main theoretical result is an enumeration of all
tractable light-path triangulation problems (Figure 5):

Theorem 1 The only tractable 〈N, K, M〉-triangulations are
shown in the tables below:

One reference point (M = 1)
K = 1 K = 2 K ≥ 3

N = 1
N ≥ 2 � ×

Two or more reference points (M ≥ 2)
K = 1 K = 2 K ≥ 3

N = 1 � ×
N = 2 � ×
N = 3 � × �
N ≥ 4 � × � ×

where ‘�’ marks tractable problems where the scene is either
known to be a mirror or its refractive index is known; ‘×’ marks
tractable problems where the refractive index (or whether it is a
mirror) is unknown; and blanks correspond to intractable cases.

We obtain this result through a case-by-case analysis in
which the three properties of Section 2.2 are applied to the

above cases. Proofs for the cases of 〈1, 1, 2〉-triangulation
and 〈3, 2, 2〉-triangulation are given in Sections 3.1 and 3.2,
respectively. Each of these proofs is constructive and leads
directly to a reconstruction algorithm. See [28] for a de-
tailed investigation of a third case, 〈2, 1, 1〉-triangulation,
which includes a proof, algorithmic details, and experimen-
tal results on reconstructing dynamic surfaces of liquids.

Theorem 1 can be interpreted both as a negative and as
a positive result. On the negative side, it tells us that light-
path triangulation quickly becomes intractable for scenes
where a light path intersects many surfaces. Moreover, our
capabilities are severely limited when M = 1, i.e., when
one known reference point projects to each image point.

On the positive side, the theorem identifies three non-
trivial cases that are tractable: (1) reconstructing a mirror
from just one viewpoint; (2) reconstructing a refractive sur-
face with an unknown refractive index from two viewpoints;
and (3) using three viewpoints to reconstruct scenes that re-
fract or reflect light twice.

3.1. Mirrors: One Viewpoint, Two Reference Points

Proposition 1 〈1, 1, 2〉-triangulation is tractable.

Proof: Let c be a known viewpoint and let q be a point on the
(known) image plane whose light path has exactly one vertex v
(Figures 4 and 5a). Moreover, suppose that we know two distinct
reference points, p1,p2, that indirectly project to q. Finally, sup-
pose that we do not know the scene’s refractive index or whether
it is a mirror.

The proof follows trivially from that fact that under these con-
ditions, both rays on the light path of q are known. Specifically,
the last ray is defined by the known points c and q. Moreover, the
Double-Correspondence Property tells us that the first ray on its
path passes through p1 and p2. These two rays will intersect at
exactly one point, which must correspond to the location of vertex
v. The unique depth solution is given by

d =
‖(p1 − c) × din‖
‖dout × din‖ (1)

where din and dout are the unit vectors in the direction of the
path’s two rays.4 QED

While the algorithm implied by the proof of Proposi-
tion 1 is very simple, we are not aware of prior work that
uses it for reconstructing specular scenes.5

3.2. Glass: Three Viewpoints, Two Reference Points

Proposition 2〈3, 2, 2〉-triangulation is tractable for almost
all points on a generic surface with known refractive index.

4Note that if we also know that q’s light path is caused by specular
reflection, the normal at q is uniquely determined—it is simply the unit
vector in the direction of the bisector, (din + dout)/2. When this infor-
mation is not available, one additional viewpoint is sufficient to determine
both the normal and the scene’s specular properties (i.e., whether it is re-
flective or refractive, and the refractive index).

5While the Double-Correspondence Property was used in [22] to re-
cover the caustic of a mirror-based imaging system, this caustic does not
coincide with the mirror’s surface and, hence, their technique is not equiv-
alent to 〈1, 1, 2〉-triangulation.
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Figure 5. The basic tractable light-path triangulation problems. Similarly-colored rays are on the same light path. The unknown
vertices and normals are indicated along each path. (a) 〈1, 1, 2〉-triangulation. (b) 〈2, 1, 1〉-triangulation. (c) 〈3, 2, 2〉-triangulation.

Proof: The proof uses two basic intuitions: (1) the set of all depth
and normal assignments consistent with a single viewpoint forms a
2D “constraint surface;” and (2) the common intersection of three
such surfaces (i.e., one for each viewpoint) will in general be a
set of isolated points. In the following, we develop a constructive
proof that formalizes these intuitions. For concreteness, assume
that the “true” light path of every image point contains two refrac-
tive vertices (Figure 5c). Paths where one or both of their vertices
are reflective can be treated in an identical way.

To prove the proposition we use two facts. First, since M = 2,
we know two rays on the light path of every image point (Fig-
ure 6a). Second, for scenes bounded by a generic (i.e., non-
degenerate) surface [35], the light path of almost every pixel, in
a measure-theoretic sense, will be non-planar, i.e., the first and
last ray of a light path will not lie on the same plane, and there-
fore these rays will not intersect. This is because the planarity of
a light path is not a stable [34] property—almost any infinitesimal
surface deformation, change in viewpoint or change in the position
of pixel q will invalidate it.

Now let q be an arbitrary image point, let l1, l2, l3 be the first,
middle, and last ray along its light path, respectively, and let d be
a hypothetical depth value assigned to q. We show that in general
only isolated d-values can define a consistent light network.

Since l1 is the first ray on the light path of q, it contains the
first vertex of q’s path. Moreover, since this ray is known, there is
a one-degree-of-freedom ambiguity in the position of this vertex.
We can therefore parameterize its position with a parameter δ ∈
(−∞,∞). For a given d, each δ-value defines a unique position,
vδ , for the path’s first vertex and, consequently, a unique light path
for q. In that path, light initially propagates along l1, is refracted
at vδ and then at vd, and finally reaches q. From the Deflection
Property, only one normal at vd can redirect light according to that
path. Hence, it is possible to map every pair (d, δ) to a normal,
ndδ . Moreover, since l1 and l3 do not intersect in general, this
mapping is a diffeomorphism for almost every q. Note that we
can compute ndδ for any d and δ because we know l1 and l3.

Now let q′ be the perspective projection of point vd in the sec-
ond viewpoint, and let l′1 and l′3 be the first and last ray on its light
path, respectively (Figure 6b). Rays l′1 and l′3 will also not intersect
in general. Given a normal ndδ and ray l′3, the Deflection Prop-
erty tells us that there is a unique ray, l′2, that (1) passes through vd

and (2) causes light propagating along l′2 to be refracted toward q′.
This ray is completely determined by vd, ndδ , the second view-
point, and the image point q′. In particular, there is no geometric
constraint between rays l′1 and l′2. It follows that these rays will
be in general position, i.e., they will not intersect for an arbitrary
choice of d and δ and will not form a light path. Hence, such a
choice does not produce a light network for q.

For a given d, there is only an isolated set of δ-values that cause
rays l′1 and l′2 to intersect. To see this, note that as δ varies over the
interval (−∞,∞), ray l′2 traces a ruled surface whose shape has
no relation to ray l′1. Since in general a ray and a surface will only

have isolated intersection points [34], and since l′1 and l′2 intersect
precisely at those points, it follows that for every d there is only a
discrete set, ∆d, of δ-values that produce a light path through q′.

Finally, consider the projection, q′′, of vd in the third view-
point (Figure 6c). For a given d, the normals that produce light
paths for the first two viewpoints are given by the set {ndδ | δ ∈
∆d}. For every normal in this set there is a unique ray, l′′2 , that
passes through point vd and forces light propagating along l′′2 to
be refracted toward pixel q′′. Since the set of normals is discrete,
these rays form a discrete family. Moreover, since this family of
rays has no relation to ray l′′1 and since rays in general position
have no common intersections, it follows that l′′1 and l′′2 will only
intersect for an isolated set of d-values. QED
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Figure 6. (a)-(c) Path geometries in proof of Proposition 2.
(a) Light path of an image point q in the first viewpoint. The
arrow indicates the direction of incoming light. Rays l1 and
l3 are known but l2 is not. The shaded plane is the plane of
rays l2 and l3 and always contains the surface normal, ndδ .
Generically, this plane will not contain ray l1. (b) Light
path of q′ in the second viewpoint, for a given value of d
and δ. The path in (a) is also shown. Rays l′1 and l′3 are
known. Ray l′2 is uniquely determined by l′3 and ndδ . For
arbitrary d and δ, the rays l′1 and l′2 will not intersect. The
dark-shaded plane is the plane of l′2 and l′3. (c) Light path
of q′′ in the third viewpoint. (d) Path geometries in proof
for Proposition 3.

Beyond showing that it is possible to reconstruct general
doubly-refracting and doubly-reflecting scenes, our proof



suggests a reconstruction algorithm: it tells us that we can
reconstruct all four vertices and normals in the light network
of a pixel q by conducting a 2D search in (d, δ)-space. The
search is for a pair (d, δ) that forces intersection both of rays
l′1, l

′
2 in Figure 6b and rays l′′1 , l′′2 in Figure 6c.

3.3. The Limits of Light-Path Triangulation

We now prove that light-path triangulation cannot recon-
struct general scenes that redirect light more than twice.

Proposition 3 〈N, 3, 2〉-triangulation is intractable.

Proof: It suffices to prove the proposition for the case where the
scene is refractive with a known refractive index and is viewed
from N > 1 viewpoints. Let d be a hypothetical depth value at
q, and let nd be an arbitrarily-chosen normal for vertex vd (Fig-
ure 6d). Given the projection q′ of vd in the i-th viewpoint, we
will assign coordinates and normals to all remaining vertices on its
light path in a way that is consistent with the laws of refraction.

We use the same terminology as in the proof of Proposition 2.
For a given d and nd, there is only one ray, l′3, that can refract
light toward image point q′ (Figure 6d). The second vertex, v, on
q′’s light path will lie on that ray. Choose an arbitrary location
on the ray for that vertex. To fully define a light path for q, we
now need to specify its first vertex. This vertex must lie on the
known ray l′1. As in the proof of Proposition 2, the 3D position,
vδ , of this vertex can be parameterized by a single parameter δ.
Choose an arbitrary value of δ to fix the location of that vertex as
well. Now, the Deflection Property tells us that there is a unique
normal that will redirect light from l′2 toward l′3 at v. Similarly,
there is a unique normal that will redirect light from l′1 toward l′2
at vδ . Hence, we have found an assignment of 3D coordinates
and normals for all path vertices that produces a light path for q′.
Since we were able to do this for an arbitrary value of the depth d,
the triangulation problem’s solution space is dense in R. QED

3.4. The Power of Global Shape Recovery

The fact that light-path triangulation is intractable for
scenes with long light paths does not necessarily mean that
reconstruction of such scenes is hopeless. Intuitively, light-
path triangulation operates at a completely local level—for
any two points on the same image plane, it attempts to
reconstruct the associated light networks independently of
each other. So what if we had a procedure that reasoned
about multiple light networks simultaneously? Here we
briefly sketch a partial answer to this question: we show
that a sufficiently large collection of viewpoints does con-
tain enough information to reduce shape ambiguities to a
discrete set. Although this existence result does not point
to any algorithms, it does suggest that, with enough images,
we can test with reasonable confidence the validity of a hy-
pothesized 3D scene model:

Proposition 4 Given an arrangement of viewpoints for which
there is a constant K such that (1) every scene point is intersected
by at least 3(K − 1) light paths of length ≤ K and (2) the first
and last ray of all these paths is known, the location of each scene
point is constrained to a 0-dimensional solution manifold.

Intuitively, Proposition 4 gives us a lower bound on the
number of viewpoints we need for shape verification: for

light paths of maximum length K, each scene point must
project indirectly to least 3(K − 1) viewpoints. We prove
this result inductively, using Proposition 2 both as the base
case and for proving the inductive step. See [36, 37] for
details.

4. Experimental Results

We used a 720× 484-pixel Sony DXC-9000 video cam-
era for image acquisition and a DELL LCD display for dis-
playing reference patterns. To calibrate the camera with re-
spect to the plane of the LCD display, we used the Matlab
Calibration Toolbox [29], and used an environment matting
procedure [5] to find the correspondence between image
pixels and pixels on the display. The display was then trans-
lated by a known amount and the procedure was repeated,
giving us two known 3D reference points per image pixel.

Reconstructing mirrors by 〈1,1,2〉-triangulation We
used the arrangement in Figures 1a and 5a. A key fea-
ture of 〈1, 1, 2〉-triangulation is that reconstruction accuracy
largely depends on the accuracy of camera calibration, not
on the shape of the object being reconstructed. We therefore
concentrated on evaluating the accuracy of the depths and
normals computed individually for each pixel, with an ob-
ject whose ground-truth shape was known very accurately:
a 130×230mm front-surface mirror with 1

4 -wavelength flat-
ness. To determine the mirror’s plane, we digitized sev-
eral points on it with a FaroArm Gold touch probe, whose
single-point measurement accuracy is ±0.05mm, and then
fit a plane through these points. The mirror was placed
about 1.5m away from the camera.

To compute the depth d at a pixel, we simply in-
tersected the first and last ray along its light path (see
Eq. (1)). The bisector of these rays gave us the surface
normal. This computation was done at each of 301,082
pixels in the image, giving us an equal number of 3D
position and normal measurements. No smoothing or
post-processing was applied. The RMS distance of the
reconstructed 3D points from the ground-truth plane was
0.644mm, equivalent to a single-point accuracy of roughly
99.96% of the camera-to-object distance. To assess the
accuracy of reconstructed normals, we measured the angle
between each computed normal and the ground-truth
normal; the mean error was 0.182 degrees, showing that
single-point orientation measurements were also highly ac-
curate. We emphasize that these accuracies were obtained
without using any information about the scene’s shape
and without combining measurements from multiple pixels.

Reconstructing liquids by〈2,1,1〉-triangulation See [28].

Reconstructing glass objects by 〈3,2,2〉-triangulation
We used the arrangement in Figure 7 and Figure 5c. Since
this triangulation requires three or more viewpoints, we
place objects on a turntable between the LCD and the cam-
era and compute the correspondence between image pixels
and pixels on the display for each object rotation. The cam-
era was tilted slightly upwards so that optical rays converg-
ing to an object point are not coplanar.

One of our test objects, a diamond-shaped glass orna-



ment, is shown in Figure 7. The object’s many planar facets,
which produce complex light paths, its surface discontinu-
ities, and its sharp, protruding tip make reconstruction es-
pecially challenging. We used five viewpoints, at ±20,±10
and 0-degree rotations. The object extended about 4cm
in depth, roughly 1m away from the camera. To recon-
struct it, we used all available views and solved a 〈5, 2, 2〉-
triangulation problem independently for every pixel in the
0-degree viewpoint. For each such pixel, our implementa-
tion performed a search in (d, δ)-space for a pair of values
that produce a valid light path for all viewpoints (Section 3.2
and Figures 6a-c). These values were then refined in a non-
linear optimization stage. Since the light network of a pixel
contains six vertices, the algorithm reconstructs six points
and six normals per pixel—one on the object’s front surface
and seven more on the back (Figure 3). Importantly, since
we use more viewpoints than the minimum three required,
the reconstruction is over-constrained and allows estimation
of the object’s refractive index, which was found to be 1.53.

Figure 7 shows reconstruction results for the object’s
front surface. The maps for the normals’ slant and tilt angles
suggest that the object’s surface orientation was highly con-
sistent across different pixels within a facet, even though
light paths for different pixels were reconstructed com-
pletely independently, and no smoothing or post-processing
was applied. Because of this independence, normals were
reconstructed accurately even near the diamond’s tip, where
the surface is highly degenerate. Also observe that, as
a side-effect, we obtain an automatic segmentation of the
scene into smooth segments. This is because image-to-
LCD correspondences cannot be established at the precise
location of a normal discontinuity and, hence, those pix-
els were not reconstructed. To further assess the precision
of the reconstruction we measured the consistency of nor-
mals and depths within each planar facet. These quantita-
tive measurements are shown in the table of Figure 7. They
show that individually-reconstructed normals are consistent
to within a few degrees, while depth measurements, which
seem to produce a noisier map, show deviations on the or-
der of 0.1 to 0.2% of the object-to-camera distance. These
results, which confirm our basic theory, suggest that it is
possible to recover detailed shape information for refractive
objects without any knowledge of their shape, and despite
the complexity of image formation.

5. Concluding Remarks

While our experimental results are promising, many
practical questions remain open. These include (1) how
to best compute correspondences between reference points
and pixels, (2) how to reconcile point and normal measure-
ments, and (3) how to find the optimal depth at a pixel. Fi-
nally, our theoretical analysis can be thought of as a “worst-
case” scenario for reconstruction, where no constraints are
placed on nearby scene points. Since real scenes exhibit
spatial coherence, it might be possible to incorporate this
constraint into an algorithm that remains tractable even for
scenes that refract light more than twice.
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was computed by averaging the reconstructed normal for all pixels in the facet’s footprint. The best-fit plane was computed by fitting
a plane to the reconstructed depths at those pixels using least squares.
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